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Semantic Structure Discovery in Surveillance Videos

Xiatian Zhu

Abstract

For automatically processing and interpreting the enormous amount of video data generated by
the rapid expansion of surveillance cameras, developing autonomous vision systems is essential.
One generic mechanism for automated visual content analysis is to discover and understand the
intrinsic meaningful data structures. Nonetheless, semantic structure discovery for large scale
surveillance video data remains challenging due to the inherent visual ambiguity and uncertainty,
potentially unreliable high-dimensional feature representations with noisy and irrelevant data,
or large and unknown cross-camera variations in viewing conditions. This thesis proposes ap-
proaches to several critical video surveillance problems by deriving advanced machine learning
algorithms for more accurately quantifying and mining the underlying data structure semantics.
More specifically, this thesis investigates and has developed new methods for addressing four
different problems as follows:

Chapter 3 The first problem is unsupervised visual data structure discovery, i.e. estimating
the underlying data group memberships from visual observations. This is inherently challenging
as visual signals can be inevitably ambiguous/noisy, e.g. due to uncontrollable variation sources
like illumination and background clutter, particularly so on typical surveillance videos. More-
over, visual features are often high-dimensional, with many but unknown less-reliable feature
data. To that end, this thesis proposes to identify and explore discriminative features rather than
the whole feature space when measuring pairwise relationships between noisy data samples for
accurately uncovering the semantic data neighbourhood structures. Specifically, a random forest
based data similarity inference framework is designed, characterised by accumulating weak and
subtle similarity over informative feature subspaces. This method can be utilised along with a
graph based clustering algorithm for clustering visual data.

Chapter 4 The second problem is semi-supervised visual data structure discovery where
pairwise constraints/relationships over data samples (i.e. must-link, cannot-link) are accessi-
ble. It is non-trivial to exploit pairwise constraints for helping the disclosure of meaningful data
structure. This is because (1) often sparse constraints are available, thus providing only very lim-
ited information; (2) constraints are not necessarily accurate, hence misleading guidance may be
imposed onto the discovery process if blindly trusting them all. In this thesis, a Constraint Propa-
gation Clustering Random Forest model is formulated specially to leverage sparse pairwise links
for more reliably measuring pairwise similarities between data pairs either constrained a priori
or not. Moreover, this semi-supervised model is also characterised with favourable robustness
against invalid pairwise constraints.

Chapter 5 The third one is multi-source video data structure discovery, significantly different
from the above single-source cases. Specifically, semantic video structure analysis is investigated
given heterogeneous visual and non-visual source data. Inherently, it is challenging to jointly
learn such multi-source data which significantly differ in representation, scale and covariance,
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Figure 1: An overview of the main studies carried out in this thesis. According to video data
source (e.g. camera) setting, all studies are grouped into two categories: single view data struc-
ture discovery (Chapters 3, 4, 5), and multi-camera data structure discovery (Chapter 6), with
each chapter corresponding to a specific type of visual data structure discovery.

let alone when both visual and non-visual data in isolation can be inaccurate or incomplete.
To overcome the challenges, this thesis formulates a Multi-Source Clustering Forest capable of
correlating visual data and independent non-visual auxiliary information to better describe the
underlying relationships among data and then facilitate video cluster revelation. The discovered
clusters can be exploited to precisely summarise subtle physical events in complex scenes.

Chapter 6 The last problem is to discover person identity structure distributed across non-
overlapping camera views, also called person re-identification (ReID). Visual data are drawn
from multiple camera views, versus single-camera data involved in the above three problems.
Therefore, visual ambiguity may be significant because of cross-view illumination variations,
viewpoint differences, cluttered background and inter-object occlusions. Different from most
existing appearance based models wherein ReID is achieved by matching single or multiple per-
son images, the proposed Discriminative Video Ranking method is unique in learning a robust
space-time ReID model instead from person image sequences of arbitrary starting/ending frame,
random length, and unknown background clutter and occlusion. Moreover, the joint learning of
both spatial appearance and space-time features in this model demonstrates significant advan-
tages over existing methods in ReID.

For facilitating a holistic understanding about this thesis, the main studies are summarised
and framed into a graphical abstract as shown in Figure 1.
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Chapter 1

Introduction

In visual surveillance, a fundamental task is to make sense of the massive quantity of visual data

generated by the rapid expansion of Closed-Circuit TeleVision (CCTV) surveillance cameras

for gaining perceptual and situational awareness of visual sensor data. This needs to extract

compact, rich and expressive descriptions for video data. To that end, one common mechanism

is to identity the inherent structure underlying in large scale visual data through measuring the

similarity relationships among data samples or constructing data neighbourhoods. Whilst solving

this fundamental problem is inherently challenging due to the large and hard-to-bridge semantic

gap between high-level human perceptions and low-level imaginary pixel data, it can potentially

benefit a variety of applications in computer vision, data mining and machine learning.

1.1 Surveillance Video Data Structure Discovery

Video surveillance is considered as one of the most important offerings in the surveillance indus-

try. However, given the extremely enormous amount of video data produced by the incrementally

growing number of surveillance CCTV cameras1, manual data processing by human operators is

prohibitively expensive and not scalable. In particular, operators involved in intensive forensic

analysis of visual data from large scale multi-camera networks often face many practical chal-

lenges, including (a) data overload from extensive number of cameras, e.g. each operator may be

1 In July 2013, it was disclosed by the British Security Industry Associa-
tion that there were up to 5.9 million surveillance cameras, or averagely one cam-
era for every 11 people in Britain (http://www.securitynewsdesk.com/
bsia-attempts-to-clarify-question-of-how-many-cctv-cameras-in-the-uk/).

http://www.securitynewsdesk.com/bsia-attempts-to-clarify-question-of-how-many-cctv-cameras-in-the-uk/
http://www.securitynewsdesk.com/bsia-attempts-to-clarify-question-of-how-many-cctv-cameras-in-the-uk/
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Figure 1.1: Typical surveillance control rooms with a high number of cameras. One operator may
be required to monitor tens or over a hundred of cameras, e.g. by quick snapshots of all assigned
screens. This shall be largely beyond the limit of human capability. Many cameras are ignored
and left unmonitored for long periods of time. As a result, the surveillance system is primarily
used in reactive mode, i.e. operators direct their surveillance based on receiving intelligence from
external agencies, or utilise recorded footages to seek and view incidents retrospectively (Spriggs
et al., 2005).

assigned tens of cameras or even more to monitor simultaneously (Spriggs et al., 2005), largely

beyond their capability (see examples in Figure 1.1); (b) inherently limited attention span (Green,

1999); (c) the limited ability or difficulty to exploit other auxiliary non-visual data sources and

mine informative knowledge among ‘big data’ for assisting the task performing process. On the

other hand, the trend of rising security concerns and crime rates is increasing globally. Security

is essential to the society whilst the potential public threat is everywhere, ranging from commer-

cial and industrial scenes, to residential and other public places. In such context, the demand of

intelligent video surveillance systems is surging. The ultimate aim is to facilitate the reduction of

human intervention, and help process large scale surveillance video data, and achieve less threat

to public safety and security.

Substantial efforts have been made towards developing automated video surveillance systems

and more endeavour is expected in both the academic and industrial communities. Recently, Mar-

ketsandMarkets (MarketsandMarkets, 2014) reported that the global video surveillance market

will reach $42.06 billion by 2020, growing at a CAGR (Compound Annual Growth Rate) of

16.97%. In this field, the major market players include Axis Communications AB from Sweden,
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Extract feature  
representation 

Compute/model  
data relations 

Perform data 
structure discovery 

Figure 1.2: Pipeline of visual data structure discovery. Data structures refer to clusters or groups
in this thesis. Clusters are task-dependent and thus may correspond to different specific concepts
in distinct vision tasks. For example, a cluster may refer to a group event or an individual person.

Avigilon Corporation from Canada, Bosch Security System, Inc., Pelco by Schneider Electric

from U.S., and so forth. Nevertheless, the current state-of-the-art video surveillance systems are

still far from satisfactory. In particular, most existing technologies for surveillance video analysis

typically depend on visual observation alone. Such systems often suffer considerably from less

meaningful video abstraction and interpretation due to the large semantic gap challenge. Whilst

fully unsupervised or semi-supervised analysis of visual data captured from public spaces is of-

ten challenged by the inherent ambiguities and uncertainties of visual appearance. This can be

due to the large and unknown variations in lighting, image quality, imaging noises, diversity of

object pose and appearance, and severe random occlusions in crowded scenes. As a result, ex-

isting systems that rely on the whole and potentially noisy visual features are likely to produce

sub-optimal results. In addition, many contemporary techniques are limited by design in exploit-

ing sufficiently the available visual data. To solve the aforementioned problems demands the

innovation of more robust and advanced computer vision algorithms and surveillance systems.

1.1.1 Definition of Data Structure Discovery

Abstractly, the essence of many video surveillance systems is to acquire compact and meaningful

explanations and/or descriptions for the visual data under consideration. The visual data to be

processed is often of large scale and unstructured. Therefore, one typical and natural processing

mechanism is data structure analysis and discovery. Specifically, an intelligent vision system

takes three steps for discovering the latent data structure (Figure 1.2):

1. Extracting visual feature representations for data samples, e.g. colour, texture, optic flow,

object detections.

2. Modelling and computing the quantitative relationships between samples, e.g. data pair-

wise distance/similarity. A model training stage for parameter optimisation may or may

not be required, depending on the specific learning strategy.

3. Performing visual data structure discovery for providing task-specific interpretation based



22 Chapter 1. Introduction

on the learned model and/or the inferred numerical measures.

Among this process, one key issue is how to model and compute the numerical relations between

data. This is the focus of the works presented in this thesis. Formally, data structures are defined

as the cluster or group memberships over a collection of data in this context. Clusters are task-

dependent and should respect human perception, e.g. a cluster may refer to a certain physical

activity/event (Figure 3.2c).

Automatic cluster structure discovery is an essential means of surveillance video analysis

since it provides a concise and manageable description and index for overwhelmingly large video

data. Several important uses of discovered clusters include (1) facilitating video management;

(2) providing easy browsing capability; (3) allowing efficient exploration of a video dataset; (4)

summarising video data. All these functionalities are crucial for video surveillance.

1.1.2 Definition of Problems

In typical video surveillance, visual data under consideration are usually drawn from a single

camera view or multiple camera views (e.g. multi-camera CCTV networks). From this data

source perspective, the problems/tasks considered in this thesis are categorised into two classes:

1. Single-camera visual data structure discovery. The aim is to identify the inherent cluster

or group structures of the given single-camera visual data, e.g. group events. Particularly,

three specific problems are involved as below.

(a) Unsupervised visual data structure discovery: The typical unsupervised cluster anal-

ysis (or data clustering) is considered, wherein only data features are available with-

out the presence of any other knowledge.

(b) Semi-supervised visual data structure discovery: The semi-supervised data clustering

problem is studied in case that a number of pairwise constraints are accessible apart

from visual data features.

(c) Multi-source data structure discovery: The multi-source data clustering problem is

investigated, assuming the availability of additional auxiliary non-visual data sources,

e.g. a single data sample is associated with multiple information components. The

discovered structures can be further exploited for video summarisation.

2. Cross-camera visual data structure discovery. Multiple cameras allow video surveil-

lance to monitor a wide area, physically extending the limited viewing area by single cam-



1.2. Challenges, Hypotheses, and Solutions 23

eras. For distributed multi-camera systems, an essential task is to associate people across

camera views at different locations with no overlapping field of view. This is also known

as the person re-identification (ReID) problem. In other words, the notion of cluster in this

cross-view person ReID scenario is specifically defined as person identity, and one aims

to build clusters each corresponding to one particular person of interest. This is a finer-

grained data structure when compared to the coarse group activity/event cluster. Person

ReID enables to discover and reason about the latent person-specific structured activities

taking place over extended public spaces, facilitating individual global behaviour analysis

beyond single localised camera views.

Figure 1 (in Abstract) summarises and organises together all these problems considered and

investigated for obtaining a global understanding of the whole thesis.

1.2 Challenges, Hypotheses, and Solutions

This section discusses the approaches/solutions proposed to solve these problems (Section 1.1.2),

together with particular challenges in addressing the problem, and the hypothesis behind the

presented solutions.

1.2.1 Unsupervised Visual Data Structure Discovery

Unsupervised visual data structure discovery or clustering is a fundamental and popular approach

to video data understanding, essential for many computer vision tasks, including supervised

learning like general classification and regression problems. Also, it promises immense potential

for a wide range of applications in data mining and pattern recognition (Jain, 2010).

Challenges Performing unsupervised visual data clustering is intrinsically challenging espe-

cially given complex data that are often of high dimension and represented by less reliable fea-

tures, whilst no additional prior knowledge or supervision is available for helping resolve un-

certainty. Trusting all available visual features blindly for measuring data pairwise distance and

similarity is susceptible to unreliable and/or noisy features, particularly so for real-world visual

data, e.g. images and videos where signals can be inevitably inaccurate and unstable owing to

uncontrollable sources of variation, changes in illumination, context, occlusion and background

clutters (Gong et al., 2011). Moreover, confining the notion of localised data pairwise distance

to the L2-norm metric implicitly imposes unrealistic assumption on complex data structures that
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Figure 1.3: An example from (Jain, 2010) showing the challenges involved in cluster analy-
sis. None of the existing clustering algorithms can discover accurately all these clusters, which
however are very apparent to human analyst.

do not necessarily possess the Euclidean behaviour. How to learn a semantically meaningful

distance and similarity metric remains open. Figure 1.3 shows an example for illustrating the

challenges in cluster analysis.

Hypothesis Given high-dimensional and possibly noisy visual data feature spaces, it is hypoth-

esised that underlying data cluster structures can be inferred and discovered more accurately over

discriminative feature subspaces, rather than using the entire feature space (Figure 1.4).

Solution The goal is to infer accurate pairwise similarity between visual samples so as to con-

struct more meaningful affinity graphs for facilitating unsupervised data cluster discovery using

existing graph based algorithms, e.g. spectral clustering. Instead of considering the complete fea-

ture space as a whole, the proposed model is designed to avoid less informative visual features

by measuring inter-sample proximity via discriminative feature subspaces, yielding similarity

graphs that better express the underlying structures in visual data. Moreover, the Euclidean as-

sumption is relaxed for data similarity inference by following the information-theoretic definition

of data similarity presented in (Lin, 1998), which states that different similarities can be induced

from a given sample pair if distinct propositions are taken or different questions are asked about

data commonalities. Motivated by a similar idea, the proposed model derives pairwise similari-

ties of arbitrary sample pairs from an exhaustive set of comparative tests, using different feature

variables with distinct inherent semantics as criteria. Such subtle similarities distributed over

discriminative visual feature subspaces are combined automatically and effectively for produc-
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Figure 1.4: An example for demonstrating the importance of feature selection. Whilst their
holistic appearances share much similarity, the significant discriminations are hidden in some
particular regions as indicated by red circles. This necessitates selective matching other than
global comparison in the data visual feature space.

ing robust pairwise affinity matrices.

1.2.2 Semi-Supervised Visual Data Structure Discovery

The ill-definition of unsupervised data structure discovery inspires the search and exploration of

other information sources. In some circumstances one may have access to prior belief that pairs

of samples should or should not be assigned with the same cluster or high-level explanation.

Exploiting this prior belief as additional constraint information or weak supervision to influence

the cluster discovery process can obtain a data group structure more closely resembling human

perception. Such constraints are often available in small quantity, and expressed in the form of

pairwise link, namely must-link - a pair of samples must be in the same cluster, and cannot-link

- a pair of samples belong to different clusters. Clustering with such external information is

also known as constrained clustering (Wagstaff et al., 2001; Basu et al., 2004a, 2008) or semi-

supervised clustering (Basu et al., 2002, 2004b; Kulis et al., 2009; Araujo, 2015) due to its

commonality with semi-supervised learning (Blum and Mitchell, 1998; Zhu et al., 2003; Chapelle

et al., 2006) where supervision is provided only over a limited number of data, i.e. a number of

sample pairs are connected with either must-link or cannot-link whilst the others are not. In

the context of data cluster analysis, pairwise constraints are more natural than commonly-used

class labels because cluster membership is the learning target. Also, the annotation for the latter

requires human annotators to own more knowledge and thus more demanding. The objective

is to exploit this small amount of pairwise supervision effectively to help reveal the visual data

partitions/groups that capture consistent concepts as perceived by human or as indicated by the

pairwise constraints.
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Challenges Two important but non-trivial questions remain unsolved despite extensive re-

search effort has been expended on the constrained clustering problem in the last decade:

1. Sparse constraint propagation Whilst constraints can be readily transformed into pair-

wise similarity measures, e.g. assign 1 to the similarity between two must-linked samples,

and 0 to that between two cannot-linked samples (Kamvar et al., 2003), samples labelled

with link preference are typically insufficient since exhaustive pairwise labelling is la-

borious and tedious. As a results, the limited number of constraint samples are usually

employed together with data features to positively affect the similarity measures over un-

constrained sample pairs so that the yielded similarities are closer to the intrinsic structures

in data. Such a similarity distortion/adaptation process is often known as constraint propa-

gation (Lu and Carreira-Perpinán, 2008; Lu and Ip, 2010). Effective constraint propagation

relies on robust identification of unlabelled nearest neighbours (NN) around the labelled

samples in the feature space. Often, the NN search is susceptible to noisy or ambiguous

features, especially so on image and video datasets. Trusting all the available features

blindly for NN search (as what most existing constrained clustering approaches (Wagstaff

et al., 2001; Lu and Carreira-Perpinán, 2008; Lu and Ip, 2010) did) is likely to result in

suboptimal constraint diffusion. It is challenging to determine how to propagate their influ-

ence effectively to neighbouring unlabelled points. In particular, it is non-trivial to reliably

identify the neighbouring unlabelled points for propagation.

2. Noisy constraints from imperfect oracles Human annotators (oracles) may provide in-

valid/mistaken constraints. For instance, a portion of the ‘must-links’ are actually ‘cannot-

links’ and vice versa. For example, annotations or constraints obtained from online crowd-

sourcing services, e.g. Amazon Mechanical Turk (Kittur et al., 2008), are very likely to

contain errors or noises due to data ambiguity, unintentional human mistakes or even inten-

tional errors by malicious workers (Kittur et al., 2008; Patterson and Hays, 2012). Learning

such constraints blindly may result in sub-optimal cluster formation. Most existing meth-

ods make an unrealistic assumption that constraints are acquired from perfect oracles thus

they are noise-free. It is non-trivial to quantify and determine which constraints are noisy

prior to knowing their true cluster memberships.

Hypothesis The hypotheses to validate in this study are:

1. Pairwise constraints can be propagated more effectively and accurately to unconstrained
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samples through nearest neighbours defined over discriminative feature subspaces, rather

than the whole feature space.

2. As propagating noisy pairwise links may lead to suboptimal clustering results, it is es-

sential to discover and measure the noisy degree of individual constraints by measuring

the relationships between data features and the given links for maximising the benefits of

potentially inaccurate constraints from imperfect oracles.

Solution To address the sparse and noisy pairwise constraint issues in semi-supervised visual

data structure discovery, this thesis formulates a COnstraint Propagation Random Forest (COP-

RF), not only capable of effectively propagating sparse pairwise constraints, but also able to

deal with noisy constraints produced by imperfect oracles. The COP-RF is flexible in that it

generates an affinity matrix that encodes the constraint information for existing spectral clustering

methods (Ng et al., 2002; Zelnik-manor and Perona, 2004; Von Luxburg, 2007; Xiang and Gong,

2008) or other pairwise similarity based clustering algorithms for constrained clustering.

More precisely, the proposed model allows for effective sparse constraint propagation through

using the NN samples that are found in discriminative feature subspaces, rather than those found

considering the whole feature space, which can be suboptimal due to noisy and ambiguous fea-

tures as shown in Figure 1.4. This is made possible by introducing a new objective split function

into COP-RF, which searches for discriminative features that induce the best data subspaces while

simultaneously considering the model parameters that best satisfy the data-level constraints im-

posed. To identify and filter noisy constraints generated from imperfect oracles, a constraint

inconsistency quantification algorithm based on the outlier detection mechanism of random for-

est is introduced. Figure 4.1 shows an example of illustrating how a COP-RF is capable of

discovering data partitions close to the ground truth cluster structures despite that it is provided

only with sparse and noisy pairwise constraints.

1.2.3 Multi-Source Data Structure Discovery

In the context of video surveillance, there may exist a number of non-visual auxiliary information.

Examples of non-visual sources include weather report, GPS-based traffic data, geo-location

data, textual data from social networks, and on-line event schedules (Figure 1.5). The auxiliary

data sources are beneficial to visual data modelling because despite that visual and non-visual

data may have very different characteristics and are of different natures, they depict the common
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Visual  Features Event Calendar 

Visual Source Non-Visual Source 

Figure 1.5: A multi-source data example in visual surveillance. Beyond the visual source from
the camera, some non-visual data sources may be accessible and helpful in video analysis.

physical phenomenon in a scene. So, they are intrinsically correlated although may be mostly

indirect in some latent spaces.

Challenges Nevertheless, it is non-trivial to formulate a framework that exploits both visual

and non-visual data for video content analysis, both algorithmically and in practice.

Algorithmically, unsupervised mining of latent correlations and interactions between hetero-

geneous data sources faces a number of challenges: (1) Disparate sources significantly differ in

representation (continuous or categorical), and largely vary in scale and covariance. This is also

known as the heteroscedasticity problem (Duin and Loog, 2004). In addition, the dimension of

visual sources often exceeds that of non-visual information to a great extent (>2000 visual di-

mensions vs. <10 non-visual dimensions). Owing to this dimensionality discrepancy problem,

a straightforward concatenation of features will result in a representation unfavourably inclined

towards the imagery data. (2) Both visual and non-visual data in isolation can be inaccurate and

incomplete.

In practice, auxiliary data sources, e.g. weather, traffic reports, and event time tables, may

be rather unreliable in availability. Specifically, the reports may not be released on-the-fly at a

synchronised time stamp with the surveillance video stream. In addition, existing video control

rooms may not necessarily have direct access to these sources. This renders models that expect

complete visual and non-visual information during deployment impractical.

Hypothesis In this study, exploiting the available non-visual auxiliary information is hypothe-

sised to positively complement the unilateral perspective from visual observations. In particular,

effectively discovering and exploiting such a latent correlation space can facilitate the underly-

ing data structure discovery and bridge the semantic gap between low-level visual features and

high-level interpretation of video content.
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Solution To overcome the above challenges, this study presents a unified multi-source data

discovery framework capable of performing joint learning given heterogeneous multi-sources

(Figure 5.1). The visual data is considered as the main source and non-visual data as the auxil-

iary sources, since visual information still plays the main role in video content analysis. More

specifically,

1. During training, the access to both visual and non-visual data is assumed. The proposed

model performs multi-source data clustering and discovers a set of visual clusters tagged

along with non-visual data distribution, e.g. different weathers and traffic speeds. The

model is termed as multi-source model.

2. During the deployment stage, only the availability of previously-unseen video data is as-

sumed since non-visual data may not be accessible due to the aforementioned limitations.

This learned multi-source learning model can be applied for video summarisation, conven-

tionally based on visual feature analysis and object detection or segmentation alone. Specifically,

as the learned model has already captured the latent structure of heterogeneous types of data

sources, the model can be used for semantic video clustering and non-visual tag inference on

previously-unseen video sequence, even without the non-visual data. Subsequently, key clips are

automatically selected from the discovered clusters. The final summary video can be produced

by chronologically compositing these key clips enriched by the inferred tags.

1.2.4 Person Identity Structure Discovery

Person identity distribution structure discovery is typically realised by person re-identification

(ReID). The state-of-the-art person re-identification methods perform cross view people asso-

ciation mostly by matching spatial appearance features (e.g. colour and intensity gradient his-

tograms) using a pair of single-shot person images (Hirzer et al., 2012; Farenzena et al., 2010;

Prosser et al., 2010; Zhao et al., 2013b). However, single-shot appearance features of person are

intrinsically limited due to the inherent visual ambiguity caused by clothing similarity among

people in public spaces, appearance changes from cross-view illumination variations, viewpoint

differences, cluttered background and inter-object occlusions. Exploiting other information cues

are required for improving the performance of current person re-identification systems. In prac-

tical surveillance settings, continuous video data are often accessible beyond discrete individual

person images. It is desirable to explore space-time information from the available videos or
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(a) Cross-view lighting variations (b) Camera viewpoint changes

(c) Clothing similarity (d) Background clutter and occlusions

Figure 1.6: Person re-identification challenges in public space scenes (UK , 2008). (a,b): The
two images in each bounding box refer to the same person observed in different cameras.

image sequences of people for assisting re-identification in public spaces.

Challenges It is inherently non-trivial to extract reliably person-discriminative space-time in-

formation from image sequences, especially when the videos are captured at crowded public

scenes. This is because:

1. The starting/ending frames of each sequence may correspond to arbitrary walking phases

and thus two compared sequences are mostly unaligned.

2. Sequences of pedestrians have varying number of walking cycles and a holistic matching

between sequences may yield suboptimal match in parts of the sequences.

3. Image sequences of people walking in public spaces consist of missing or corrupted frames

due to background clutter and random inter-object occlusions (see examples in Figure 1.6).

This makes walking phase detection unreliable.

Hypothesis For re-identifying people using largely unaligned and noisy person videos, it is

hypothesised that the key to learn an effective image sequence ReID model can lie in selecting

and exploiting informative and discriminative video fragments from the whole sequences for

facilitating the extraction of reliable identity-discriminative space-time dynamic visual features.

Solution The aim of this study is to construct a discriminative video matching framework for

person ReID by selecting more reliable space-time features from person videos, beyond the often-

adopted spatial appearance features. To that end, it assumes the availability of image sequences

of people which may be highly noisy, i.e., with arbitrary sequence duration and starting/ending
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frames, unknown camera viewpoint/lighting variations during each image sequence, also with

likely incomplete frames due to uncontrolled occlusions. These videos are called unregulated

image sequences of people (Figure 1.6 and Figure 6.4). More specifically, an approach to Dis-

criminative Video fragments selection and Ranking (DVR) is proposed, based on a robust space-

time and appearance feature representation given unregulated image sequences of people.

1.3 Contributions

The contributions made in this thesis are summarised below:

1. Chapter 3: A unified and generalised visual data similarity inference framework is formu-

lated based on the unsupervised clustering random forest for more accurate unsupervised

data structure discovery. The pairwise affinity matrix generated by the proposed model

automatically possesses the local neighbourhood. Thus, no additional Gaussian kernel is

needed to enforce locality.

2. Chapter 4: A discriminative-feature driven semi-supervised visual data structure discovery

approach is formulated for effective sparse constraint propagation. Existing methods fun-

damentally ignore the role of feature selection in this problem. Further, a new method is

presented to cope with potentially noisy constraints based on constraint inconsistency mea-

sures, a problem that is largely unaddressed by existing constrained clustering algorithms.

The sparse and noisy constraint issues in constrained clustering are inextricably linked but

no existing constrained clustering method addresses them in a unified framework. To our

knowledge, this is the very first study that addresses them jointly.

3. Chapter 5: A multi-source data learning framework capable of discovering semantic video

cluster structures using collectively heterogeneous visual and non-visual data is proposed,

achieving effective multi-source data structure discovery. This is made possible by for-

mulating a Multi-Source Clustering Forest (MSC-Forest) that seamlessly handles multi-

heterogeneous data sources dissimilar in representation, distribution, and covariate. Al-

though both visual and non-visual data in isolation can be inaccurate and incomplete, this

proposed model is capable of uncovering and subsequently exploiting the shared latent cor-

relation for better data structure discovery. This multi-source model is novel in its ability

to accommodate partially or completely missing non-visual sources. In particular, a joint

information gain function that is capable of dynamically adapting to arbitrary amount of
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missing non-visual information during model learning is introduced.

4. Chapter 6: A multi-fragment based appearance and space-time feature representation of

image sequences of people is derived for person identity structure discovery over dis-

tributed camera views. This representation is based on a combination of HOG3D and

colour features and optic flow energy profile over each image sequence, designed to break

down automatically unregulated video clips of people into multiple fragments. More im-

portantly, a discriminative video ranking model for cross-view person re-identification by

simultaneously selecting and matching more reliable space-time features from video frag-

ments is developed. The model is formulated using a multi-instance ranking strategy for

learning from pairs of image sequences drawn from non-overlapping camera views. The

proposed method can significantly relax the strict assumptions made by gait recognition

techniques.

1.4 Thesis Outline

This thesis is organised as follows, with all chapters structured as shown in Figure 1.7.

Chapter 2 presents a review on various existing data structure discovering strategies and ap-

proaches, related learning models such as random forests, and video surveillance applications

like video summarisation.

Chapter 3 explains a unified framework for unsupervised visual data structure discovery e.g.

clustering. Specifically, the chapter describes a generic data clustering approach based on un-

supervised random forest and spectral clustering algorithm. It is characterised by quantifying

and cumulating subtle and weak localised data similarity defined over discriminative feature

subspaces. Visual data clustering experiments are conducted to evaluate the advantages of the

proposed algorithm by extensively comparing most contemporary methods.

Chapter 4 describes a semi-supervised visual data discovery (or constrained clustering) ap-

proach particularly designed for solving the sparse and noisy pairwise constraints issues. In

particular, the chapter details a constraint propagation random forest model capable of more ef-

fectively propagating a small number of constraints, and an algorithm for pairwise constraint

consistency measure. Finally, the efficacy of the proposed method is validated by extensive com-

parisons with state-of-the-art clustering models on various types of data, including images and

videos.
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Chapter 5 provides detailed modelling and application explanations on the multi-source data

structure discovery. Particularly, it demonstrates that the proposed Multi-Source Clustering For-

est is capable of not only effectively extracting high-level knowledge from heterogeneous multi-

source data for constructing consistent visual data clusters, but also providing more accurate

understanding on previously-unseen video data. This multi-source model is finally applied for

video summarisation.

Chapter 6 presents an person identity structure discovery method with unconstrained image

sequences, a.k.a. person re-identification. In contrast to existing algorithms that typically rely

on person spatial appearance, this model is unique in the ability of extracting discriminative

person-specific space-time features from even largely noisy and unaligned image sequences by

automatically selecting informative video fragments for model learning. Thorough experiments

are carried out to demonstrate the effectiveness of the proposed approach by extensive compar-

ison with contemporary gait recognition, temporal sequence matching, and single-/multi-shot

person re-identification methods.

Chapter 7 provides conclusion and suggests a number of research problems and directions to

be pursued as further work.
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Figure 1.7: Summarisation and structure of all chapters.
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Chapter 2

Literature Review

2.1 General Learning Strategies

Automatically interpreting and understanding large scale surveillance video data by developing

intelligent machine vision systems remains challenging despite the significant progress made

during last decades. Generally, there are three canonical learning paradigms:

1. Supervised learning, where some type of labels or annotations associated with data sam-

ples are provided for model learning (Figure 2.1-(a)).

2. Unsupervised learning, where no data annotation is accessible and the system aims to form

clusters or groups (Figure 2.1-(d)). This is also known as clustering.

3. Semi-supervised learning, where data labels are partially available and the system exploits

labelled and unlabelled data for model building since both types of data can provide useful

information. This is a hybrid setting of supervised and unsupervised learning (Chapelle

et al., 2006) (Figure 2.1-(b-c)).

Alternatively, the ultimate objective of all these paradigms can be understood and summarised

as to extract compact and semantic description/interpretation for the target data by discovering

underlying meaningful structures using some learning algorithm for reasoning the intrinsic data

ambiguities and uncertainties in mutual relation, e.g. numerical distance and similarity.

In machine learning and computer vision, random forests (Breiman, 2001; Criminisi and

Shotton, 2012) have a rich and successful history, while being considered to be close to an

ideal learner (Friedman et al., 2001). They compare favourably with other machine learning
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Figure 2.1: An illustration of various learning settings: dots correspond to data samples without
any labels. Samples with labels are denoted by circles, asterisks and crosses. In (c), the must-link
and cannot-link pairwise constraints are represented by solid and dashed lines, respectively. This
figure is borrowed from (Lange et al., 2005).

algorithms and have empirically demonstrated to outperform most state-of-the-art learners par-

ticularly in high dimensional data problems (Caruana and Niculescu-Mizil, 2006; Caruana et al.,

2008). Their merits include: (1) fast training and evaluation, (2) robustness to label noises, (3)

inherent multi-class capability and feature selection mechanism, (4) suitability for parallel pro-

cessing, and (5) promising performance for high-dimensional input data. Inspired by the great

success of random forests, most of the proposed methods (e.g. in Chapters 3, 4, 5) are formu-

lated and designed based upon them. Below, a fundamental review on random forests is firstly

provided, followed by a more holistic survey about various data structure discovery studies.

2.2 Random Forests

A random forest (Breiman, 2001) is an ensemble model of multiple decision trees. Notable

early decision tree models include “Classification and Regression Trees (CART)” (Breiman et al.,

1984), and “C4.5” (Quinlan, 1993). These tree models were often utilised individually instead

of in the ensemble form. Amit and Geman (1994, 1997) firstly constructed and exploited en-

sembles of trees for obtaining greater accuracy and generalisation on the problem of handwritten

digits recognition. They also suggested a simple but powerful ensemble model that is still widely

adopted thus far – the mean of tree-level probabilities/predictions. This modelling shares a sim-

ilar principle as the well known boosting ensemble model of Schapire (1990) where iterative re-

weighting of training data are used to build a strong model as a linear aggregation of many weak

ones. Further, Ho (1995) showed the advantages of trees trained using randomised partitioning

of feature space over “C4.5” trees and similarly for forest models (Ho, 1998). The popular use of

random forests can be largely attributed to the work by Breiman (2001). Importantly, the role of
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Figure 2.2: An illustrative example on the training process of a decision tree.

random forests among machine learning algorithms are further consolidated by this study. Many

different random forest variants have been proposed and applied in various machine learning and

computer vision problems since then, particularly in recent several years.

In general, random forests can be divided into two classes: (1) supervised forests, including

classification (labels are discrete) and regression (labels are continuous) variants; (2) unsuper-

vised forests, or clustering forests. The details of these forest models will be discussed next.

2.2.1 Classification Forests

A general form of random forests is the classification forests. A classification forest (Breiman,

2001) is an ensemble of τclass binary decision trees: F → Rk, with F the data feature space,

Rk = [0,1]k denoting the space of class probability distribution over the label space C = {1, . . . ,k}

including a total of k different categories.

Tree training Decision trees are learned independently from each other, each with a random

training set X t ⊂ X , i.e. bagging (Breiman, 2001). It is this independence property that allows

parallel processing, either model training or testing. Growing a decision tree involves a recursive

node splitting procedure. The training of each internal (or split) node s is a process of optimising

a binary split function defined as

h(x,ϑϑϑ) =

 0, if xϑ1 < ϑ2,

1, otherwise.
(2.1)

This split function is parameterised by two parameters: (i) a feature dimension xϑ1 , with ϑ1 ∈

{1, . . . ,d}, and (ii) a feature threshold ϑ2 ∈ R. We denote the parameter set of the split function

as ϑϑϑ = [ϑ1,ϑ2]. All arrival samples of a split node will be channelled to either the left or right

child node according to the output of Equation (2.1).
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The optimal split parameter ϑ̂ϑϑ is chosen via

ϑ̂ϑϑ = argmax
Θ

∆ψ, (2.2)

where Θ =
{

ϑϑϑ
i}dtry(|S|−1)

i=1 represents a parameter set over dtry randomly selected features, with S

the sample set arriving at the split node s. The cardinality of a set is given by | · |. Particularly,

multiple candidates of data splitting are attempted on dtry random feature-dimensions during the

above node optimisation process.

Typically, a greedy search strategy is exploited to identify ϑ̂ϑϑ . The information gain ∆ψ is

formulated as

∆ψ = ψs−
|L|
|S|ψlc−

|R|
|S|ψrc, (2.3)

where s, lc, rc refer to a split node, the left and right child node, respectively. The sets of data

routed into lc and rc are denoted as L and R, and S = L∪R as the sample set residing at s. The ψ

can be computed as either (Criminisi and Shotton, 2012) the entropy or Gini impurity (Breiman

et al., 1984). In this study we utilise the Gini impurity due to its simplicity and efficiency. The

Gini impurity is computed as

ψgini = ∑
i6= j

pprp
i × pprp

j , (2.4)

with pprp
i and pprp

j being the proportion of samples belonging to the i-th and j-th category, re-

spectively. The computational complexity of Equation (2.4) is O(1), i.e. constant, because it is

computed over the category distribution and therefore very efficient.

By doing so, an internal node s selects the most discriminative (i.e. maximising the informa-

tion gain) feature from dtry candidates as its split variable and exploits it to partition the training

data S. This process is repeated throughout the whole tree training stage until some stopping cri-

terion is satisfied, e.g. the number of training samples S arriving at a node is equal to or smaller

than a threshold φ . After the node splitting process stops, leaf nodes are formed. For each leaf l,

a predictor model can be estimated from the labels of training samples falling into this node, e.g.

a probabilistic histogram distribution over all k categories pl
post(c),c ∈C. Figure 2.2 provides an

illustration on the training procedure of a decision tree.

During testing, each decision tree yields a posterior distribution pt
post(c|x∗) for a given unseen

sample x∗ ∈ F . This tree-level prediction is made based on the predictor model of the leaf where

x∗ falls into. The output probability of forest is obtained via averaging as

ppost(c|x∗) =
1

τclass

τclass

∑
t=1

pt
post(c|x∗). (2.5)
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The final class label is obtained as ĉ = argmaxc∈C p(c|x∗).

2.2.2 Regression Forests

Similar to classification forests, a regression forest (Breiman, 2001) is a collection of τreg re-

gression trees: F → R, The main difference is that label data c̃ ∈ R are continuous, compared

to the discrete labels in classification forests. The training is performed with the same process,

e.g. using Equations (2.1), (2.2) and (2.3). Due to the continuous nature of the labels, a different

way is needed for computing information gain. One common metric to measure information or

entropy is least squares regression (Breiman et al., 1984). Formally, the regression impurity over

a training set S is computed as

ψlsr =
1
|S|
|S|

∑
i=1

(c̃i−
1
|S|
|S|

∑
i=1

c̃i)
2, (2.6)

where c̃i represents the label value of the i-th training sample xi ∈ S. The complexity of Equation

(2.6) is linear with the number of samples n, e.g. O(n).

For leaf predictor models pl
post(x), there are multiple alternatives, such as constant, linear or

polynomial models (Criminisi and Shotton, 2012).

In testing, the final forest prediction of a previously unseen sample x∗ is the average of all

regression tree outputs pt
post(x∗):

ppost(x∗) =
1

τreg

τreg

∑
t=1

pt
post(x

∗). (2.7)

2.2.3 Clustering Forests

In contrast to classification and regression forests, clustering forests (Breiman, 2001) require no

ground truth label information during the training phase. A clustering forest consists of τclust

binary decision trees. The leaf nodes in each tree define a spatial partitioning of the training

data. Several unsupervised splitting strategies have been proposed (Breiman, 2001; Yu et al.,

2011; Criminisi and Shotton, 2012; Pei et al., 2013). By adopting the pseudo two-class algo-

rithm (Breiman, 2001; Shi and Horvath, 2006), the training of a clustering forest can be per-

formed using the classification forest optimisation approach. Specifically, we add n pseudo sam-

ples x̄= {x̄1, . . . , x̄d} (Figure 2.3-b) into the original data space X (Figure 2.3-a), with x̄i∼ pdf(xi)

sampled from certain probability distribution pdf(xi). With this data augmentation strategy, the

clustering problem becomes a canonical classification problem that can be solved by the clas-

sification forest training method as discussed above. The key idea behind this algorithm is to
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(a) Original data (b) Added pseudo data

(c) First 2 decisions (d) Resulting partitions

Figure 2.3: An illustration of performing data partition with a random forest over a toy dataset.
Original toy data samples (a) are labelled as class 1, whilst the red-coloured pseudo-points ‘+’
(b) as class 2. A random forest performs a two-class classification on the augmented space (c).
(d) The resulting data partitions on the original data.
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partition the augmented data space into dense and sparse regions (Figure 2.3-c,d) (Liu et al.,

2000). In our proposed models, we adopt this strategy because of its simplicity and efficiency

(with Q(1) computational complexity as Equation (2.3)) thus scalable. We utilise the empiri-

cal marginal distributions of the feature variables owing to its favourable performance and low

computational cost (Shi and Horvath, 2006).

A second strategy assumes that two features with a larger difference may be more significant

and thus suitable for node splitting (Yu et al., 2011). More specifically, the optimisation is to

locate a feature pair that produces the largest variance on their difference. The split threshold

is the mean of feature difference. For evaluating the goodness of each candidate split, the main

computational cost is on variance estimation, which has a complexity of Q(n), with n the data

sample number. This is more expensive than classification forests (Equation (2.3)) and pseudo

sample based strategy (Breiman, 2001), while similar to regression forests (Equation (2.6)). A

similar but still different split method is to evenly divide the input training data by random pro-

jection (Perbet et al., 2009). Because the objective is to separate data evenly in each tree node,

the split threshold is set as the median of projected values, without the need for any parameter

optimisation.

The third is the unsupervised entropy for constructing density forest (Criminisi and Shotton,

2012). This criterion assumes Gaussian distributed data and computes information gain with

the determinant of covariance matrix, which is related to the volume of the hyperellipsoid that

bounds the uncertainty of data distribution (Sim and Roy, 2005). Given n d-dimensional data

samples in a node, the complexity of computing the covariance matrix is O(nd2). Therefore, this

may be computationally expensive when the feature dimensionality and sample size are large.

Additionally, while working well on low-dimensional data with a full rank covariance matrix,

it may suffer from the rank deficiency problem particularly in high-dimensional cases. That is,

this scheme fails when the rank of covariance matrix is lower than the feature dimensionality or

sample number, e.g. zero-valued determinant.

To address this rank-deficiency problem, Pei et al. (2013) consider a split criterion based on

the trace measure of covariance matrix and a scatter index. In practice, the former’s complexity

is Q(nd) because there is no need to compute the whole covariance matrix rather than only the

variance of each dimension. The computational complexity of the scatter index is O(nd) as well.

Therefore, this split optimisation strategy is more efficient than that (i.e. O(nd2)) of (Criminisi
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and Shotton, 2012), particularly so on high-dimensional data. For optimising a split node, they

select the feature pair and threshold corresponding to the largest information gain computed with

their introduced criterion, similar to the split function in (Yu et al., 2011).

2.2.4 Weak Learners – Split Functions

The split function is one of the most crucial components in random forests. Their design largely

depends on the specific target problems and application settings. Many different types of split

functions have been developed for solving a variety of computer vision applications such as

image categorisation, object detection, pose estimation, face analysis and so forth. Here, we

review and discuss notable works presented recently. A common split function is axis-aligned

(or axis-parallel) linear function (Breiman, 2001; Criminisi and Shotton, 2012), e.g. Equation

(2.1). Specifically, a threshold (ϑ2) is selected on a specific feature variable (xϑ1), which can

seen as a split line. Samples are routed to the left or right child node according to whether being

lower than the threshold. This weak learner is also referred as stump (Viola and Jones, 2004).

One generalisation is the combination of multiple split lines. In the proposed forest models,

we choose this simple weak learner (i.e. single-feature split) because it is simple and efficient

in execution, also generalises to more complex cases. More generally, oblique linear splits are

another split model (Heath et al., 1993; Ho, 1995; Menze et al., 2011). The defined split decision

hyperplanes are not necessarily aligned with any axis of the feature space. The execution speed

depends on the complexity of hyperplanes.

Alternatively, stronger weak models can be obtained by using non-linear split functions, such

as via margin-maximisation (Ho, 1998; Yao et al., 2011), boosting (Yin et al., 2007). Many

linear and non-linear split functions are evaluated on the original input features. However, other

features can be synthesised and utilised, e.g. PCA-based features and variance (Fanello et al.,

2014), feature pairwise difference (Yu et al., 2011; Pei et al., 2013), In some forest variants,

multiple feature types many be considered, and at a time only one type is randomly selected

in each node (Fanello et al., 2014). Besides, multiple optimisation objectives are possible and

required to realise in a single forest model (Gall et al., 2011; Yang and Patras, 2013; Tang et al.,

2013; Doumanoglou et al., 2014; Schulter et al., 2014).

Recently, a variety of split function learning algorithms have been developed in diverse con-

texts. They include, learning in an entangled setting where intermediate classifier output is

stacked with the the original input data (Montillo et al., 2011; Kontschieder et al., 2013); glob-
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ally optimising (Schulter et al., 2013a,b; Kontschieder et al., 2015); training in a semi-supervised

manner (Tang et al., 2013; Leistner et al., 2009); optimising with the SVM learner (Yao et al.,

2011; Marin et al., 2013); learning in a stage-wised and coarse-to-fine way (Tang et al., 2014);

hierarchically optimising in multi-task settings (Zhao et al., 2014c; Doumanoglou et al., 2014);

conditionally learning by modelling the dependency between the target variables and a global

latent variable (Dantone et al., 2012; Sun et al., 2012); learning based on nearest class mean clas-

sifier (Ristin et al., 2014, 2015); optimising using randomised multi-layer perceptrons (Rota Bulo

and Kontschieder, 2014); training by back propagation (Kontschieder et al., 2015). For more de-

tails, I refer the reader to the corresponding papers.

Next, let us return to the main problems and topics of this thesis, after reviewing the back-

ground techniques on random forests. As a common data form in our physical world, images

and videos considered in various problems can be observed and collected by either a single or

multiple camera views, e.g. in usual video surveillance scenarios. In either case, visual content

analysis can be performed with one of the three classic learning strategies, depending on the

availability of data labels. For simplicity, this chapter divides the literature remainder into two

parts from data source perspective: single-camera visual data structure discovery (Section 2.3)

and multi-camera visual data structure discovery (Section 2.4), with the aim to provide a broad

foundation and context for the studies presented in this thesis.

2.3 Single-Camera Visual Data Structure Discovery

Most studies on visual data structure analysis are devoted to the single camera view setting.

This section discusses a number of seminal learning methods and techniques for single-camera

data cluster structure analysis and discovery. In particular, this section is separated into three

subsections based on the data form and label availability:

1. Unsupervised visual data structure discovery (e.g. clustering): Particularly, each visual

data sample/pattern is described by some descriptor such as feature vectors and no data

annotation is given, as shown in Figure 2.1-(d) (Section 2.3.1).

2. Semi-supervised visual data structure discovery (e.g. constrained clustering): Partial/incomplete

sparse annotations additional to data features are accessible. Instead of individual class

labels as in classification, pairwise constraints (Figure 2.1-(c)) over data samples are com-

monly offered in clustering (Section 2.3.2).
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3. Multi-source data structure discovery (e.g. multi-way clustering): Beyond visual feature

data, auxiliary data from other non-visual sources are also available (Section 2.3.3).

2.3.1 Unsupervised Visual Data Structure Discovery

Organising visual data into coherent and meaningful cluster structures without any supervision

is one of the most fundamental strategies in data analysis. This is also known as clustering or

cluster analysis. In this learning setting, one may have no access to annotations or supervisions

that tag data samples with some identifiers, e.g. category labels or numerical measures. The

absence of annotation information distinguishes visual data cluster analysis (unsupervised learn-

ing) from discriminant analysis (supervised learning) such as classification, and regression. The

goal of cluster analysis is to find the structure in visual data, more precisely, to discover whether

the individuals of a population fall into different groups by making quantitative comparisons of

multiple characteristics (Online-Dictionary, 2015). Clustering is thus exploratory in nature. So

far, it is still challenging to design a general purpose clustering algorithm (Jain, 2010). Whilst

human is an excellent cluster seeker in two or three dimensions, automated clustering algorithms

are needed for higher-dimension cases, e.g. visual data. Particularly, mining visual data structure,

e.g. images or videos, is often more difficult due to the inherent nature of high dimensionality

and inevitable noisy/inaccurate feature representations. These challenges have been constantly

driving the research effort on cluster analysis algorithms in computer vision, pattern recognition

fields.

In general, the main purposes of data cluster structure analysis are (Jain, 2010):

1. Underlying structure: To gain insights into visual data and detect outliers or inliers.

2. Natural classification: To measure and identify the proximity relationships among data

samples.

3. Compression: To organise visual data in form of clusters and summarise it, e.g. video

summarisation in visual surveillance presented in Chapter 5.

Beyond a number of important generic clustering algorithms reviewed and summarised be-

low, more extensive studies on data clustering techniques and methods can be found in (Jain and

Dubes, 1988; Duda et al., 2012; Hartigan, 1975; Sokal et al., 1963; Han et al., 2011). Cluster-

ing methods can be broadly grouped into two categories: (1) Hierarchical clustering algorithms:

finding nested clusters either in agglomerative mode (forming a cluster hierarchy by starting with
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each data sample in its own cluster and gradually merging the most similar pair of clusters) or in

divisive mode (to begin with all data samples in one cluster and recursively splitting each cluster

into smaller ones). The input is a pairwise similarity matrix. Well-known algorithms include

single-link or nearest neighbour (McQuitty, 1957; Sneath, 1957; Gower and Ross, 1969; Sib-

son, 1973), complete-link (Defays, 1977; Hansen and Delattre, 1978). (2) Partitional clustering

algorithms: finding all the clusters simultaneously as a data partition without a hierarchical struc-

ture. The input includes either a similarity matrix or a data matrix. The most famous algorithm

is k-means (Steinhaus, 1956; Lloyd, 1982; Ball and HALL DJ, 1965; MacQueen et al., 1967).

Among the clustering literature, a number of notable clustering algorithms are dense based meth-

ods (Frank and Todeschini, 1994; McLachlan and Basford, 1988; Ester et al., 1996; Blei et al.,

2003; Welling et al., 2004), subspace clustering algorithms (Agrawal et al., 1998), graph theo-

retic or spectral clustering (Hagen and Kahng, 1992; Shi and Malik, 2000; Meila and Shi, 2001;

Ng et al., 2002; Belkin and Niyogi, 2001; Pavan and Pelillo, 2007), and information theoretic

formulation based methods (Roberts et al., 2001; Tishby et al., 2000).

In spite of grade stride made in the last fifty years since k-means, data clustering remains a

difficult problem, particularly for complex data. One fundamental challenge lies in defining an

appropriate similarity measure (Jain, 2010). The follows are converged to studies with regards to

the data similarity measure issue for achieving robust cluster structure discovery.

Approaches to adapting local data structures (or local neighbourhoods) for improving the

accuracy and robustness of similarity or affinity matrices have been presented in (Zelnik-manor

and Perona, 2004; Wang et al., 2008). Particularly, their focus has been spent on learning an

adaptive scaling factor σ for the Gaussian kernel (also known as radial basis function or heat ker-

nel) exp
(
−dist2(xi,x j)

σ2

)
, when computing the similarity between samples xi and x j, with dist(·, ·)

pairwise distance and σ the brand width parameter. These methods, however, are still susceptible

to the presence of noisy and irrelevant features.

To mitigate the above issue, Pavan and Pelillo (2007) proposed a graph-theoretic algorithm

for forming tight neighbourhoods via selecting the maximal cliques (or maximising average pair-

wise affinity), with the hope of constructing graphs with fewer false affinity edges between sam-

ples. More recently, a k nearest neighbour (k-NN) based similarity graph generation method

is developed by Premachandran and Kakarala (2013). Specifically, the consensus information

cumulated from multiple k-NNs is utilised in this algorithm for discarding noisy edges and iden-
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tifying strong local neighbourhoods.

In contrast to all the aforementioned methods that blindly trust all available variables, the

proposed graph inference method presented in Chapter 3 exploits discriminative and informative

features for attaining more robust data pairwise similarities. The resulting affinity matrix is thus

more robust against the inherent noise in real-world visual data. Random forest-based affinity

graph construction has been attempted in (Shi and Horvath, 2006; Criminisi and Shotton, 2012;

Zhu et al., 2013). The intuition is that tree leaf nodes contain discriminative data partitions, which

could be exploited for generating robust affinity graphs. It is showed that the above approaches

are special cases of the proposed affinity inference method. Specifically, a generalised model

is derived, which is not only capable of learning discriminative feature subspaces for robust

affinity graph construction as in previous methods, but also able to further exploit the hierarchical

structure of random forest to better capture subtle and weak data proximity.

2.3.2 Semi-Supervised Visual Data Structure Discovery

Unsupervised visual data structure discovery or data cluster analysis is inherently ill-posed, i.e.

the similarity definition is not explicitly specified. Therefore, it is generally hard for many clus-

tering algorithms to generate desired clusters. In cases, additional side information is available

from human experts. An appropriate utilisation of the external information along with data fea-

tures helps in finding satisfactory data cluster memberships. One common side information is

expressed in form of pairwise constraint that specifies a pair of samples should be assigned with

the same cluster (must-link) or with two different clusters (cannot-link). These prior knowledge

is a type of weak supervision compared to category labels since they are not sufficient to infer

the explicit classes. Clustering with such external information is also known as constrained clus-

tering (Wagstaff et al., 2001; Basu et al., 2004a) or semi-supervised clustering (Basu et al., 2002;

Kulis et al., 2009; Araujo, 2015). This is because that this learning setting is similar in spirit

to semi-supervised learning (Blum and Mitchell, 1998; Chapelle et al., 2006; Zhu et al., 2003)

where only a limited number of data rather than the whole dataset have supervision information,

i.e. some sample pairs are constrained with either must-link or cannot-link whilst the (most)

others are not. Constrained clustering aims to exploit this prior belief as constraints (or weak

supervision) over data feature information to influence the clustering process so as to obtain a

data structure more closely resembling human perception or desired high-level explanation. Be-

low, recent classic constrained clustering methods will be briefly reviewed and discussed. For
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a complete survey on semi-supervised learning beyond constrained clustering, Zhu (2005) and

Chapelle et al. (2006) provide a more general and systematic discussion.

There are generally two paradigms to exploit pairwise constraints for semi-supervised data

structure discovery. The first paradigm is distance metric learning (Xing et al., 2002; Yang and

Jin, 2006; Weinberger and Saul, 2009; Der and Saul, 2012; Ying and Li, 2012), which learns

a distance metric that respects the constraints, and runs ordinary clustering algorithms, such as

k-means, with distortion defined in the learned metric. The second paradigm adapts directly ex-

isting clustering methods, such as k-means (Wagstaff et al., 2001; Basu et al., 2008) and spectral

clustering methods (Wang et al., 2012c,b) to satisfy the given pairwise constraints. Instead of

looking from the above strategy angle this section discusses the related semi-supervised clus-

tering methods from two practical challenges: (1) sparse constraints; and (2) imperfect annota-

tors/oracles.

Sparse Constraint Propagation Approaches that perform similarity matrix based constrained

clustering generally follow a procedure that first manipulates pairwise data affinity/similarity

with constraints and then applies existing clustering algorithm, e.g. spectral clustering. For

instance, Kamvar et al. (2003) trivially adjust the elements in an affinity matrix with “1” and

“0” to respect must-link and cannot-link constraints, respectively. No constraint propagation is

considered in this method, e.g. measuring the similarity between unconstrained data pairs is

not benefited from the given constraints. It is thus not effective particularly in case of sparse

constraints.

The problem of sparse constraint propagation has been considered in previous studies. Specif-

ically, Lu and Carreira-Perpinán (2008) proposed to perform propagation with a Gaussian pro-

cess. This method is limited to the two-class problem, although a heuristic approach for multi-

class problems is also discussed. Li et al. (2009) formulated the propagation problem as a semi-

definite programming (SDP) optimisation problem. The method is not limited to the two-class

problem, but solving the SDP problem involves extremely large computational cost. In (Yu and

Shi, 2004), the constraint propagation is also formulated as a constrained optimisation problem,

but only must-link constraints can be employed. In contrast to the above methods, the proposed

approach described in Chapter 4 is capable of performing effective constrained clustering using

both available must-links and cannot-links, whilst it is not limited to two-class problems.

The state-of-the-art clustering results are achieved by Lu and Ip (2010); Lu and Peng (2013a).
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They address the propagation problem through manifold diffusion by decomposing the constraint

propagation problem into two independent semi-supervised learning sub-problems (Zhou et al.,

2004; Zhu et al., 2003). The locality-preserving character in learning a manifold with dominant

eigenvectors makes the solution less susceptible to noise to a certain extent, but the manifold

construction still considers the full feature space, which may be corrupted by noisy features.

Chapter 4 shows that the manifold-based method is not as effective as the proposed model fea-

tured with discriminative-feature driven constraint propagation. Moreover, the methods (Lu and

Ip, 2010; Lu and Peng, 2013a) as well as other methods ((Yu and Shi, 2004; Lu and Carreira-

Perpinán, 2008; Li et al., 2009)), do not have a mechanism to handle noisy constraints.

All these constrained clustering methods above mostly considers single modality data. On

the other hand, we have access to an increasing number of multi-modal visual data, mainly due

to the proliferation of social media websites, e.g. YouTube, Facebook, and Flickr. Specifically,

images and videos extracted from such website sources are often associated with related text

and tag labels which provide rich and semantically meaningful perspectives complementary to

visual content. Effectively modelling visual and text modalities jointly may bring into additional

benefits, as shown in (Lu and Peng, 2013b, 2012; Fu et al., 2011, 2012; Yang et al., 2014). More

specifically, Fu et al. (2011) proposed a unified multi-modal constraint propagation method with

a closed-form solution, where an individual graph is built for each data modality (e.r. visual or

textual features) and a random walk is defined across graphs. On such heterogeneous graphs, a

random walk process is defined and multiview label propagation (Zhou and Burges, 2007) is then

applied to solve decomposed subtasks. Lu and Peng (2012) consider jointly both homogeneous

and heterogeneous constraint propagation over multiple modalities by a new constrained sparse

representation method in the context of cross-modal retrieval. Similarly, Lu and Peng (2013b)

present a unified framework for intra-view and inter-view constraint propagation by decomposing

the two types of constraints into semi-supervised learning sub-problems. Intra-view constraints

are utilised to refine and improve intra-view similarity measures, which in turn benefit the sub-

sequent inter-view constraint propagation. Further, Yang et al. (2014) propose a low rank based

matrix completion algorithm for cross-view constraint diffusion for better preserving both local

and global data structures. Zhang et al. (2015) design a multi-view constrained clustering algo-

rithm in the framework of non-negative matrix factorisation. However, all these methods assume

the correctness of all given pairwise constraints, either intra-view or cross-view.
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Handling Imperfect Oracles A small number of constrained clustering studies consider im-

perfect oracles or noisy constraints whereas most simply assume perfect constraints available.

The usefulness of constraints in clustering performance is discussed and investigated in (Wagstaff

et al., 2006; Davidson et al., 2006). In particular, two constraint set properties are proposed: (1)

“Informativeness”, which refers to the amount of information a constraint can provide for some

specific clustering algorithm, thus algorithm dependent; (2) “Coherence”, which measures the

agreement degree (e.g. projected overlap) between must-link and cannot-link under a distance

metric, so only partial constraint pairs can be exploited. Nevertheless, both measures are on

the whole constraint set rather than on individual constraints, so providing no information about

what are noisy and ill pairwise links. Moreover, no concrete method is proposed to exploit such

metrics for improved constrained clustering, except offering some indication about the utility of

constraint sets on the future clustering performance. Zeng et al. (2007) and Ares et al. (2012)

demonstrate the negative effectiveness of incorrect constraints on clustering accuracy. Whereas

Freund et al. (2008) analyse analytically and empirically the effect of noisy constraints on con-

strained clustering algorithms in the random graph theory framework. More recently, Van Crae-

nendonck and Blockeel (2015) investigate the informativeness and coherence metrics proposed

in (Davidson et al., 2006) for explaining the clustering performance difference among a number

of methods and find some limitation w.r.t. these two measures and selection clustering methods

given a dataset.

A few specific approaches to handling noisy constraints have also been proposed. Nelson

and Cohen (2007) extend the chunklet model (Strehl et al., 2000) to soft constraints for acquiring

additional robustness against constraint errors. The key idea is to punish constraint violation by

constraint sampling in order to avoid the pitfalls of local approximation. This method implicitly

assumes a large number of pairwise constraints in noisy link detection. Also, human confidence

is assumed related to the correctness of constraints, which is used in constraint violation penalty

weighting. Coleman et al. (2008) proposed a constrained spectral clustering algorithm capable

to deal with inconsistent constraints. The main idea is to minimise the number of must-links

between clusters and the number of cannot-links within clusters. Specifically, pairwise links

are transformed into subspaces which are set as the allowed space for spectral clustering so-

lutions. This model is restricted to only the two-class problem setting due to the adoption of

two-correlation clustering idea. Similar to (Nelson and Cohen, 2007), a large number of pairwise
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constraints are required in inconsistency detection since explicit and direct interaction between

constraints are needed via shared constrained samples.

Beyond constrained clustering, the problem of imperfect oracles has been explored in active

learning (Donmez and Carbonell, 2008; Du and Ling, 2010; Yan et al., 2011; Sogawa et al.,

2013) and online crowd-sourcing (Kittur et al., 2008; Welinder and Perona, 2010). This thesis

(in Chapter 4) presents a method that differs significantly from these studies as what concerned in

this method is identifying noisy or inconsistent pairwise constraints rather than inaccurate class

labels.

2.3.3 Multi-Source Data Structure Discovery

The data considered in the above two data structure discovery scenarios is associated with only

one source, e.g. the visual source. In addition, each single data sample may be associated with

multiple information sources, e.g. apart from visual features, an individual video is also linked

with additional textual descriptors that are drawn from other correlated and independent sources

(Figure 1.5), potentially possible in video surveillance. Different source data can be significantly

distinct in representation and statistical distributions and heterogeneous to one another. This is

also called multi-way clustering (Jain, 2010). Whilst a straightforward way is to pull all source

features into a combined vector ahead of clustering, this representation is neither natural nor

coherent and may result in poor clusters. It is desirable to derive appropriate joint learning

algorithms for the heterogeneous source data clustering setting. According to data source, one

can further group this multi-way setting into two sub-categories:

1. Multi-modality data learning: where different types (or modalities) of feature data are

computed from the same single source for capturing different perspectives of the same

information, e.g. visual colour and texture.

2. Multi-source data learning: where multiple different physical sources are involved, each

may encode some particular type of information.

For the application of multi-way clustering, video summarisation or compression is selected in

this work (Chapter 5) due to: (1) Video summarisation is a fundamental visual surveillance task;

(2) Data compression is one main purpose of cluster analysis. Below, this section briefly reviews

existing multi-modality and multi-source data learning approaches (mostly in the computer vi-

sion domain), and finally video summarisation methods.
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Multi-Modality Data Learning There exist studies that exploit different sensory or informa-

tion modalities from a single source for data structure mining. Many earlier studies (Barnard and

Forsyth, 2001; Blei and Jordan, 2003; Blei et al., 2003; Duygulu et al., 2002; Lavrenko et al.,

2003) mainly focus on co-occurrence relationship learning between visual parts (e.g. image re-

gions) and text. This type of approaches assume (1) the availability of part level data annotation

during the training stage, and (2) the existence of correct associations. Both requirements how-

ever can be largely invalid in real-world applications.

An alternative is to learn a joint latent space wherein paired visual samples and text are

projected to nearby locations. In this way, nearest neighbour methods can be used to reason un-

certainty and infer semantics. Many of these embedding based approaches rely on the Canonical

Correlation Analysis (CCA) algorithm (Hotelling, 1936). Hardoon et al. (2004) and Rasiwa-

sia et al. (2010) applied CCA to learn the latent shared space for images and text. Blaschko

and Lampert (2008) developed a cross-modal spectral clustering algorithm based on Kernelised

CCA (KCCA). Udupa and Khapra (2010) and Vinokourov et al. (2002) utilised CCA for cross-

language retrieval.

The third strategy is multi-view embedding techniques, in which visual samples are charac-

terised by visual and text views. Multi-view learning methods include generalisations (Yakhnenko

and Honavar, 2009; Rai and Daume, 2009; Sharma et al., 2012) and extensions (Gong et al.,

2014b; Fu et al., 2015) of CCA/KCCA, multi-view metric learning (Quadrianto and Lampert,

2011), large margin predictive latent subspace learning (Chen et al., 2012), unsupervised deep

learning methods such as Restricted Boltzmann Machine (RBM) (Srivastava and Salakhutdinov,

2012) and auto-encoders (Ngiam et al., 2011; Srivastava and Salakhutdinov, 2012). For data

clustering, Cai et al. (2011) proposed to perform multi-modal image clustering by learning a

commonly shared graph-Laplacian matrix from different visual feature modalities. Heer and Chi

(2001) combined linearly individual similarity matrices derived from multi-modal webpages for

web user grouping. Karydis et al. (2009) presented a tensor based model to cluster music items

with additional tags. In terms of video analysis, the auditory channel and/or transcripts have been

widely explored for detecting high-level concepts from multimedia videos (Zhang et al., 2004;

Fu et al., 2014), summarising highlights in news and broadcast programs (Taskiran et al., 2006;

Gong, 2003), or locating speakers (Khalidov et al., 2011). User tags associated with web videos

(from moment-sharing and social multimedia websites like YouTube, Flickr and Facebook) have
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also been utilised in (Wang et al., 2010; Toderici et al., 2010; Wang et al., 2012a).

In contrast to all these methods above, surveillance videos captured from public spaces are

typically without auditory signals nor any synchronised transcripts and user tags available. In-

stead, this thesis explores alternative non-visual data drawn independently elsewhere from multi-

ple sources, with inherent challenges of being inaccurate and incomplete, unsynchronised to and

may also be in conflict with the observed visual data (Chapter 5).

Multi-Source Data Learning One possible multi-source data structure mining solution can be

clustering ensemble (Strehl and Ghosh, 2003; Topchy et al., 2005; Jain, 2010) where a collection

of clustering instances is generated and then aggregated into the final clustering solution. Typi-

cally only single data source is considered, but it can be easily extended to handle multi-source

data, e.g. creating a respective clustering instance for each source. Nonetheless, cross-source

correlation is ignored since the clustering instances are separately formed and no interaction be-

tween them is involved. A closer and competitive approach to our model presented in Chapter 5

is the Affinity Aggregation Spectral Clustering (AASC) (Huang et al., 2012), which learns data

structure from multiple types of homogeneous information (visual features only). Their method

generates independently multiple affinity data matrices by exhaustive pairwise distance compu-

tation for every pair of samples in every data source. It suffers from unwieldy representation

given high-dimensional data inputs. Importantly, despite that it seeks for optimal weighted com-

bination of distinct affinity matrices, it does not consider correlation between different sources

in model learning, similar to clustering ensemble (Strehl and Ghosh, 2003; Topchy et al., 2005).

Differing from the above models, the proposed Multi-Source Clustering Forest (see Chapter 5 for

details) overcomes these problems by generating a unified single affinity matrix that captures la-

tent correlations among heterogeneous types of data sources. Furthermore, our forest model has

a unique advantage in handling missing non-visual data over (Strehl and Ghosh, 2003; Topchy

et al., 2005; Huang et al., 2012).

Video Summarisation Automated video summarisation facilitates a holistic understanding of

long videos in a short time by generating a compact summary composed of important/key con-

tent, particularly with surveillance videos captured by cameras that operate all the time (Xiong

et al., 2006; Truong and Venkatesh, 2007). One common way to summarise redundancy videos

is to identify and combine key frames, shots or objects. The discovery of these key contents

requires the underlying data structure analysis, e.g. importance prediction, cluster discovery, for
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Figure 2.4: An example for illustrating the summarisation process based on object trajectories
distributed over different times in video streams. This is borrowed from (Pritch et al., 2008).

Figure 2.5: Examples of detected object trajectories in a “Billiard” video (Pritch et al., 2008).

modelling the content redundancy patterns (Truong and Venkatesh, 2007). Below, classic video

summarisation methods are analysed. For a general review on this problem, Xiong et al. (2006)

and Truong and Venkatesh (2007) provide a comprehensive coverage on common techniques and

models.

Contemporary video summarisation methods can be broadly classified into two paradigms:

key-frame-based (Lee et al., 2012; Wolf, 1996; Zhang et al., 1997; Truong and Venkatesh, 2007;

Money and Agius, 2008) and object-based (Kang et al., 2006; Rav-Acha et al., 2006; Pritch

et al., 2007, 2008, 2009; Wang et al., 2011; Feng et al., 2012) methods. The key-frame-based

approaches aim to select representative key-frames for building a storyboard of still images as

video summary. This is typically achieved by analysing low-level imagery properties, e.g. optical

flow (Wolf, 1996) or global scene colour difference (Zhang et al., 1997). Alternatively, Lai and

Yi (2012) and Ma et al. (2005) proposed to seek for key-frames by using human attention models.
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Recently, Lee and Grauman (2015) presented an approach to estimating the importance scores of

image regions such as objects or people, which are then utilised as key-frame selection criteria

for summarising egocentric videos. Whilst the key-frame based summary is a straightforward

video summarisation mechanism, it is inherently limited and less rich in representation due to

the loss of dynamic information encoded in original videos.

Object-based techniques (Rav-Acha et al., 2006; Pritch et al., 2007, 2008; Feng et al., 2012),

on the other hand, rely on object segmentation and tracking to extract object-centric trajecto-

ries/tubes, and compress those tubes to reduce spatio-temporal redundancy. Therefore, these

summary videos can retain much dynamic motion information of the raw videos when compared

with the former paradigm. Specifically, Kang et al. (2006) exploited a spatial-temporal contrast

based video saliency detection method to extract informative space-time visual regions. The final

montage video summary is established by a space-time region merging algorithm which allows

both spacial and temporal shifting for maximising video compression ratio. Similar summarisa-

tion principles are adopted by (Rav-Acha et al., 2006; Pritch et al., 2007, 2008; Feng et al., 2012)

with some newly introduced features and capabilities, e.g. (Pritch et al., 2007, 2008) allows to

summarise endless video streams by generating video summary/synopsis of user-specified time

duration over a particular video stream range, whilst the algorithm in (Rav-Acha et al., 2006)

only enables to summarise short videos. A summarisation illustration example and extracted

object trajectories are shown in Figure 2.4 and Figure 2.5 respectively. On the other hand, the

method presented in (Feng et al., 2012) is characterised with online real-time chronological video

summarisation, e.g. rapid object trajectory extraction, low memory requirement, and preserved

temporal order of objects.

Both the above schemes utilise solely visual information and make implicit assumptions

about the completeness and accuracy of the visual data available in extracting features or object-

centred representations. They are unsuitable and unscalable to complex scenes where visual data

are inherently incomplete and inaccurate, mostly the case in surveillance videos. The proposed

method in Chapter 5 differs significantly to these studies in that it exploits not only visual data

without object tracking, but also non-visual sources as complementary information. The sum-

mary generated by the proposed approach is semantically enriched – it is labelled automatically

with tags, e.g. traffic condition, weather, or event. All these tags are learned from heterogeneous

non-visual sources in an unsupervised manner during model training without any manual labels.
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Probe person Feature extraction Cross-view matching Gallery people 

Figure 2.6: Pipeline of a system for discovering person identity structure or person re-
identification.

2.4 Cross-Camera Visual Data Structure Discovery

The previous section discusses visual data structure discovery and cluster analysis for single-

camera settings. Whilst most existing approaches to data analysis and correlation modelling are

devoted to single camera view settings (Rodriguez et al., 2011; Amer and Todorovic, 2011; Ryoo,

2011; Gaur et al., 2011), extending these methods to scenarios with multiple disjoint cameras

is non-trivial due to the unknown inter-camera time gaps and significant appearance variations

across camera views. This section mainly focuses on reviewing existing approaches to person

identity structure discovery across non-overlapping camera views, a fundamental multi-camera

surveillance problem.

2.4.1 Person Identity Structure Discovery

For making sense of the vast quantity of video data generated by large scale surveillance camera

networks in public spaces, automatically associating and recognising individual persons across

non-overlapping camera views distributed at different physical locations is essential. This task

is also known as person re-identification (ReID). This ability enables automated discovery and

analysis of person-specific long-term structural activities over widely expanded areas and is fun-

damental to many other important surveillance applications such as multi-camera people track-

ing and forensic search. Specifically, person re-identification aims to match people across non-

overlapping camera views over different space and time (Gong et al., 2014a). Typically, person

ReID is performed by matching cross-view single or multiple images, called single-shot person

re-identification (Section 2.4.1) and multi-shot person re-identification (Section 2.4.1). A number

of important person ReID studies are discussed in this section and more complete reviews can be

found in (Gong et al., 2014a; Vezzani et al., 2013; Bedagkar-Gala and Shah, 2014).
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Single-Shot Person Re-Identification

Generally, a person ReID system (Figure 2.6) involves two key components: (1) feature repre-

sentations of people; and (2) matching model.

Feature Representations Designing a suitable person ReID feature representation is essential

and challenging. Ideally, the feature should be identity discriminative under even large cross-

view changes in illumination, view point, human pose, background clutter and occlusion. A

variety of ReID features have been proposed recently, including colour, texture, gradient, edge,

shape, global or localised features. Most ReID methods generally exploit multiple such appear-

ance features due to their complementary effects and the lack of uniformly effective feature types

(Gray and Tao, 2008; Farenzena et al., 2010; Hirzer et al., 2012; Zheng et al., 2013; Liu et al.,

2014b; Paisitkriangkrai et al., 2015). The common representation form is bag-of-words, which

can be easily concatenated for achieving a combination of multiple features.

Spatial structure information of people’s appearance is an important cue. Many different

spatial decomposition schemes have been developed to integrate the spatial configuration into the

feature representation, e.g. triangulated graphs (Gheissari et al., 2006), uniform horizontal strips

(Gray and Tao, 2008; Layne et al., 2012; Prosser et al., 2010; Zheng et al., 2013; Liu et al., 2012),

concentric rings (Zheng et al., 2009), or localised patches (Zhao et al., 2013b,a, 2014a; Liu et al.,

2014b; Li et al., 2014a; Bak et al., 2010; Zheng et al., 2015; Paisitkriangkrai et al., 2015; Liao

et al., 2015). In case that the body topology structure (part configuration) can be detected using

human parsing and pose estimation techniques, more robust and relevant features from detected

body parts can be computed and matched, simultaneously alleviating the negative contamination

by background. For example, the feature designing method presented in (Farenzena et al., 2010)

utilises the principles of symmetry and asymmetry in human body structure to segregate the

perceptually meaningful body parts as foreground from the whole image. Specifically, higher

importance weights are imposed to regions around the vertical symmetry axis than those far away

from it. This allows the suppression of distractive background information during the feature

matching procedure. Additionally, a part-based (e.g. head, torso, arms and legs) ReID method

(Cheng et al., 2011) allows selective matching between pairs of localised body part rather the

entire person. This scheme not only partially filters background noise, but also offers robustness

to partial and self occlusion.

In addition to hand-crafted low-level visual features, saliency information (Liu et al., 2012;
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Zhao et al., 2013b,a; Wang et al., 2014a; Zhao et al., 2014b) is recently extracted and exploited for

person ReID. The saliency weights about appearance are learned from some unlabelled reference

images for capturing the localised protuberance statistics among a population. Such knowledge

shows exceptional robustness against large cross-camera viewing condition variations.

In contrast to machine vision often using continuous and high-dimensional features, human

may perform person ReID using discrete and low-dimensional appearance attributes, a more ab-

stract and robust way. Discrete attributes can be more reliable and unambiguous in inference,

such as shoe-type, hair-style, clothing-style (Lampert et al., 2009). Such attributes can be less

variable against the photometric and geometric transformations across camera views, compared

with continuous appearance futures. On the other hand, this mid-level ‘semantic attribute repre-

sentation’ is fairly similar to the descriptor communicated verbally among people for specifying

people instances in reality. Attribute representations can be computed and abstracted from the

widely-used low-level features, e.g. support vector machine trained with additional attribute an-

notations (Layne et al., 2012, 2014a; Li et al., 2014a). Whilst the attribute ontology is often

manually specified by human experts, it can be also automatically mined from large scale in-

ternet data (Layne et al., 2014b). Importantly, this method is characterised by annotation free,

richer diversity and better generalisation as demonstrated in (Layne et al., 2014b). Semantic at-

tribute representation possesses a number of benefits: (1) Being more powerful than raw features

as the pre-trained attribute classifiers learn the variances in appearance of each attribute as well

as invariance to appearance of the corresponding attribute across camera views (Lampert et al.,

2009; Siddiquie et al., 2011; Liu et al., 2011). (2) Complement low-level features for building

more powerful representation (Layne et al., 2012; Liu et al., 2011). (3) Being suitable for di-

rect human-robot interaction, e.g. allowing people search using human-attribute-profiles (Kumar

et al., 2011; Layne et al., 2014a).

Recently, deep learning visual features for ReID has also been attempted (Li et al., 2014b; Yi

et al., 2014; Ding et al., 2015), inspired by its massive success in a wide range of computer vision

tasks. Unlike hand-crafted features, these neural network based methods learn person discrimi-

native features from raw visual data. Specifically, a filter pairing neural network is particularly

designed for jointly handling the misalignment, photometric and geometric transforms, occlu-

sions and background clutter issues in ReID (Li et al., 2014b). Yi et al. (2014) applied a symmet-

ric ‘siamese’ neural network to learn ReID features that are robust to the inherent challenging
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cross-view variances. More recently, a triplet-based ReID feature learning model is derived in

(Ding et al., 2015), where each triplet unit contains a query image from one view, a true and

false match from another view. The objective is to learn a convolutional network that maximises

the relevance distance between the matched pair and the unmatched pair. One main weakness

of deep learning based ReID methods is the requirement of many training data for avoiding the

over-fitting problem (Krizhevsky et al., 2012; Li et al., 2014b).

Model Learning When pairwise labelled data are available, one can learn an identify sensitive

appearance transfer function or distance metric for modelling the cross-view photometric and

geometric transformations. An intuitive method is to learn the Brightness Transfer Functions

(BTF) between two camera views, with the aim to capture the changes in the colour distributions

of object travelling from one view to another (Porikli, 2003; Prosser et al., 2010; Chen et al.,

2008; D’Orazio et al., 2009; Javed et al., 2008; Jeong and Jaynes, 2008; Lian et al., 2012). These

methods typically assume the availability of perfect foreground detections, which however is

largely invalid in practical cases. Furthermore, the actual transfer functions between views may

be complex and multi-modal, which is very difficult to be approximated by a single BTF function,

due to many inherent variation factors such as pose, background, lighting. Li and Wang (2013a)

proposed a multi-modal model learning scheme to alleviate this problem.

A more popular alternative is distance metric learning. The main idea of metric learning is to

optimise the model parameters so that the cross-view inter-person distance is large whilst intra-

person distance is small, i.e. person identity discriminative. Existing metric learning methods

include Large Margin Nearest Neighbour (Weinberger et al., 2005), Information Theoretic Metric

Learning (Davis et al., 2007), Logistic Discriminant Metric Learning (Guillaumin et al., 2009),

KISSME (Kostinger et al., 2012), RankSVM (Prosser et al., 2010), Probabilistic Relevance Dis-

tance Comparison (Zheng et al., 2013). Most of these are Mahalanobis metric learning, which

need the optimisation of a full matrix. Whilst the RankSVM model constrains only a single

weight parameter for each feature dimension, which is thus potentially less effective than the

Mahalanobis distance.

Often, supervised model learning requires a large number of exhaustively labelled data. This

assumption significantly limits their scalability in real-world scenarios, e.g. the need of collect-

ing sufficient pairwise labels for each of many camera pairs. One solution is semi-supervised

learning (Loy et al., 2013; Liu et al., 2014b, 2013; Figueira et al., 2013) that can exploit the
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manifold geometry structures of unlabelled data for constraining the learning process given only

very sparse labels. An alternative perspective to solve the label data scarcity problem is trans-

fer learning and domain adaptation. Particularly, one wishes to learn a ReID model for a target

camera pair with only a small number of labelled people or even no annotation. To this end, a

model pre-trained from other auxiliary data is exploited and / or adapted to the new target dataset.

Recently, Hu et al. (2015) developed a deep transfer metric learning algorithm in the neural net-

work framework to transfer the discriminative knowledge from labelled auxiliary datasets to the

unlabelled target dataset. This model is trained by enforcing two constraints as: (1) maximising

the inter-class/person variations, and minimising the intra-class variations; (2) minimising the

divergence between source and target domains. Adapting and transferring ReID model is a chal-

lenging problem and remains open although some initial efforts have been made (Layne et al.,

2013; Wu et al., 2013; Ma et al., 2013; Shi et al., 2015; Hu et al., 2015).

Multi-Shot Person Re-Identification

In many cases, more than one person shot can be accessible. Multiple images of the same person

have been exploited for person re-identification. For example, Gheissari et al. (2006) generated

a decomposable spatio-temporal graph for identifying localised regions with similar motion pat-

terns, based on which local descriptors are constructed for accurate matching. Interest points

were accumulated across short image sequences for capturing sufficient appearance variabil-

ity (Hamdoun et al., 2008). Manifold geometric structures in image sequences of people were

utilised to construct more compact spatial descriptors of people (Cong et al., 2009). A histogram

of local descriptors based on SIFT (Lowe, 2004) is built from tracks for matching tracked people

across view along with an incremental learning (Teixeira and Corte-Real, 2009). The time index

of image frames and identity consistency of a sequence were used to constrain spatial feature

similarity estimation (Karaman and Bagdanov, 2012). In (Oreifej et al., 2010), a selective region

based matching formulation is derived for identity recognition in aerial images, where multiple

images of a target are manually labelled. There are also attempts on training a person appearance

model from image sets (Nakajima et al., 2003; Bak et al., 2012) or by selecting best pairs (Li and

Wang, 2013b). Multiple images of a person sequence were often used either to enhance local im-

age region/patch spatial feature description (Gheissari et al., 2006; Farenzena et al., 2010; Cheng

et al., 2011; Xu et al., 2013), or to extract additional appearance information such as appearance

change statistics (Bedagkar-Gala and Shah, 2012).
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Figure 2.7: Examples of Gait Energy Image (GEI) template computed from image sequences
with varying degrees of noise. Top row: GEI templates obtained from some gait recognition
data (Han and Bhanu, 2006). Bottom row: GEI features extracted from some person ReID
sequences, e.g. the iLIDS-VID dataset (Wang et al., 2014b). It is clearly shown that the ReID
image sequences captured in public spaces are much more noisy and challenging than the walking
sequence data investigated in gait recognition.

Additionally, other useful information can be potentially extracted and exploited from image

sequences of people for helping person ReID, e.g. space-time dynamic features beyond static

appearance.

Gait Recognition Space-time information has been explored extensively for gait recognition.

Its aim is to develop techniques for person recognition using image sequences by discriminat-

ing subtle distinctiveness in the style of walking (Nixon et al., 2010; Sarkar et al., 2005; Han

and Bhanu, 2006; Martı́n-Félez and Xiang, 2012). Gait is a behavioural biometric that mea-

sures the way people walk. An advantage of gait recognition is no assumption being made on

either subject cooperation (framing) or person distinctive actions (posing). These characteris-

tics are similar to person re-identification situations. However, existing gait recognition models

are subject to stringent requirements on person foreground segmentation and accurate alignment

over time throughout a gait image sequence or a walking cycle. It is also assumed that com-

plete gait/walking cycles were captured in the target image sequences (Han and Bhanu, 2006;

Martı́n-Félez and Xiang, 2012). Most gait recognition methods do not cope well with cluttered

background and/or random occlusions with unknown covariate conditions (Bashir et al., 2010).

Person re-identification in public spaces is thus inherently challenging for gait recognition tech-

niques (Figures 1.6 and 2.7). That is, it is challenging to extract a suitable gait representation from
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Figure 2.8: An example showing the time warping result (right) between two input time se-
quences (left) using the DTW algorithm. This figure is reproduced from (Ratanamahatana and
Keogh, 2004).

such re-identification data, as shown in our experiments (Section 6.3). In contrast, the approach

presented in Chapter 6 relaxes significantly these assumptions by simultaneously selecting dis-

criminative video fragments from noisy image sequences, and matching them cross-view without

temporal alignment.

Temporal Sequence Matching An alternative approach to exploiting image sequences for

person re-identification is holistic sequence matching. For instance, Dynamic Time Warping

(DTW) is a popular sequence matching method widely used for speech recognition (Rabiner

and Juang, 1993), action recognition (Lin et al., 2009), and more recently also for person re-

identification (Simonnet et al., 2012). The DTW algorithm assumes the alignment at starting

and ending data points in the matched sequences, and also the same amount of periodicities, as

shown in Figure 2.8. However, given two sequences with unsynchronised starting and/or ending

frames, it is difficult to align sequence pairs’ starting and ending frames for accurate matching,

especially when the image sequences are subject to significant noises caused by unknown camera

viewpoint changes, background clutters and drastic lighting changes. The approach presented in

Chapter 6 is designed to address this problem so as to avoid any implicit assumptions on sequence

alignment and camera view similarity among image frames both within and between sequences.

2.5 Summary

The preceding sections have discussed important studies in the literature with respect to single-

camera and multi-camera visual data structure discovery techniques in the generic machine learn-

ing and pattern recognition context. Specifically, the main topics include unsupervised and semi-

supervised cluster structure analysis, multi-source data clustering, and person identity structure
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discovery. Despite the promising results achieved by existing methods, there still exist many

limitations and open problems. In the following chapters, novel approaches are presented to

overcome the challenges as outlined below:

1. (Chapter 3) Unsupervised visual data structure discovery with discriminative features:

Unsupervised visual data structure discovery aims to identify the inherent cluster relation-

ships among data samples. This largely helps the understanding and analysis of visual

data by proving concise but hidden structural information. Most existing cluster analysis

methods typically rely on the whole feature space. Therefore, they are likely to produce

sub-optimal results, particularly with high-dimensional and noisy visual features. To ad-

dress the limitations, a discriminative feature driven clustering framework is formulated.

2. (Chapter 4) Semi-supervised visual data structure discovery with sparse and imperfect

pairwise constraints: Pairwise constraints provide methods with guidance information

to find desired clusters through giving meaningful data similarity clues. In constrained

clustering, often sparse constraints thus limited supervision are available. Moreover, some

unknown pairwise constraints can be inaccurate. Nonetheless, how to deal with noisy

constraints from imperfect oracles is largely ignored in the literature. This thesis presents

a constrained clustering model characterised by accurately propagating sparse constraints

through discriminative features and the capability of effectively handling noisy constraints.

3. (Chapter 5) Multi-source data structure discovery for video summarisation: Multi-

source data structure discovery or clustering has not been investigated as extensively as

the single source counterpart. Existing algorithms typically treat each individual source

data separately and thus ignore the inherent correlations between different sources. This

can lead to poor clustering, especially given heterogeneous sources differing significantly

in representation, dimension, scale and covariate. To overcome the above issues, a multi-

source data structure modelling framework is designed. This method is able to discover

and exploit the latent correlations between heterogeneous source data for facilitating the

underlying video data structure discovery. The effectiveness of this model is further vali-

dated in video summarisation, an important surveillance application that depends greatly

on precise video structural information.

4. (Chapter 6) Person identity structure discovery by video ranking: Person identity struc-

ture or person re-identification across distributed camera views in public spaces are essen-
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tial information to video surveillance. The conventional methods mostly exploit people

appearance alone to perform cross-view person matching. This is inherently limited due to

the large appearance ambiguities and viewing condition disparity between different views.

In contrast to existing models, an image sequence based ReID method is developed to

extract discriminative space-time features from noisy and unaligned image sequences for

achieving more reliable person ReID.
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Chapter 3

Unsupervised Visual Data Structure Discovery by

Discriminative Features

Unsupervised visual data structure discovery or cluster analysis is a fundamental learning strat-

egy and also an essential means of video analysis. The objective is to obtain the underlying data

group/cluster membership based on visual appearance alone, which however is non-trivial. This

is largely because visual signals can be inevitably inaccurate and noisy owing to uncontrollable

sources of variation, changes in illumination, random occlusions and background clutters (Gong

et al., 2011). More precisely, noisy visual observation with large intra-cluster variations and small

inter-cluster differences raises the challenge of accurately measuring the meaningful similarity

between data samples, particularly in high-dimensional feature spaces. It is important to over-

come this difficulty for visual data cluster analysis, i.e. once meaningful data pairwise similarity

is obtained, one can simply construct affinity graphs and then apply any existing graph based

clustering algorithms, e.g. spectral clustering (Von Luxburg, 2007; Zelnik-manor and Perona,

2004), to find accurate data clusters. In other words, the performance of graph based clustering

methods generally rely significantly on the goodness of the input data affinity graph.

The goal of this chapter is to infer robust pairwise similarity between samples for improving

data clustering. Trusting all available features blindly may be susceptible to unreliable and/or

noisy features. In light of this, based on unsupervised clustering random forests (Criminisi and

Shotton, 2012; Pei et al., 2013; Zhu et al., 2013), a generalised data similarity inference frame-

work is formulated to exploit discriminative features for obtaining more accurate data similarity.
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In contrast to confining the notion of similarity to the L2-norm metric on complex and potentially

non-Euclidean behaved data, the proposed model adopts the information-theoretic definition of

data similarity as presented in (Lin, 1998).

This chapter is structured as follows. Section 3.1 presents the details of the proposed un-

supervised data similarity inference framework based on random forests. This is followed by

a description of datasets and experimental settings in Section 3.2. In Section 3.3, the effec-

tiveness of this proposed method was validated by extensive experiments and comparison with

state-of-the-art similarity computing models in clustering challenging datasets, including images

and surveillance videos. Finally, a summary is presented in Section 3.4.

3.1 Robust Affinity Graph Inference by Discriminative Features

The proposed affinity graph construction approach is built upon conventional clustering random

forests, which are an unsupervised form of random forests. The proposed model has a few

important merits as below.

1. Our model is purely unsupervised without requiring any ground truth annotations, since it

is based on clustering forests rather the more popular supervised classification or regression

random forests (Breiman, 2001; Criminisi and Shotton, 2012).

2. By virtue of the random subspace feature selection during training forests, the pairwise

affinity matrix generated by our model is less susceptible to corruption of noisy and irrel-

evant features.

3. Each decision tree in the forest hierarchically encodes an exhaustive set of comparative

tests or split functions, which implicitly define different notions of between-sample sim-

ilarities. Our model is capable of extracting and combining these subtle similarities at

distributed discriminative subspaces for learning robust pairwise affinity matrices.

Next, we discuss how to derive robust pairwise similarities from a trained random forest.

Recall that the forest training procedure allows us to partition data with very complex distribu-

tions at the discovered discriminative feature subspaces. More details on how to train individual

decision trees of a conventional forest, and the discriminative feature selection mechanism can

be found in Section 2.2.

Specifically, each split function (Equation (2.1)) encodes a different notion of between-

sample similarity, defined by its split variable and threshold. To quantify data similarities for gen-



3.1. Robust Affinity Graph Inference by Discriminative Features 67

Partial overlapping 
tree path 

Neighbourhood 
hierarchy 

Affinity 
matrix 

Similarity graph  

(b) 

(a) 

Spectral clustering 

(c) 

Cluster 
formation … 

= xi

= xj

= x

r 

s 

Figure 3.1: Pipeline of visual data structure discovery by clustering, with focus on the hierar-
chical neighbourhoods along a tree path in a clustering tree, which are formed by selecting and
employing discriminative features. The proposed model exploits the hierarchical tree structures
and neighbourhoods for robust data pairwise similarity inference.

erating a robust pairwise affinity matrix, we propose a structure-aware affinity inference model

(ClustRF-Strct) based on clustering random forest. The model takes into account the whole tree

hierarchical structures, i.e. a tree path from the root until leaf nodes traversed by data samples

x (Figure 3.1-(a)). Specifically, given the t-th clustering tree, we channel a sample pair (xi,x j)

from the root node r until reaching their respective leaf nodes l(xi) and l(x j). Subsequently, two

tree paths composed by the root node r, internal and leaf nodes can be generated:

Pi = {r,si
1, . . . ,s

i
k, . . . , l(xi)}, (3.1)

P j = {r,s j
1, . . . ,s

j
k, . . . , l(x j)}, (3.2)

with si
k and s j

k denoting the k-th internal nodes travelled by xi and x j, respectively.

Intuitively, a sample pair (xi,x j) is considered dissimilar if they are split at the very begin-

ning, e.g. from the root node r. On the other hand, if the samples travel together passing the same

set of internal nodes till the identical leaf node, i.e. Pi = P j, their similarity is high. Beyond the

two extreme cases above, there exist intermediate similarities: let λ be the length of which Pi

and P j overlaps (Figure 3.1-(a)), i.e.
si

k = s j
k if k = {1, . . . ,λ},

si
k 6= s j

k if k = {λ +1, . . .},

li 6= l j.

(3.3)

Clearly, a larger value in λ signifies more split tests both samples (xi,x j) have gone through

together, implying higher similarity shared between them. A lower value in λ suggests subtle

and weak similarity between xi and x j. To capture different strengths of data similarities, we

derive a principled and generalised tree structure aware data pairwise similarity inference method,
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ClustRF-Strct, as

at
i, j =

∑
λ
k=1 wk

∑
ζ

k=1 wk

, (3.4)

where ζ = max(|Pi|, |P j|)−1, and wk is the weight assigned to the corresponding tree node (i.e.

either sk or l) on the longer tree path. That is, the longer tree path is utilised as the normalisation

factor. Note that the root node r is not considered in computing the similarity since all samples

share the same root node. The pairwise similarity at
i, j defines the individual elements of a tree-

level affinity matrix At ∈ Rn×n, with n the data sample number. To combine consensus from

multiple decision trees in the forest, we generate the final smooth affinity matrix A ∈ Rn×n as

A =
1

τclust
∑

τclust

t=1 At . (3.5)

Note that the Equation (3.5) is adopted as the ensemble model of random forest due to its advan-

tage of suppressing the noisy tree predictions, though other alternatives such as the product of

tree-level predictions are possible (Criminisi and Shotton, 2012).

ClustRF-Strct is regarded as a generic affinity inference model since distinct strategies of

defining node weights wi can produce different affinity graph construction methods/instantiations,

as we will describe below.

3.1.1 Variant I - The Binary Affinity Model

We show that the methods proposed in (Criminisi and Shotton, 2012; Pei et al., 2013; Zhu et al.,

2013) are special cases of the proposed ClustRF-Strct. All these methods share the same mecha-

nism in estimating a pairwise similarity matrix using a clustering random forest. We name these

methods collectively as the binary affinity inference model (ClustRF-Bi), since they derive pair-

wise affinity based only on whether or not (binary) two samples fall into the same leaf node of a

tree.

Prior to discussing their relationship to our approach, we review the underlying mechanism

of ClustRF-Bi in measuring pairwise similarity between data samples given a learned clustering

forest. Recall that each individual tree of a forest partitions the training samples at its leaves

{l(x)} where l(x) represents a leaf node x falls into in a given tree. For each tree, the ClustRF-Bi

model first computes a tree-level n×n affinity matrix At with elements defined as

at
i, j = exp−distt(xi,x j), with (3.6)



3.1. Robust Affinity Graph Inference by Discriminative Features 69

distt(xi,x j) =

 0, if lt(xi) = lt(x j),

+∞, otherwise.
(3.7)

With Equation (3.6), the ClustRF-Bi assigns the maximal similarity at
i, j = 1 to a sample pair (xi,

x j) if Pi = P j (i.e. completely overlapping), and the minimum similarity at
i, j = 0 to them other-

wise, regardless of any partial overlap in their tree paths. This formulation is equivalent to setting

wk = 0 for every internal node, wk = 1 for all leaf nodes in Equation (3.4). Hence, this mecha-

nism is a special case of our ClustRF-Strct. A potential problem with ClustRF-Bi is that it may

lose the weak and subtle proximity of sample pairs proportional to the degree of path overlap. We

will show in our experiments in Section 3.3 that considering only completely overlapping path

pairs, i.e. Pi\P j = ∅, as in ClustRF-Bi, is not sufficient for producing satisfactory data clusters.

3.1.2 Variant II - The Uniform Structure Model

To address the limitation of ClustRF-Bi in losing weak similarity between data samples, we

propose to consider the non-completely-overlapping path pairs as well while measuring tree-

level data similarities using the proposed ClustRF-Strct model. In particular, we treat all tree

nodes as uniformly important by setting wk = 1 in Equation (3.4). Therefore, Equation (3.4) can

be rewritten as

at
i, j =

λ

max(|Pi|, |P j|)−1
. (3.8)

We call this model as ClustRF-Strct-Unfm. With Equation (3.8), all partially overlapped path

pairs also contribute to the similarity estimation between samples. As shown in the experiments

(Section 3.3), this formulation captures weak data similarities encoded in the tree structures, and

thus is capable of better revealing the underlying data structure than the conventional ClustRF-Bi

model.

3.1.3 Variant III - The Adaptive Structure Model

The ClustRF-Strct-Unfm is capable of capturing subtle and weak data proximity through ex-

ploiting the path sharing mechanism of sample pairs in the hierarchical structure of the forest.

Nevertheless, the uniform node weighting implies an implicit assumption that all tree nodes (e.g.

sk or l) are equally important in defining similarity. In reality this may not be true, particularly

with data of complex distributions, since different nodes reside at distinct layers of the tree hi-

erarchy with dissimilar properties, e.g. the size and structure of the arrival training samples.
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To characterise such node (or data subset) properties, we propose an adaptive structure-aware

affinity inference (ClustRF-Strct-Adpt).

The ClustRF-Strct-Adpt model exploits the hierarchical neighbourhood formed in each clus-

tering tree (see Figure 3.1-(a)). Our notion of hierarchical neighbourhood generalises the idea

presented in (Lin and Jeon, 2002). Specifically, (Lin and Jeon, 2002) only regards samples shar-

ing the same tree terminal node as neighbours. We extend the neighbourhood notion to the

whole tree hierarchy. Imagine a situation where a target sample xt traverses in a tree hierarchy

from the root node until some arbitrary internal node sk. Some other samples Sk \ xt have also

gone through the same tree path and fall onto the same internal node sk with xt . These samples

form a neighbourhood with xt on node sk in the tree hierarchy.

Samples that form a hierarchical neighbourhood have passed through the same set of split

functions (Equation (2.1)) associated with each tree node. Intuitively, the deeper the hierarchi-

cal neighbourhood is formed, the higher the similarity shared among the samples in the same

neighbourhood, since those samples have survived and are still connected after identical discrim-

inative split tests (Equation (2.1)). Motivated by this observation, we assign each tree node sk

with a scale-adaptive weight (Equation (3.4)) as

wk =
1
|Sk|

. (3.9)

Consequently, we assign larger weights to deeper tree nodes, since |Sk| > |Sk+1|. As such,

ClustRF-Strct-Adpt estimates similarity between a sample pair (xi,x j) via

at
i, j =

∑
λ
k=1

(
1
|Sk|

)
∑

ζ

k=1

(
1
|Sk|

)
+ 1
|B|

, (3.10)

where B denotes the set of data samples reaching into the leaf node lb of the longer path. Similar

to Equation (3.8), a maximum similarity is assigned to sample pairs that share the same leaf

node. Nevertheless, the tree node similarity weight is no longer distributed linearly along the

forest hierarchy as in Equation (3.8), but in a non-linear way adaptive to the size of hierarchical

neighbourhood.

3.2 Datasets and Experimental Settings

Datasets A variety of visual datasets were utilised for evaluating the proposed model: (1)

Image Segmentation (Asuncion and Newman, 2007): a scene image dataset from the UCI repos-

itory, including 7 types of different outdoor scenes: Brickface, Sky, Foliage, Cement, Window,
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Table 3.1: Dataset statistics, with examples in Figure 3.2.

Dataset # Clusters # Features # Samples

Image Segmentation (Asuncion and Newman, 2007) 7 19 2310

CMU-PIE (Sim et al., 2003) 10 1024 1000

USAA (Fu et al., 2014) 8 14000 1466

ERCe (Zhu et al., 2013) 6 2672 600

Path, and Grass. The objective is to partition image patches into the above seven types. (2) CMU-

PIE (Sim et al., 2003): a face image dataset drawn from CMU-PIE. It comprises 10 different

persons selected in random, each with 100 images of near frontal poses and various expressions

and lighting conditions (Figure 3.2a). We aim to group together all the face images from the

same person on this dataset. (3) USAA (Fu et al., 2014): a YouTube video dataset. This dataset

features common social group activities where unconstrained space of objects, events and inter-

actions makes them intrinsically complex and challenging to detect (Figure 3.2b). The goal is to

cluster these video clips into 8 groups each with coherent semantics, e.g.the same social activ-

ity. (4) ERCe (Zhu et al., 2013): a visual surveillance video dataset. The dataset is challenging

because of various types of physical events characterised by large changes in the environmental

set-up, participants, and crowdedness, as well as intricate activity patterns. This dataset consists

of 600 video clips from 6 campus events, each with 100 samples (Figure 3.2c). Our purpose is to

classify the ERCe video clips into the six events.

Data feature representation For Image Segmentation, USAA, and ERCe, we use the same

features as provided by (Asuncion and Newman, 2007), (Fu et al., 2014) and (Zhu et al., 2013).

Specifically, for Image Segmentation, we use the low-level visual features from image patches,

e.g. colour, pixel intensity. These appearance features may be unreliable and noisy, especially

given outdoor scenes. As to USAA, the resulting high-dimensional (14000-D) feature vectors

are drawn from three heterogeneous modalities, namely static appearance, motion and auditory.

The data samples from ERCe are also of high-dimensional (2672-D), involving heterogeneous

feature types, e.g. colour histogram (RGB and HSV), optical flow, local texture, holistic image

appearance, object detection. With CMU-PIE, we first normalise and crop the face images into

32×32 in spatial resolution, and their raw pixel values are then employed as the representation.

Such a representation is affected by large differences in illumination, facial expression, and head
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(a) CMU-PIE (Sim et al., 2003): each row corresponds to one person.

(1) (2) (3) (4) 

(5) (6) (7) (8) 

(b) USAA (Fu et al., 2014): (1) Birthday Party, (2) Graduation, (3) Music Performance, (4) Non-music
Performance, (5) Parade, (6) Wedding Ceremony, (7) Wedding Dance, (8) Wedding Reception.

(1) (2) (3) 

(4) (5) (6) 

(c) ERCe (Zhu et al., 2013): (1) Student Orientation, (2) Cleaning, (3) Career Fair, (4) Group Study, (5)
Gun Forum, (6) Scholarship Competition.

Figure 3.2: Example images from CMU-PIE (Sim et al., 2003), USAA (Fu et al., 2014),
ERCe (Zhu et al., 2013) datasets.
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pose. All data features are scaled to the range of [−1,1]. To initially remove less-informative

features on the high-dimensional datasets, e.g. CMU-PIE, USAA and ERCe, we perform PCA

on them and the first 30 dominant components are used as the final representation. The same sets

of feature data are used across all methods for fair comparison.

Baselines We compare the proposed affinity graph learning model ClustRF-Strct with:

1. k Nearest Neighbours (kNN) (Wang et al., 2008): the most traditional affinity graph con-

struction method using the Euclidean distance on the input feature space. To convert an

Euclidean distance matrix D into an affinity graph A, we compute each element in A as

ai, j = exp(−dist2i, j/σ2
i, j) with σi j the adaptive kernel size that is computed as the mean

distance of kadpt-nearest neighbourhoods as in (Wang et al., 2008). We will evaluate the

sensitivity of kadpt on the clustering performance in Section 3.3.

2. Dominant Neighbourhoods (DN) (Pavan and Pelillo, 2007): a tight affinity graph learning

approach. To reduce the amount of potentially noisy edges in a given Euclidean affinity

graph, the DN model attempts to identify sparse and compact neighbourhoods through

selecting only the maximal cliques in the input graph.

3. Consensus of kNN (cons-kNN) (Premachandran and Kakarala, 2013): the state-of-the-art

affinity graph construction method. For selecting strong local neighbourhoods, the con-

sensus information collected from various neighbourhoods in a provided kNN graph is

exploited by this algorithm for producing a more robust affinity graph.

4. ClustRF-Bi (Criminisi and Shotton, 2012; Pei et al., 2013; Zhu et al., 2013): the clustering

random forest binary affinity model (Section 3.1.1). This method exploits discriminative

features identified during the training of clustering forests to construct data affinity graphs.

The resulting affinity graphs can thus be less-sensitive to noisy features, compared to the

Euclidean-metric-based methods, e.g. kNN, DN and cons-kNN.

Evaluation metrics We use the widely adopted adjusted Rand Index (ARI) (Hubert and Ara-

bie, 1985) as the evaluation metric, with the range of [−1,1]. ARI measures the agreement

between the clustering results and the ground truth in a pairwise fashion, with higher values in-

dicating better clustering quality. ARI assumes the generalised hypergeometric distribution on

models (e.g. partitions or clustering results), with the general index form as:

ighd =
m̂− e
m− e

(3.11)
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where m̂, m and e refer to the actual index, maximal index, and expected index, separately. There-

fore, the expected value of ighd is 0. We formally define the ARI below. Let U = {U1,U2, . . . ,Ur}

and V = {V1,V2, . . . ,Vs} be the ground truth and clustering result partition of n data samples,

respectively. We then denote mi j as the number of data samples that are in Ui and Vj, mi· and m· j

as the number of sample in the cluster Ui and Vj. The ARI is computed as:

ARI =
∑i, j

(ni j
2

)
−
[
∑i
(ni·

2

)
∑ j
(n· j

2

)]
/
(n

2

)
1
2

[
∑i
(ni·

2

)
+∑ j

(n· j
2

)]
−
[
∑i
(ni·

2

)
∑ j
(n· j

2

)]
/
(n

2

) (3.12)

The quantity ∑i, j
(ni j

2

)
(e.g. the actual index) means the number of sample pairs that are in the

same cluster in both U and V , which can be regarded as agreement between the two partitions;[
∑i
(ni·

2

)
∑ j
(n· j

2

)]
/
(n

2

)
(e.g. the expected index) measures the expected number of sample pairs

in the same cluster; and 1
2

[
∑i
(ni·

2

)
+∑ j

(n· j
2

)]
(e.g. the maximal index) refers to the summed

same-cluster pairs in U and V . As a result, a higher ARI value means greater agreement of the

clustering result V with the ground truth partition U , i.e. more agreed same-cluster data pairs

w.r.t. their expected value. Consider two clustering result partitions V a and V b with the same

cluster number, if their ∑ j
(n· j

2

)
is the same, then comparing their ARI values can directly reflect

their disparity w.r.t. the number of same-cluster pairs that are consistent with U ; Otherwise,

approximately reflected. In our evaluation, for all experiments involving clustering forest based

models, i.e. ClustRF-Bi, ClustRF-Strct-Unfm, and ClustRF-Strct-Adpt, we report the ARI values

averaged over 5 trials.

Implementation details The number of trees τclust in a clustering forest is set to 1000. We

observed stable results given a larger forest size. This observation agrees with (Criminisi and

Shotton, 2012). We set dtry (see Equation (2.2)) to
√

d with d the feature dimensionality of the

input data and employ a axis-aligned data separation hyperplane (Criminisi and Shotton, 2012)

as the split function (see Equation (2.1)). The value of φ is obtained through cross-validation on

each dataset.

3.3 Experiments and Evaluations

3.3.1 Evaluation on Affinity Graph

We first examine the data affinity graphs, which could qualitatively reflect how effective a neigh-

bourhood graph construction method is. Figure 3.3 depicts some example affinity matrices gen-

erated by all comparative models.
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Ground Truth kNN DN cons−kNN

Ground Truth ClustRF−Bi ClustRF−Strct−UnfmClustRF−Strct−Adpt
(a) Image Segmentation (Asuncion and Newman, 2007)

Ground Truth kNN DN cons−kNN

Ground Truth ClustRF−Bi ClustRF−Strct−UnfmClustRF−Strct−Adpt
(b) CMU-PIE (Sim et al., 2003)

Figure 3.3: Qualitative comparison of the affinity graphs generated by different methods.

It can be observed that ClustRF-Strct-Unfm and ClustRF-Strct-Adpt produce affinity matri-

ces with more distinct block structure and less false edges compared with others. This suggests

the superiority of the proposed models in learning the underlying structures of data, potentially

leading to more compact and separable clusters. A number of noisy pairwise edges are found

in the affinity graphs yielded by ClustRF-Strct-Unfm than those by ClustRF-Strct-Adpt. This

is a consequence of not considering the goodness of hierarchical neighbourhoods in ClustRF-

Strct-Unfm (Section 3.1.2), leading to less accurate induced data similarities in comparison to

ClustRF-Strct-Adpt. This observation shows the effectiveness of the proposed adaptive weight-

ing mechanism in suppressing noisy or inaccurate features on learning data sample proximity.

We now examine and discuss the characteristics of affinity matrices constructed by other
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ClustRF−Bi (301) ClustRF−Strct−Unfm (563)ClustRF−Strct−Adpt (427)

Figure 3.4: Comparison between clustering forest based models: the pairwise affinity between
different face images from the same person (CMU-PIE (Sim et al., 2003)). The numbers in the
parentheses are the summation of all pairwise similarities induced by the corresponding method.
Larger is better.

baselines. It is observed from Figure 3.4 that compared to the ClustRF-Strct models, ClustRF-

Bi has the tendency to underestimate the similarity of sample pairs that actually originate from

the same clusters. This is owing to that ClustRF-Bi only assumes data similarity on the com-

pletely overlapped tree path pairs, and thus loses subtle and weak data proximity (Section 3.1.1).

Given intrinsically ambiguous datasets with unreliable features, incomplete overlapping path

pairs can often occur as samples of the same categories may only share similarity in some feature

subspaces. In such cases, ClustRF-Bi shall perform poorly as compared to our ClustRF-Strct

models, as we shall show next.

With kNN, DN, and cons-kNN, affinity graphs with indistinct block structure are observed,

with a mix of large quantity of faulty edges. In contrast to ClustRF-Bi that is ‘overly reluctant’

in assigning data proximity to sample pairs, the Euclidean distance based methods go to the

other extreme by blindly believing all available features and therefore tend to introduce false

data proximity.

3.3.2 Evaluation on Data Structure Discovery

In this experiment, we quantitatively evaluate data clustering performance of different graph

construction methods by applying the spectral clustering algorithm (Zelnik-manor and Perona,

2004) on their affinity graphs as discussed in Section 3.3.1.

It is observed from Figure 3.5 and Table 3.2 ClustRF-Strct-Unfm and ClustRF-Strct-Adpt

outperform baseline methods, e.g. by as much as >125% and >120% relative improvement

against kNN, >190% and >180% against DN, >130% and >125% against the state-of-the-

art cons-kNN, >5% and >10% against the discriminative-feature-based model ClustRF-Bi in
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(a) Image Segmentation (Asuncion and Newman, 2007)
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(b) CMU-PIE (Sim et al., 2003)
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(c) USAA (Fu et al., 2014)
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(d) ERCe (Zhu et al., 2013)

Figure 3.5: ARI score against neighbourhood size: comparison between different methods on the
spectral clustering performance given different scales of neighbourhood k. The neighbourhood
size kadpt used on computing the adaptive Gaussian kernel size is fixed to 20.
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terms of the area under the curve of ARI score against neighbourhood size averaged over all the

datasets. This is in line with the observations in Figure 3.3. Importantly, we find that ClustRF-

Strct-Unfm and ClustRF-Strct-Adpt significantly outperform the Euclidean distance based meth-

ods on CMU-PIE. This can be due to the capability of our model of capturing and aggregating

subtle data proximity distributed over discriminative feature subspaces, thus suitable to handle

ambiguous and unreliable features caused by variation in illumination, face expression or pose

on the CMU-PIE data. A large improvement margin is also observed on the USAA dataset with

data collected from heterogeneous sources. All these evidences suggest the superior capability

of our model in dealing with high-dimensional data and heterogeneous sources for generating ro-

bust affinity graphs. Furthermore, ClustRF-Strct-Adpt is superior to ClustRF-Strct-Unfm in most

cases except on the CMU-PIE dataset. The plausible reason is that: the feature importance of

face images is relatively more uniform due to little background observation, compared to USAA

and ERCe where more distractive background clutter is involved, and the adaptive weight thus

somewhat violates this uniform importance pattern.

As shown in Figure 3.5, ClustRF-Strct-Unfm is more likely to suffer when the size of neigh-

bourhood k increases, whilst ClustRF-Strct-Adpt behaves more stably. The tendency is likely

to be caused by the relatively noisier affinity matrix induced by ClustRF-Strct-Unfm, as we ob-

served in Section 3.3.1. The results further justify the importance of considering neighbourhood-

scale-adaptive weighting on tree nodes (Section 3.1) for suppressing data noise.

The Euclidean-distance-based models produce the poorest results over all the datasets. Inac-

curate and noisy features are potential causes. For example, the face images from the CMU-PIE

dataset are intrinsically ambiguous owing to large variations in illumination and expressions (Fig-

ure 3.2-(a)). The extracted features are therefore unreliable. Similar situations are observed on

other datasets. The cons-kNN model attempts to circumvent this problem via searching for con-

sensus from multiple kNNs. Nevertheless this is proved challenging, particularly when a large

quantity of potential noisy edges exist in the given kNN due to the unreliable input data, leading

to possibly inconsistent neighbour votes from multiple kNNs. DN is likely to suffer from the

same problem as the maximal cliques in the given affinity graph is no longer trustworthy. This

interpretation is further supported by the fact that for all kNN, cons-kNN and DN, the clustering

performance changes dramatically with the varying settings of neighbourhood size k, e.g. on

Image Segmentation and ERCe. That is, a large amount of inaccurate edges in the affinity graphs
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Table 3.2: Sensitivity of kadpt: the clustering results of different methods given varying values
of kadpt in terms of AUC, with kadpt the parameter used for computing the adaptive Gaussian
kernel size during the process of converting a Euclidean distance matrix into an affinity graph
(see Section 3.2).

Dataset Image Segmentation CMU-PIE USAA ERCe

kadpt 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100

kNN 34.8 36.2 37.6 37.8 37.9 4.4 4.4 4.9 4.8 4.7 3.5 3.1 3.3 3.6 3.6 45.9 48.1 52.1 52.7 51.8

DN 38.3 29.1 34.7 37.2 37.2 3.0 2.3 2.4 3.0 3.5 2.6 2.3 2.5 2.0 1.7 51.0 52.1 49.9 18.3 25.6

cons-kNN 34.9 36.8 35.8 36.8 35.9 4.0 4.4 4.3 4.3 4.2 3.8 3.8 3.8 3.8 3.9 49.2 52.1 52.0 52.0 55.7

ClustRF-Bi 39.5 19.8 4.5 56.1

ClustRF-Strct-Unfm 40.7 22.9 4.7 59.3

ClustRF-Strct-Adpt 41.8 20.5 5.7 60.4

lead to the requirement of a more careful neighbourhood size selection, so as to trade-off between

the true and false data similarities.

By exploiting discriminative features, the ClustRF-Bi model suffers less from noisy data,

and produces better results than the Euclidean-distance-based methods. However, it is inferior

to the proposed ClustRF-Strct variants, since it is not capable of capturing subtle data pairwise

similarity encoded in partially overlapped path pairs.

Sensitivity of kadpt Here we evaluate the sensitivity of kadpt on kNN, DN and cons-kNN. The pa-

rameter kadpt is employed to estimate the adaptive Gaussian kernel size for converting a Euclidean

distance matrix into a similarity graph (Wang et al., 2008) (Section 3.2). Note that ClustRF-Bi,

ClustRF-Strct-Unfm and ClustRF-Strct-Adpt are free from kadpt since they directly derive affin-

ity graphs from the learned forests, rather than from distance matrices which require a Gaussian

kernel to enforce locality. It is evident from Table 3.2 that for all the Euclidean-distance-based

affinity graph learning models, a careful selection of adaptive Gaussian kernel size can produce

better clustering results. However, their best results are still worse than those by clustering forest

based models, due to the limitation in handling intrinsically noisy and irrelevant feature data.

Importantly, the proposed ClustRF-Strct model gains superior performance to other baselines in

all cases.

3.4 Summary

This chapter has presented a generic unsupervised approach to constructing more robust and

meaningful data affinity graphs for improving unsupervised visual data structure discovery. This
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method is designed particularly to deal with the challenges in clustering high-dimensional and

heterogeneous visual data with potentially large diversity within clusters and much similarity be-

tween clusters caused by non-relative and noisy features. Specifically, instead of blindly trusting

all available variables, we adopt an information-theoretic definition for measuring data similarity

and quantify affinity degrees through capturing and combining subtle/weak data proximity dis-

tributed in discriminative feature subspaces identified during the training process of clustering

random forests. Moreover, affinity graphs constructed by the proposed model naturally possess

the local neighbourhood, with no need of Gaussian kernel. Extensive experiments on clustering

challenging visual datasets have demonstrated the superiority of the proposed affinity inference

model over the state-of-the-art models.

Inherently, unsupervised visual data clustering is not well defined and its performance can

largely depend on data feature representation in addition to clustering methods. To obtain satis-

factory cluster results, prior information e.g. from human experts may be needed and useful to

provide some guidance for the clustering behaviour. The next chapter deals with the problem of

visual data cluster structure discovery by taking into account additional sample-level supervision

during the clustering procedure.
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Chapter 4

Semi-Supervised Visual Data Structure Discovery with

Sparse and Imperfect Pairwise Relationships

Unsupervised structure discovery (or clustering) over visual data is somewhat ‘blind’ and less

guided, with heavy dependence on visual feature representations in terms of information source.

It is thus a ill-posed problem, i.e. the similarity metric is not explicitly defined, particularly so

when only unreliable feature data are available from visual data, mostly typical in video surveil-

lance (Gong and Xiang, 2011). It makes sense to seek and exploit other knowledge when avail-

able for obtaining more accurate and desired cluster structure formation.

In clustering context, prior knowledge is typically expressed in form of pairwise constraints

or relationships, namely must-link - a pair of samples must be in the same cluster, and cannot-link

- a pair of samples belong to different clusters. As shown in (Wagstaff et al., 2001; Xing et al.,

2002; Basu et al., 2004a), clustering data by using such prior belief as constraints in addition to

data features (a.k.a. constrained clustering) to influence the cluster formation process helps.

In this chapter, we consider the problem of pairwise similarity based semi-supervised video

data structure discovery (or constrained clustering), given pairwise constraints derived from hu-

man/oracles (see Figure 4.1). Specifically, constraints together with data feature representations

are exploited for helping compute the similarity between data samples so that the induced data

neighbourhood relations are more meaningful and expressing the desired high-level structures.

Similar to unsupervised video clustering in Chapter 3, the estimated similarity matrix can be

utilised to benefit graph based clustering algorithms for inducing more precise data clusters.
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(a) Ground Truth (b) Spectral Clustering (c) Proposed Approach

Figure 4.1: (a) Ground truth cluster formation, with invalid pairwise constraints highlighted in
light red colour; must- and cannot-links are represented by solid and dashed lines respectively;
(b) the result obtained using unsupervised clustering; (c) the clustering result obtained using the
proposed method.

The objective of this chapter is to effectively exploit the available pairwise data relationships

for helping the revelation of inherent visual data group structure. This is no-trivial because:

(1) Often, pairwise constraints are available only in a small quantity and thus the information

provided can be very limited; (2) Moreover, these constraints are not guaranteed to be absolutely

accurate in reality, and thus may mislead the clustering process.

This chapter is organised as below. Problem formulation and the proposed semi-supervised

clustering model are detailed in Section 4.1. Followed by experimental settings in Section 4.2,

experiments with extensive evaluations by comparing to a wide range of state-of-the-art semi-

supervised clustering methods are presented in Section 4.3. Section 4.4 summarises this chapter.

4.1 Semi-Supervised Visual Data Structure Discovery with Imperfect Oracles

4.1.1 Problem Definition

Given a set of samples denoted as X = {xi}, i = 1, . . . ,n, with n denoting the total number of

samples, and xi = (xi,1, . . . ,xi,d), d the feature dimensionality of the feature space F ⊂ Rd , the

goal of unsupervised clustering is to assign each sample xi with a cluster label ci. In constrained

clustering, additional pairwise constraints are available to influence the cluster formation. There

are two typical types of pairwise constraints:

Must-link : ML = {(xi,x j) | ci = c j},
Cannot-link : CL = {(xi,x j) | ci 6= c j}. (4.1)

We denote the full constraint set as FL = ML∪CL. The pairwise constraints may arise from

pairwise similarity as perceived by a human annotator (oracle), temporal continuity, or prior
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knowledge on the sample class label. Acquiring pairwise constraints from a human annotator is

expensive. In addition, owing to data ambiguity and human unintentional mistakes, the pairwise

constraints are likely to be incorrect and inconsistent with the underlying data distribution.

We propose a model that can flexibly generate constraint-aware affinity matrices, which can

be directly employed as input by existing pairwise similarity based clustering algorithms e.g.

spectral clustering (Von Luxburg, 2007) or affinity propagation (Frey and Dueck, 2007) for semi-

supervised (constrained) clustering (Figure 4.2). The details of the proposed model are described

next.

4.1.2 Constraint Propagation Random Forest

To address the issues of sparse and noisy constraints, we formulate a COnstraint Propagation

Random Forest (COP-RF), a variant of clustering forest (see Figure 4.2). We consider using a

random forest (Section 2.2), particularly a clustering forest (Breiman, 2001; Zhu et al., 2014; Liu

et al., 2000; Blockeel et al., 1998) as the basis to derive our model for two main reasons:

1. It has been shown that random forest has a close connection with adaptive k-nearest neigh-

bour methods, as a forest model adapts neighbourhood shape according to the local im-

portance of different input variables (Lin and Jeon, 2002). This motivates us to exploit the

adaptive neighbourhood shape1 for effective constraint propagation.

2. The forest model also offers an implicit feature selection mechanism that allows more

accurate constraint propagation in the provided feature space by exploiting identified dis-

criminative features during model training.

The proposed COP-RF differs significantly from the conventional random forests in that the

COP-RF is formulated with a new split function, which considers not only the bottom-up data

feature information gain maximisation, but also the joint satisfaction of top-down pairwise con-

straints. In what follows, we first detail the training of COP-RF followed by how COP-RF

performs constraint propagation through discriminative feature subspaces.

Training of COP-RF The training of a COP-RF involves independently growing an ensemble

of τclust constraint-aware COP-trees. To train a COP-tree, we iteratively optimise the split func-

tion (Equation (2.1)) by finding the optimal ϑ̂ϑϑ including both the best feature dimension and cut-

point to partition the node training samples S, similar to an ordinary decision tree (Section 2.2).

1The neighbours of a data x in forest interpretation are the points that fall into the same child node.
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Features of data Pairwise constraints {ML, CL} 

COnstraint Propagation  
Random Forest 

(COP-RF) … 
Affinity matrix A 

Graph 
partition 

Clusters 

(a) 

(c) 

(d) 

(e) … 

{xi}

Constraint  
filtering 

(b) 

Figure 4.2: Overview of the proposed constrained clustering approach. (a) The inputs into a
constrained clustering model: features of data and pairwise constraints; (b) The proposed COP-
RF model; (c) Performing data clustering on the derived similarity graph; (d) The obtained cluster
formation.

The difference is that the term ‘best’ or ‘optimal’ is no longer defined only as to maximising the

bottom-up feature information gain, but also simultaneously satisfying the imposed top-down

pairwise constraints. More precisely, at the t-th COP-tree, its training set X t only encompasses a

subset of the full constraint set FL, i.e.

FLt =
{

MLt ∪CLt}⊂ FL. (4.2)

where ML and CL are defined in Equation (4.1). Instead of directly using the information gain

in Equation (2.3), we optimise each internal node s in a COP-tree via enforcing additional con-

ditions on the candidate data splits:

∀(xi,x j) ∈MLt ⇒ xi,x j ∈ L (or xi,x j ∈ R),

∃(xi,x j) ∈CLt ⇒ xi ∈ L & x j ∈ R (or opposite),

where xi,x j ∈ S, and FLt = MLt ∪CLt . (4.3)

L and R are data subsets at left and right child (see Equation (2.3)). Owing to the conditions

in Equation (4.3), COP-RF differs significantly from the conventional information gain func-

tion (Breiman, 2001; Liu et al., 2000; Blockeel et al., 1998) as the maximisation of Equation (2.3)

is now bounded by the constraint set FLt . Specifically, the optimisation routine automatically se-

lects discriminative features and their optimal cut-point via feature-information-based energy
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optimisation, whilst at the same time fulfilling the guiding conditions imposed by pairwise con-

straints, leading to semantically adapted data partitions.

More concretely, a data split in COP-tree can be considered as candidate if and only if it

respects all involved must-links, i.e. the constrained two samples by some must-link have to be

grouped together. Moreover, candidate data splits that fulfil more cannot-links are preferred. The

difference in treating must-links and cannot-links originates from their distinct inherent proper-

ties: (1) Once a particular must-link is violated at some split node, i.e. the two linked samples

are separated apart, there will be no chance to compensate for agreeing again with this must-link

in the subsequent process; That means all must-links have to be fulfilled anytime. (2) Whilst a

cannot-link would be fulfilled forever once it is respected one time. This property allows us to

ignore a cannot-link temporarily. In particular, although the learning process prefers data splits

that fulfil more cannot-links, it does not need to forcefully respect all cannot-links at the current

split node. Algorithm 1 summarises the split function optimisation procedure in a COP-tree.

Once a COP-RF model is trained, the data affinity matrix can be computed by using ClustRF-

Bi as described in Section 3.1.1. ClustRF-Strct-Unfm and ClustRF-Strct-Adpt are not consid-

ered, due to (1) ClustRF-Bi has the cheapest computation cost among the three methods, and (2)

the essential problem of this study is not on clustering forest based affinity models. This affin-

ity matrix already encodes the knowledge from the available pairwise links since the pairwise

constraints have been enforced during the COP-RF learning process.

Discussion Recall that the data partitions in COP-RF are required to agree with the imposed

pairwise constraints, which are defined by splitting conditions in Equation (4.3). From Equa-

tion (3.7), it is clear that the pairwise similarity matrix induced by COP-RF is determined by the

data partitions formed over its leaves. Hence, the pairwise similarity matrix induced by COP-

RF indirectly encodes the pairwise constraints defined by oracles. To summarise, we denote the

constraint propagation in COP-RF by the process chain below: pairwise constraints→ steering

data partitions in COP-RF → distorting pairwise similarity measures. As the data partition-

ing operation in COP-RF is driven by the optimal split functions that are defined on discovered

discriminative features (Equation (2.1)), the corresponding constraint propagation process takes

place naturally in discriminative feature subspaces.
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Algorithm 1: Split function optimisation in a COP-tree.
Input: At a split node s of a COP-tree t: (1) Training samples S arriving at a split node s; (2) Pairwise

constraints: FLt = MLt ∪CLt ;

Output: (1) The best feature cut-point ϑ̂ϑϑ , and (2) The associated child node partition {L̂, R̂};

1 Optimisation:

2 Initialise L = R = ∅ and ∆ψ = 0;

3 maxCLs = 0; /* the max number of respected cannot-links */

4 for var← 1 to dtry do

5 Select a feature xvar ∈ {1, . . . ,d} randomly;

6 for each possible cut-point of the feature xvar do

7 Split S into a candidate partition {L,R};

8 dec = validate({L,R},
{

MLt ,CLt} ,maxCLs);

9 if dec is true then

10 Compute information gain ∆ψ̃ following Equation (4.3);

11 if ∆ψ̃ > ∆ψ then

12 Update ϑ̂ϑϑ ;

13 Update ∆ψ = ∆ψ̃ , L̃ = L̃, and R̃ = R̃.

14 end

15 end

16 else

17 Ignore the current splitting.

18 end

19 end

20 end

21 if No valid splitting found then

22 A leaf is formed.

23 end

24 function validate({L,R},{ML,CL},maxCLs)

25 {

26 /* Deal with must-links */

27 ∀(xi,x j) ∈ML,

28 if (xi ∈ L and x j ∈ R, or vice versa) return false.

29 /* Deal with cannot-links */

30 Count the number repCLs of respected cannot-links;

31 if (repCLs < maxCLs) return false.

32 else maxCLs = repCLs.

33 Otherwise, return true.

34 }
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4.1.3 Coping with Imperfect Pairwise Relationships

Most existing models (Wagstaff et al., 2001; Kamvar et al., 2003; Lu and Ip, 2010) assume that

all the available pairwise constraints are correct. It is not always so in reality, e.g. annotations

from crowd-sourcing are likely to contain invalid constraints due to data ambiguity or mistakes

by human. The existence of fault constraints can result in error propagation to neighbouring

unlabelled points. To overcome this problem, we formulate a numerical method to measure

the quality of individual constraints by estimating their inconsistency with the underlying data

distribution, so as to facilitate more reliable constraint propagation in COP-RF.

Incorrect pairwise constraints are likely to conflict with the intrinsic data distributions in

the feature space. Motivated by this intuition, we propose an approach to estimating constraint

inconsistency measure, as described below.

Specifically, we adopt the outlier detection mechanism offered by classification random for-

est (Breiman, 2001) to measure the inconsistency of a given constraint. First, we establish a set

of samples with Z = {zi}|FL|
i=1 with class labels C = {ci}|FL|

i=1 , where |FL| represents the total of

constraints. Here, a sample z is defined as

z =

 |xi−x j|
1
2(xi +x j)

 , (4.4)

where (xi,x j) is a sample pair labelled with either must-link or cannot-link. We assign z with

class c = 0 if the associated constraint is cannot-link, and c = 1 for must-link. Equation (4.4)

considers both relative position and absolute locations of (xi,x j). This characteristic enables the

forest learning process to be position-sensitive and thus achieve data-structure-adaptive transfor-

mation (Xiong et al., 2012).

Subsequently, we train a conventional classification random forest using Z and C. This

learned forest can then be used to measure the inconsistency of each sample zi. A sample is

deemed inconsistent if it is unique against other samples with the same class label. Formally,

based on the affinity Alink on Z that can be computed with Equation (3.7) and Equation (3.5)

using this conventional forest, the inconsistency measure ε of zi is defined as

ε(zi) =
ρi− ρ̄

ρ̄
, where (4.5)

ρ̄ = median([ρ1, . . . ,ρ|Zi|]),

ρi =
1

∑z j∈Zi(Alink(zi,z j))2 ,
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where Zi comprises of all samples with the same class label as zi in Z. By Equation (4.5), we

assign a high inconsistency score to zi if it has low similarity to samples with the same class label,

and a low inconsistency score otherwise. Finally, the inconsistency measure of each constraint

(xi,x j) ∈ FL is obtained by simply taking the ε of the corresponding z. An overview of the

proposed constraint inconsistency quantification is depicted in Algorithm 2.

Algorithm 2: Quantifying constraint inconsistency.
Input: Pairwise constraints: (xi,x j) ∈ FL = {ML∪CL };

Output: Inconsistency scores of individual constraints (xi,x j) ∈ FL;

1 Quantifying process:

2 Generate a new sample set Z = {zi}
|FL|
i=1 with class labels C = {ci}

|FL|
i=1 from constraints FL (Equation (4.4));

3 Train a conventional classification forest with Z and C;

4 Compute an inconsistency score ε for each z or constraint (Equation (4.5)).

To remove potentially noisy constraints, we rank all the pairwise constraints based on their

inconsistency score in an ascending order. Given the rank list, we keep the top β% of the con-

straints for COP-RF training. In our study, we set β = 50 obtained by cross-validation.

After computing the affinity matrix by COP-RF (Equation (3.5)), it can be fed into any pair-

wise similarity based clustering methods, such as spectral clustering (Ng et al., 2002; Zelnik-

manor and Perona, 2004; Von Luxburg, 2007; Xiang and Gong, 2008), affinity propagation (Frey

and Dueck, 2007). Since the affinity matrix A is constraint-aware, these conventional cluster-

ing models are automatically transformed to conduct constrained clustering on data. For spec-

tral clustering, we generate as model input a k-nearest neighbour graph from A, a typical local

neighbourhood graph in spectral clustering literature (Von Luxburg, 2007). Following (Frey and

Dueck, 2007), we perform affinity propagation directly on A. In Section 4.3, we will show ex-

tensive experiments to demonstrate the effectiveness of the proposed COP-RF in constrained

clustering.

4.1.4 COP-RF Model Complexity Analysis

COP-trees in a COP-RF model can be trained independently in parallel, as in most of the random

forest models. For the worst case complexity analysis, here we consider a sequential training

mode, i.e. each tree is trained one after another with a 1-core CPU.

The learning complexity of a whole COP-RF can be examined from its constituent parts.

Specifically, it can be decomposed into tree- and node-levels as: (i) The complexity of learning a
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COP-RF is directly determined by individual COP-tree training costs. (ii) Similarly, the training

time of a single COP-tree relies on the costs of learning individual split nodes. Formally, given

a COP-tree t, we denote the set of all the internal nodes as Πt and the sample subset used for

training an internal node s ∈ Πt as S, the training complexity of s is then dtry(|S| − 1)u when

a greedy search algorithm is adopted, with dtry the number of features attempted to partition S

during training s, and u the complexity of conducting one data splitting operation. As shown in

Algorithm 1, the cost of a single data partition in a COP-tree includes two components: (1) the

validation of constraint satisfaction; and (2) the computation of information gain. Therefore, the

overall computational cost of learning a COP-RF can be estimated as

Ω =
τclust

∑
t

∑
s∈Πt

dtry|S|u = dtryu
τclust

∑
t=1

Φ(t), (4.6)

where

Φ(t) = ∑
s∈Πt

|S−1| (4.7)

is called tree fan-in, and τclust is the number of trees in a COP-RF. Note that the value of Φ(t)

depends on both the training sample size n and the tree topological structure, so it is difficult

to express in an explicit form if possible. In Section 4.3.4 we will examine the actual run time

needed for training a COP-RF.

4.2 Experimental Settings

Evaluation metrics We used the widely adopted Adjusted Rand Index (ARI) (Hubert and Ara-

bie, 1985) as evaluation metric. ARI measures the agreement between the cluster results and the

ground truth in a pairwise fashion, with higher values indicating better clustering quality in the

range [−1,1]. Throughout all experiments, we reported the ARI values averaged over 10 trials.

In each trial we generated a random pairwise constraint set from the ground truth cluster labels.

Implementation details The number of trees, τclust, in a COP-RF is set to 1000. In general,

we found that better results can be achieved by adding more trees, in line with the observation

in (Criminisi and Shotton, 2012). Each X t is obtained by performing n times of random selection

with replacement from the augmented data space of 2×n samples (see Section 2.2). The depth of

each COP-tree is governed by either constraint satisfaction, i.e. a node will stop growing if during

any attempted data partitioning constraint validation fails (see Algorithm 1), or the size of a node

equals to 1 (i.e. φ = 1). We set dtry (see Equation (2.2)) to
√

d with d the feature dimensionality
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Table 4.1: Dataset details.

Dataset # Clusters # Features # Instances

ERCe 6 2672 600

Ionosphere (Iono.) 2 34 351

Iris 3 4 150

Segmentation (Seg. ) 7 19 210

Parkinsons (Park.) 2 22 195

Glass 6 10 214

of the input data and employ a axis-aligned data separation (Criminisi and Shotton, 2012) as the

split function (see Equation (2.1)). More complex split functions, e.g. quadratic functions or

Support Vector Machine (SVM), can be adopted at a higher computational cost. We set k≈ n/10

(n is the dataset size) for the k-nearest neighbour graph construction in the constrained spectral

clustering experiments.

4.3 Experiments and Evaluations

4.3.1 Evaluation on Spectral Clustering

Datasets We utilised an intrinsically noisy video dataset from a publicly available web-camera

deployed in a university’s Educational Resource Centre (ERCe). This video dataset is chal-

lenging as it contains a wide range of physical events characterised by large changes in the

environmental set-up, participants, and crowdedness, as well as intricate activity patterns. It also

potentially contains large amount of noise in its high-dimensional feature space. The dataset con-

sists of 600 video clips with six possible clusters of events, namely Student Orientation, Clean-

ing, Career Fair, Gun Forum, Group Studying, and Scholarship Competition (see Figure 3.2c

for example images). To evaluate the effectiveness of our method in coping with diverse forms

of data with varying numbers of dimensions and clusters, we also selected five UCI benchmark

datasets (Asuncion and Newman, 2007), which have been widely employed to evaluate clustering

and classification techniques. The details of all datasets are summarised in Table 4.1.

Data feature representation For the UCI datasets, we used the original features provided. As

for the ERCe video data, we segmented a long video into non-overlapping clips (each consisting
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of 100 frames), from which a number of visual features were then extracted, including colour

features (RGB and HSV), local texture features (LBP) (Ojala et al., 2002), optical flow, image

features (GIST) (Oliva and Torralba, 2001), and person detections (Felzenszwalb et al., 2010).

The resulting 2672-D feature vectors of video clips may contain a large number of less infor-

mative dimensions, we performed PCA based linear transform on them and the first 30 PCA

components are used as the final feature representation. While it is known that random forest

is characterised in feature selection and handling noisy data, this pre-processing step allows to

obtain strong components/features by linear projection in addition to removing possibly noisy

ones, which is significant for random forests whose convergence rate depends largely on the

number of strong features (Biau, 2012). As empirically revealed, without this PCA transform,

weaker results by COP-RF can be yielded, possibly due to (1) there may be only a few number

of strong dimensions in the original visual features; (2) the dataset is small and thus only allows

shallow trees to be grown and in turn not sufficient in exploiting the informative features given

a high-dimensional data vector. For all compared methods, we utilised the same feature data,

which were linearly scaled to the range of [−1,1].

Baselines For comparison, we presented the results of the baselines2 as below:

1. Spectral Clustering (SPClust) (Ng et al., 2002): the conventional spectral clustering algo-

rithm without exploiting pairwise constraints.

2. COP-Kmeans (Wagstaff et al., 2001): a popular constrained clustering method based on

k-means. The algorithm attempts to satisfy all pairwise constraints during the iterative

refinement of clusters.

3. Spectral Learning (SL) (Kamvar et al., 2003): a constrained spectral clustering method

without constraint propagation. It extends SPClust by trivially adjusting the elements in a

data affinity matrix with 1 and 0 to satisfy must-link and cannot-link constraints, respec-

tively.

4. E2CP (Lu and Ip, 2010): a state-of-the-art constrained spectral clustering approach, in

which constraint propagation is achieved by manifold diffusion (Zhou et al., 2004). We

use the original code released by (Lu and Ip, 2010), with parameter setting as suggested

by the paper, i.e. we set the propagation trade-off parameter as 0.8.

2 We experimented the constrained clustering method in (Coleman et al., 2008) which turns out to
produce the worst performance across all datasets, and thus ignored in our comparison.
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Table 4.2: Comparing different methods by the area under the curve of ARI score against neigh-
bourhood size. Perfect oracles are assumed. Higher is better.

Method SPClust COP-Kmeans SL E2CP RF+E2CP COP-RF

Ionosphere 0.490 0.225 0.063 0.176 3.120 2.979

Iris 3.273 1.632 3.499 3.516 3.265 3.385

Segmentation 1.943 0.499 1.973 1.989 2.266 2.239

Parkinsons 0.677 0.114 0.811 0.787 1.082 1.403

Glass 1.121 0.394 1.162 1.210 1.602 2.015

ERCe 2.647 0.292 3.681 3.447 3.840 3.947

Average 1.692 0.526 1.865 1.854 2.529 2.661

5. RF+E2CP: we modified E2CP (Lu and Ip, 2010), i.e. instead of generating the data affinity

matrix with Euclidean-based measure, we use a conventional clustering forest (equivalent

to a COP-RF without constraints imposed and noisy constraint filtering mechanism) to

generate the affinity matrix. The constraint propagation is then performed using the orig-

inal E2CP-based manifold diffusion. This allows E2CP to enjoy a limited capability of

feature selection using a random forest model.

We carried out comparative experiments to (1) evaluate the effectiveness of different cluster-

ing methods in exploiting sparse but perfect pairwise constraints (Section 4.3.1), and (2) compare

their clustering performances in the case of having imperfect oracles to provide ill-conditioned

pairwise constraints (Section 4.3.1).

Evaluation on Sparse Constraint Propagation

In this experiment, we assume perfect oracles thus all the pairwise constraints agree with the

ground truth cluster labels. First, we examined the data affinity matrix after employing the avail-

able constraints, which may reflect how effective a constrained clustering method is. Figure 4.3

depicts some examples of affinity matrices produced by SL, E2CP, RF+E2CP, and COP-RF, re-

spectively. COP-Kmeans is excluded since it is not a spectral method. It can be observed that

COP-RF produces affinity matrices with more distinct block structure in comparison to its com-

petitors on the most cases. Moreover, the block structure becomes clearer when more pairwise

constraints are considered. The results demonstrate the superiority of the proposed approach in

propagating sparse pairwise constraints, leading to more compact and separable clusters.

Figure 4.4 reports the curves of ARI score against neighbourhood size by different methods
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Figure 4.3: Comparison of affinity matrices by different methods given a varying number (0.1∼
0.5%) of perfect pairwise constraints.



94 Chapter 4. Semi-Supervised Visual Data Structure Discovery with Sparse and Imperfect Pairwise Relationships

0.1 0.2 0.3 0.4 0.5

0

0.5

1

A
R

I

Percentage of constraints (%)

 

 

SPClust

E2CP
SL

COP−Kmeans

RF+E2CP
COP−RF

(a) Ionosphere

0.1 0.2 0.3 0.4 0.5

0

0.5

1

A
R

I

Percentage of constraints (%)

 

 

SPClust

E2CP
SL

COP−Kmeans

RF+E2CP
COP−RF

(b) Iris

0.1 0.2 0.3 0.4 0.5

0

0.5

1

A
R

I

Percentage of constraints (%)

 

 

SPClust

E2CP
SL

COP−Kmeans

RF+E2CP
COP−RF

(c) Segmentation

0.1 0.2 0.3 0.4 0.5

0

0.5

1

A
R

I

Percentage of constraints (%)

 

 

SPClust

E2CP
SL

COP−Kmeans

RF+E2CP
COP−RF

(d) Parkinsons

0.1 0.2 0.3 0.4 0.5

0

0.5

1

A
R

I

Percentage of constraints (%)

 

 

SPClust

E2CP
SL

COP−Kmeans

RF+E2CP
COP−RF

(e) Glass

0.1 0.2 0.3 0.4 0.5

0

0.5

1

A
R

I

Percentage of constraints (%)

 

 

SPClust

E2CP
SL

COP−Kmeans

RF+E2CP
COP−RF

(f) ERCe

Figure 4.4: ARI score comparison of clustering performance between different methods given a
varying number of perfect pairwise constraints.
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along with varying numbers of pairwise constraints (ranging in 0.1 ∼ 0.5% of total constraints

n(n−1)
2 where n is the number of data samples). The overall performance of various methods can

be quantified by the area under the curves (AUC). This ideal/full AUC area is the integral of best

accuracy (i.e. ARI = 1) over all 5 constraint percentages (or 4 durations) on the X-axis, which is

4. The results are reported in Table 4.2. It is evident from the results (Figure 4.4 and Table 4.2)

that on most datasets, the proposed COP-RF outperforms other baselines, by as much as >400%

against COP-Kmeans and >40% against the state-of-the-art E2CP in averaged area under the ARI

score curve. This is in line with our previous observations on the affinity matrices (Figure 4.3).

Unlike E2CP that relies on the conventional Euclidean-based affinity matrix that considers all

features for constraint propagation, COP-RF propagate constraints via discriminative subspaces

(Section 4.1.2), leading to its superior clustering results. Additionally, we examined and com-

pared the number of same-cluster sample pairs consistent with the ground truth. Specifically,

there are a total of 89088 true same-cluster pairs over all the six datasets, among which COP-RF

and RF+E2CP discovered 77637 and 75283, respectively. In other words, the proposed COP-RF

found 3.13% relatively more truth pairs than RF+E2CP.

We now examine and discuss the performance of other baselines. The poorest results are

given by COP-Kmeans on majority datasets, beyond which some incomplete curves are observed

in Figure 4.4 as the model fails to converge (early termination without a solution) as more con-

straints are introduced into the model. On the contrary, COP-RF is empirically more stable

than COP-Kmeans, as COP-RF casts the difficult constraint optimisation task into smaller sub-

problems to be addressed by individual trees. This characteristic is reflected in Equation (4.2),

where each tree in a COP-RF only needs to consider a subset of constraints FLt ⊂ FL.

SPClust’s performance is surprisingly better than COP-Kmeans although it does not utilise

any pairwise constraint. This may be because of: (1) in comparison to the conventional k-

means, SPClust is less sensitive to noise as it partitions data in a low-dimensional spectral do-

main (Von Luxburg, 2007), and (2) the limited ability of COP-Kmeans in exploiting pairwise

constraints. SL performs slightly better than SPClust through switching the pairwise affinity

value in accordance to must-link and cannot-link constraints. Due to the lack of constraint prop-

agation, SL is less effective in exploiting limited supervision information when compared to

propagation based models.

Better results are obtained by constraint propagation based E2CP. Nevertheless, the state-of-
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the-art E2CP is inferior to the proposed COP-RF, since its manifold construction still considers

the full feature space, which may be corrupted by noisy features. We observe in some cases,

such as the challenging ERCe dataset, the performance of E2CP is worse than the naive SL

method that comes without constraint propagation. This result suggests that propagation could

be harmful when the feature space is noisy. The variant modified by us, i.e. RF+E2CP, em-

ploys a conventional clustering forest ((Blockeel et al., 1998; Liu et al., 2000)) to generate the

data affinity matrix. This allows E2CP to take advantage of a limited capability of forest-based

feature selection, and better results are obtained compared with the pure E2CP. Nevertheless,

RF+E2CP’s performance is generally poorer than COP-RF’s (see Table 4.2). This is because the

feature selection of the ordinary forest model is less effective than that of COP-RF, which jointly

considers feature-based information gain maximisation and constraint satisfaction.

To further highlight the superiority of COP-RF, we show in Figure 4.6 the improvement

of area under the ARI score curve achieved by COP-RF relative to other methods (dark bars).

Clearly while COP-RF rarely performs noticeably worse than the others, the potential improve-

ment is large.

Evaluation on Propagating Noisy Constraints

In this experiment, we assume imperfect oracles thus pairwise constraints are noisy. We con-

duct two sets of comparative experiments: (1) We deliberately introduced a fixed ratio (15%)

of random invalid constraints into the perfect constraint sets as used in the previous experiment

(Section 4.3.1). This is to simulate the annotation behaviour of imperfect oracles for the compar-

ison of our approach with existing models. (2) Given a set of random constraints sized 0.3% of

the total constraint samples, we varied the quantity of random noisy constraints, e.g. from 5% to

30%. This allows us to further compare the robustness of different models against mistaken pair-

wise constraints. In both experiments, we repeated the same experimental protocol as discussed

in Section 4.3.1.

A fixed ratio of noisy constraints In this evaluation, we examined the performance of different

models when 15% of noisy constraints are included in the given constraint sets. The performance

comparison are reported in Figure 4.5 and Table 4.3 and the relative improvement in Figure 4.6.

It is observed from Table 4.3 that in spite of the imperfect oracle assumption, COP-RF again

achieves better results than other constrained clustering models on most datasets as well as the

best average clustering performance across datasets, e.g. >300% increase against COP-Kmeans
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Figure 4.5: ARI score comparison of clustering performance between different methods given a
fixed (15%) ratio of invalid constraints.
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Table 4.3: Comparing different methods by the area under the ARI score curve against neigh-
bourhood size. A fixed ratio (15%) of invalid pairwise constraints are involved. Higher is better.

Method SPClust COP-Kmeans SL E2CP RF+E2CP COP-RF

Ionosphere 0.490 0.146 0.192 0.276 2.851 2.606

Iris 3.273 1.590 3.454 3.416 2.988 3.067

Segmentation 1.943 0.433 1.877 1.913 2.039 2.109

Parkinsons 0.677 0.067 0.786 0.780 0.910 1.102

Glass 1.121 0.679 1.114 1.159 1.244 1.734

ERCe 2.647 0.328 0.368 0.832 3.119 3.705

Average 1.692 0.540 1.299 1.396 2.192 2.387

Table 4.4: Evaluating the generic effect of the proposed constraint inconsistency measure by
AUC. A fixed ratio (15%) of invalid pairwise constraints are involved. Higher is better.

Dataset Ionosphere Iris Segmentation Parkinsons Glass ERCe Average

RF+E2CP 2.851 2.988 2.039 0.910 1.244 3.119 2.192

RF+E2CP (Filtered) 2.568 3.003 2.086 0.915 1.350 3.508 2.238

COP-RF 2.606 3.067 2.109 1.102 1.734 3.705 2.387

and >70% increase against E2CP. Furthermore, Figure 4.6 also shows that COP-RF maintains

encouraging performance given noisy constraints, in some cases such as the challenging ERCe

video dataset even larger improvements are obtained over E2CP and other models, compared

with the perfect constraint case.

We further evaluated the generic effect of our constraint inconsistency measure algorithm

for baseline methods, e.g. RF+E2CP. The results are presented in Table 4.4. It is observed that

by filtering potentially constraints, RF+E2CP is able to produce more accurate clustering results

in most cases, with the specific improvement differs over datasets. This suggests the general

usefulness of our constraint inconsistency measure. Overall, the proposed COP-RF still achieves

the best average performance.

Varying ratios of noisy constraints Noisy constraints bring negative impact on the clustering

results, as shown in the above experiment. We wish to investigate how constrained clustering

models would perform under different ratios of noisy constraints. To this end, we evaluated the

robustness of compared models against different amounts of noisy constraints involved in sets of

0.3% out of the full pairwise constraints. Figure 4.7 and Table 4.5 show that COP-RF once again
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(a) COP-RF over SPClust (Ng et al., 2002)
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(b) COP-RF over COP-Kmeans (Wagstaff et al., 2001)
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(c) COP-RF over SL (Kamvar et al., 2003)
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(d) COP-RF over E2CP (Lu and Ip, 2010)

−10

0

10

20

30

40

Im
pr

ov
em

en
t (

%
)

Io
no Iri

s
Seg

Par
k

Glas
s

ERCe 

 

Perfect
Fixed noise ratio
Varying noise ratio

(e) COP-RF over RF+E2CP

Figure 4.6: The improvement of AUC achieved by COP-RF relative to baseline methods. Dark
bars: when perfect constraints are provided. Grey bars: when 15% of the total pairwise constraint
samples are noisy. White bars: when varying ratios (5∼ 30%) of noisy constraints are provided.
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Figure 4.7: ARI score comparison of clustering performance between different constraint propa-
gation methods given varying ratios of invalid constraints.



4.3. Experiments and Evaluations 101

5 10 15 20 25 30

0

50

100

A
R

I 
im

pr
ov

em
en

t (
%

)

Ratio of invalid constraints (%)

 

 

over RF+E2CP

over  E2CP

(a) Ionosphere

5 10 15 20 25 30

0

50

100

A
R

I 
im

pr
ov

em
en

t (
%

)

Ratio of invalid constraints (%)

 

 

over RF+E2CP

over  E2CP

(b) Iris

5 10 15 20 25 30

0

20

40

60

80

A
R

I 
im

pr
ov

em
en

t (
%

)

Ratio of invalid constraints (%)

 

 

over RF+E2CP

over  E2CP

(c) Segmentation

5 10 15 20 25 30
0

10

20

30

40

50
A

R
I 

im
pr

ov
em

en
t (

%
)

Ratio of invalid constraints (%)

 

 

over RF+E2CP

over  E2CP

(d) Parkinsons

5 10 15 20 25 30
0

20

40

60

A
R

I 
im

pr
ov

em
en

t (
%

)

Ratio of invalid constraints (%)

 

 

over RF+E2CP

over  E2CP

(e) Glass

5 10 15 20 25 30
0

50

100

A
R

I 
im

pr
ov

em
en

t (
%

)

Ratio of invalid constraints (%)

 

 

over RF+E2CP

over  E2CP

(f) ERCe

Figure 4.8: ARI relative improvement of COP-RF over baseline constraint propagation models
given varying ratios of noisy constraints in 0.3% out of the full constraints. Higher is better.
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Table 4.5: Comparing different methods by the area under the ARI score curve against neigh-
bourhood size. Varying ratios (5 ∼ 30%) of invalid pairwise constraints are involved. Higher is
better.

Method SPClust COP-Kmeans SL E2CP RF+E2CP COP-RF

Ionosphere 0.536 0.000 0.253 0.314 3.172 3.399

Iris 4.341 2.507 4.339 4.352 3.659 3.684

Segmentation 2.462 0.514 2.348 2.336 2.481 2.605

Parkinsons 0.979 0.108 0.957 0.948 0.975 1.338

Glass 1.421 0.343 1.380 1.477 1.558 2.020

ERCe 3.160 0.000 0.159 1.320 3.682 4.331

Average 2.150 0.579 1.573 1.791 2.588 2.896

outperforms the competitor models on most datasets. As shown in Figure 4.8, the performance

improvement of COP-RF over constraint propagation baselines maintains over varying degrees

of noisy constraints in most cases. Specifically, COP-RF’s average relative improvements over

E2CP and RF+E2CP across all datasets are 63% and 2% given 5% noisy constraints whilst 48%

and 8% given 30% noise.

4.3.2 Evaluation on Affinity Propagation

To demonstrate the generalisation of our COP-RF model, we showed its effectiveness on affinity

propagation, an exemplar-location based clustering algorithm (Frey and Dueck, 2007). Similarly,

ARI was used as performance evaluation metrics3.

Dataset We selected the same face image set as (Frey and Dueck, 2007), which was extracted

from the Olivetti database. Particularly, this dataset includes a total of 900 grey images with reso-

lution of 50×50 from 10 different persons, each with 90 images obtained by Gaussian smoothing

and rotation/scaling transformation. It is challenging to distinguish these faces (Figure 4.9) due

to large variations in lighting, pose, expression and facial details (glasses / no glasses). The

features of each image are normalised pixel values with mean 0 and variance 0.1.

Baselines Typically, negative squared Euclidean distance is used to measure the data similarity.

Here, we compared the COP-RF model against

3 Average Squared Error (ASE) is adopted in (Frey and Dueck, 2007) as evaluation metric. This
metric requires all comparative methods to produce affinity matrices based on a particular type of sim-
ilarity/distance function. In our experiments ASE is not applicable since distinct affinity matrices are
generated by different comparative methods.
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Figure 4.9: Example face images from 10 different identities. Two distinct individuals are in-
cluded in each row, each with 10 face images.
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Figure 4.10: Comparison of different methods on clustering faces with affinity propagation.

1. Eucl: the Euclidean metric;

2. Eucl+Links: we encoded the information of pairwise constraints into the Euclidean-metric

based affinity matrix by making the similarity between cannot-linked pairs be minimal and

the similarity between must-linked pairs be maximal, similar to (Kamvar et al., 2003);

3. RF: the conventional clustering Random Forest (Breiman, 2001) so that the pairwise sim-

ilarity measures can benefit from feature selection;

4. RF+Links: analogues to Eucl+Links but with the affinity matrix generated by the clustering

forest.

In this experiment, we used the perfect pairwise links (0.1 ∼ 0.5%) as constraints, similar

to Section 4.3.1. The results are reported in Figure 4.10. It is evident that the feature selection

based similarity (i.e. RF) is favourable over the Euclidean metric that considers the whole feature

spaces. This observation is consistent with the earlier findings in Section 4.3.1. Manipulating

affinity matrix naively using sparse constraints helps little in performance, primarily due to the

lack of constraint propagation. The superiority of COP-RF over all the baselines justifies the ef-

fectiveness of the proposed constraint propagation model in exploiting constraints for facilitating

cluster formation. Also, obviously larger performance margins are acquired when one increases
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Figure 4.11: Quantifying constraint inconsistency by using the proposed algorithm on Ionosphere
(top) and Glass (bottom). See details in Section 4.1.3. High values suggest large probabilities of
being invalid constraints.

the amount of pairwise constraints, further suggesting the effectiveness of constraint propagation

by the proposed COP-RF model.

4.3.3 Evaluation on Constraint Inconsistency Measure

The superior performance of COP-RF in handling imperfect oracles can be better explained by

examining more closely the capability of our constraint inconsistency quantification algorithm

(Equation (4.5)). Figure 4.11 shows the inconsistency measures of individual pairwise constraints

on Ionosphere and Glass datasets. It is evident that the median inconsistency scores induced by

invalid/noisy constraints are much higher than that by valid ones.

4.3.4 Computational Cost Analysis

In this section, we reported the computational complexity of our COP-RF model. Time was

measured on a Linux machine of Intel Quad-Core CPU @ 3.30GHz and 8.0GB with C++ imple-

mentation of COP-RF. Note that only one core was utilised during the model training procedure.

Time analysis was conducted on the ERCe dataset using the same experimental setting as stated
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in Section 4.3.1. A total of 60 repetitions were performed, each utilising 0.3% out of the full con-

straints with varying (5%∼ 30%) amounts of invalid ones. On average, training a COP-RF takes

213 seconds. Note that the above process can be conducted in parallel in a cluster of machines to

speed up the model training.

4.4 Summary

This chapter has presented a semi-supervised visual data structure discovery or constrained clus-

tering framework to (1) propagate sparse pairwise constraints effectively, and (2) handle noisy

constraints generated by imperfect oracles. There has been little work that considers these two

closely-related challenging problems jointly. The proposed COP-RF model is novel in that it

propagates constraints more effectively via discriminative feature subspaces. This is in contrast

to existing methods that perform propagation considering the whole feature space, which may

be misled by noisy features. Effective propagation regardless of the constraint quality could lead

to poor clustering results. Our work addresses this crucial issue by formulating a statistical al-

gorithm to quantify the inconsistency of constraints and effectively perform selective constraint

propagation. The model is flexible in that it generates a constraint-aware affinity matrix that can

be used by the existing pairwise similarity measure based clustering methods for readily per-

forming constrained data clustering, e.g. spectral clustering, affinity propagation. Experimental

results demonstrated the general effectiveness and advantages of the proposed structure analysis

approach over the state-of-the-art methods on both visual and non-visual datasets.

The cluster structure analysis models presented in Chapters 3 and 4 are limited to effectively

coping with a single source, e.g. visual data alone, at a time. However, other data sources (e.g.

traffic condition, weather) may be readily available in the real surveillance scenarios, together

with the widely exploited visual source. Considering such multi-source data simultaneously

and learning them jointly in a unified way may bring additional benefits to visual data struc-

ture discovery, e.g. because these sources are mutually complementary, even through additional

challenges may arise due to the large disparity between sources. The next chapter solves a multi-

source data structure discovery problem by developing a principled video cluster analysis method

capable of combining and learning effectively heterogeneous data sources. The strength of that

multi-source video clustering approach is validated in semantically summarising surveillance

video streams, a critical video surveillance application.



106



107

Chapter 5

Multi-Source Data Structure Discovery for

Video Summarisation

The previous two chapters describe visual data structure analysis and discovery by unsupervised

and semi-supervised clustering. The target data considered by both models are assumed to be

drawn from a single data source, e.g. surveillance camera. On the other hand, there may exist

a number of auxiliary non-visual data sources that provide complementary perceptions to visual

source in video surveillance. As discussed in Section 1.2, the latent correlation between visual

and non-visual data may help video data structure discovery in spite of the intrinsic challenges

of jointly learning these heterogeneous data with great difference in representation and statistics.

This chapter presents a multi-source data structure discovery framework capable of perform-

ing joint learning over multiple heterogeneous visual and non-visual source data (Figure 5.1).

Specifically, this approach seamlessly uncovers latent correlations among heterogeneous types

of sources, despite the non-trivial heteroscedasticity and dimensionality discrepancy problems.

Additionally, the proposed model is robust to partial or missing non-visual information. The

effectiveness of this video structure analysis method was demonstrated in performing semantic

video summarisation on two crowded public surveillance datasets.

The organisation of this chapter is as follows. Section 5.1 explains the details of the proposed

multi-source data clustering model The following is video summarisation (Section 5.2). After

describing the datasets and experimental settings (Section 5.3), experiments and evaluations of

the proposed model are provided in Section 5.4. A summary is given in Section 5.5.
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Figure 5.1: Overview of the proposed multi-source driven video structure discovery method and
its application on video summarisation. We consider a novel setting where multiple heteroge-
neous sources are present during the model training stage. The proposed Multi-Source Clustering
Forest discovers and exploits latent correlations among heterogeneous visual and non-visual data
sources both of which can be inaccurate and not trustworthy. In deployment, our model uncovers
visual content structures and infer tags on previously-unseen video data for video summarisation.

5.1 Multi-Source Data Structure Discovery

Video summarisation by content abstraction aims to generate a compact summary composed

of key/interesting content from a long previously-unseen video for achieving efficient holistic

understanding (Truong and Venkatesh, 2007). A common way to establish a video summary is

by extracting and then combining a set of key frames or shots. These key contents are usually

discovered and selected from clusters of video frames or clips (Truong and Venkatesh, 2007).

In this study, we follow the aforementioned approach but consider not only visual content

of video, but also a large corpus of non-visual data collected from heterogeneous independent

sources (Figure 5.2(a)). Specifically, through learning latent structure of multi-source data (Fig-

ure 5.2(b-c)), we wish to make reference to and/or impose non-visual semantics directly into

video clustering without any human manual annotation of video data (Figure 5.2(d)). Formally,

we consider the following different data sources that form a multi-source input feature space:

Visual features We segment a training video into n either overlapping or non-overlapping clips,

each of which has a duration of tclip seconds. We then extract a d-dimensional visual descriptor

from the ith video clip denoted by xi = (xi,1, . . . ,xi,d) ∈ Rd, i = 1, . . . ,n.

Non-visual data Non-visual data are collected from heterogeneous independent sources. We

collectively represent m types of non-visual data associated with the i-th clip as yi =(yi,1, . . . ,yi,m)∈
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Figure 5.2: Multi-source model training stage: The pipeline of performing multi-source clus-
tering on visual and non-visual data with the proposed Multi-Source Clustering Forest (MSC-
Forest).

Rm, i = 1, . . . ,n. Note that any (or all) dimension of yi may be missing.

We aim at formulating a unified clustering model capable of coping with the few challenges

(see Section 1.2). The model needs be unsupervised since no ground truth is assumed. To

mitigate the heteroscedasticity and dimension discrepancy problems, we require a model that can

isolate the very different characteristics of visual and non-visual data, yet can still exploit their

latent correlation in the clustering process. To handle noisy data, feature selection is necessary.

In light of the above demands, we choose to start with the clustering random forest (Breiman,

2001; Liu et al., 2000; Shi and Horvath, 2006) due to (1) unsupervised information gain optimi-

sation thus requiring no ground truth labels; (2) its flexible objective function for facilitating the

modelling of multi-source data as well as the processing of missing data; (3) and its implicit fea-

ture selection mechanism for handling noisy features. Nevertheless, the conventional clustering

forest is not well suited to solve these challenges since it expects a full concatenated representa-

tion as input during both model training and deployment. This does not conform to the assump-

tion of only visual data being available during model deployment for previously-unseen videos.

Moreover, due to its uniform variable selection mechanism (Breiman, 2001) (e.g. each feature di-

mension has the same probability to be selected as a candidate optimal splitting variable), there is

no principled way to ensure balanced contribution from individual visual and non-visual sources

in the node splitting process. To overcome these limitations, we propose a Multi-Source Cluster-

ing Forest (MSC-Forest) model by introducing an objective function allowing joint optimisation

of individual information gains of different sources.
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5.1.1 Multi-Source Clustering Forest

Conventional clustering forests assumes only homogeneous data sources such as pure imagery-

based features. In contrast, the proposed Multi-Source Clustering Forest can take heterogeneous

sources as input. In particular, the proposed model uses visual features as splitting variables to

grow Multi-Source Clustering trees (MSC-trees) as in Equation (2.1), and exploits non-visual

information as additional data to help determining the ϑϑϑ = [ϑ1,ϑ2]. In this way, auxiliary non-

visual information is used, in addition to visual data, to guide the tree formation.

Formally, we define a joint information gain function for node splitting during training MSC-

trees as:

∆ψ = αv
∆ψv

ψv0︸ ︷︷ ︸
visual

+
m

∑
j=1

α j
∆ψ j

ψ j0︸ ︷︷ ︸
non-visual

+αt
∆ψt

ψt0︸ ︷︷ ︸
temporal

. (5.1)

Similar to Equation (2.3), the optimal parameter corresponds to the split with the maximal ∆ψ .

This formulation defines the best data split across the joint space of multi-source data, beyond

visual domain alone. All the terms in Equation (5.1) are interpreted as below.

Visual term ∆ψv = ∆ψclass (Equation (2.3)) denotes the information gain in visual domain.

Precisely, this measure is computed from the pseudo class labels. Therefore, it reflects the visual

data structure characteristics given that the pseudo data samples are drawn from the marginal

feature distributions (Section 2.2). In this study we utilise the Gini impurity ψgini (Breiman

et al., 1984) to estimate ∆ψclass by setting ψ = ψgini in Equation (2.3) due to its simplicity and

efficiency. High value in ψgini (Equation (2.4)) indicates pure category distribution.

Non-visual term This is a new term we introduce as auxiliary information on visual term. More

specifically, ∆ψ j denotes the information gain in the j-th non-visual data. A non-visual source

can be either categorical or continuous. For a categorical non-visual source, similar to visual term

we use the Gini impurity ψgini (Equation (2.4)) as its data split measure criterion. In the case of

non-visual source with continuous values, we adopt least squares regression ψlsr (Equation (2.6))

to enforce continuity in the clustering space,

Temporal term We add a temporal smoothness gain ∆ψt (measured with ψlsr (Equation (2.6)))

to encourage temporally adjacent video clips to be grouped together. This temporal information

helps in mining visual data structure.

The information gain by different sources may live in very disparate ranges due to the differ-

ent natures of source, each term of Equation (5.1) is therefore normalised by its initial data impu-
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rity denoted by ψv0, ψ j0, and ψt0. These impurities are obtained at the root node of every MSC-

tree. The source weights are denoted by αv, αi, and αt accordingly, holding αv+∑
m
i=1 αi+αt = 1.

We set αv = 0.5 obtained by cross-validation. A detailed analysis on αv is given in Section 5.4.2.

For non-visual and temporal information, we uniformly assign αt = αi =
1−αv
m+1 since their impor-

tance is not known in prior, with m the number of non-visual sources.

Role of different source data Given the main role and much more stable provision of the vi-

sual source in video understanding, non-visual data are regarded as auxiliary information over

visual source. During the training of MSC-Forest, the split functions (Equation (2.1)) are de-

fined on visual features, but ϑϑϑ = [ϑ1,ϑ2] is collectively determined by visual features and the

associated non-visual as well as temporal information (i.e. the non-visual and temporal term in

Equation (5.1)). Alternatively, one can think of that the main visual data source is ‘completely-

visible’ to the MSC-Forest since it is needed during both forest training and evaluation, whilst

the auxiliary non-visual data are ‘half-visible’ in that they are exploited as side information for

embedding their knowledge into the MSC-tree growing during model training but not required

any more during the MSC-Forest evaluation (due to their restricted availability as explained in

Section 1.2).

Joint information gain We interpret the intrinsic advantage of the joint information gain de-

fined by Equation (5.1), with comparison against the naı̈ve feature concatenation strategy. With

the latter scheme, the information gain (Equation (2.3)) is directly estimated in a heterogeneous

joint space where visual, non-visual and temporal data are mixed together. This would suf-

fer from the heteroscedasticity problem, as discussed in Section 1.2. Instead, Equation (5.1)

overcomes this challenge by modelling different sources via separate information gain terms,

resulting in a more balanced exploitation of multi-source data. In this way, the proposed joint

information gain of multi-source data encourages more appropriate visual data separation both

visually and semantically. This formulation is the essential contribution of our proposed MSC-

Forest model.

Merits of MSC-Forest The formulation in Equation (5.1) brings two unique benefits: (A) Thanks

to the information gain optimisation, the influences of visual and non-visual domains on data

partitioning can be better balanced compared to naı̈ve feature concatenation. (B) Equation (2.2)

and Equation (5.1) together provide a mechanism to discover strongly correlated heterogeneous

source pairs and to exploit joint information gain of such correlated pairs for data partitioning. In
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other words, only selective visual features (Equation (2.2)) that yield high information gain col-

lectively with non-visual information (Equation (5.1)) will contribute to the MSC-tree growing.

Such a mechanism cannot be realised using the conventional clustering forests (Breiman, 2001;

Liu et al., 2000). We shall demonstrate the multi-source correlation discovered by our proposed

MSC-Forest in experiments (Section 5.4.4).

Coping with Partial/Missing Non-Visual Data

We introduce an adaptive weighting mechanism to dynamically deal with the inevitable par-

tial/missing non-visual data1. Specifically, when some non-visual data are missing and suppose

the missing proportion of the i-th non-visual type in the training set Xt for MSC-tree t is δi, we

reduce its weight from αi to αi−δiαi. The total reduced weight ∑i δiαi is then distributed evenly

to the weights of all sources to ensure αv +∑
m
i=1 αi +αt = 1. This linear adaptive weighting

method produces satisfactory results in our experiments.

MSC-Forest Model Complexity Analysis

The upper-bound learning complexity of a whole MSC-Forest can be examined in a similar way

as the COP-RF model (Section 4.1.4). Clearly, the cost u for conducting a data split in a MSC-

Forest is larger than that of conventional forests since we need to compute additional information

gains of non-visual and temporal information (Equation (5.1)). On the other hand, the value of

Φ(t) (Equation (4.7)) primarily relies on the tree structure/topological characteristics (Martin,

1997): a balanced and shallower tree has smaller Φ(t), thus the tree shall be more efficient in

training and inference on previously-unseen samples, in that the paths from the root to leaf nodes

are relatively shorter. In Section 5.4.5, we will show that the additional non-visual information

encourages more balanced and shallower decision trees than learning from single visual source

alone.

5.1.2 Latent Multi-Source Data Structure Discovery

Given heterogeneous feature spaces involving visual and non-visual data, it is non-trivial to dis-

cover their underlying group structures, due to the heteroscedasticity problem aforementioned

(Section 1.2). To this end, MSC-Forest is particularly designed to principally extract and com-

1 There exist missing data filling algorithms utilised in conventional random forests, e.g. for the miss-
ing value of one feature in one class, the median value (continuous) or the most frequent category (discrete)
of this feature over the current class can be used as the estimation (Breiman, 2003). Whilst a similar strat-
egy is possible to apply on our MSC-Forest, we consider an alternative by proposing an effective adaptive
weighting algorithm in order not to further introduce noisy training data.
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bine the information from multiple individual sources so as to more accurately measure data pair-

wise similarity relations, which in turn facilitates existing graph-based clustering algorithm, e.g.

spectral clustering, to eventually reveal the latent data clusters. Figure 5.2 depicts the pipeline of

our video data clustering approach based on the learned MSC-Forest.

The spectral clustering (Zelnik-manor and Perona, 2004) groups data using eigenvectors of an

affinity matrix derived from the data. The goodness of the resulting cluster formation primarily

relies on the quality of the input affinity matrix which reflects and embeds the essential data

structures (Zhu et al., 2014). With ClustRF-Bi (Section 3.1.1), we can induce the data affinity

matrix from a learned MSC-Forest. Intuitively, the multi-source learning nature of MSC-Forest

renders its data similarity measure sensitive to the joint knowledge from diverse source data.

Subsequently, we symmetrically normalise A to obtain Anorm =D−
1
2 AD−

1
2 , where D denotes

a diagonal degree matrix with elements Di,i = ∑
n
j=1 Ai, j. Given Anorm, we perform spectral clus-

tering to discover the latent clusters of training clips with the number of clusters automatically

determined through analysing the eigenvector structure (Zelnik-manor and Perona, 2004). Each

training clip xi is then assigned to a cluster ci ∈C, with C the cluster index set.

The learned clusters group similar clips both visually and semantically, with each of the

clusters associated with a unique distribution for each non-visual data (Figure 5.2(d)). We denote

the distribution of the ith non-visual data type of the cluster c as

p(yi|c)∝∑x j∈Xc
p(yi|x j), (5.2)

where Xc represents the set of training samples in c. These multi-source data clusters form a

component of our multi-source model (Figure 5.1).

5.1.3 Quantifying Correlation between Sources

Quantifying latent correlation between different sources gives insights into their interactions in

forming coherent video groupings. This can be done once a MSC-Forest is trained, e.g. all trees

have been grown, with the split function in every split node fixed. The primary purpose is to

illustrate what correlations between different data sources have been discovered and learned by

our MSC-Forest during the training stage, rather than the model learning or optimisation process.

To quantify between-source correlation, we first estimate correlation among their constituent

features.
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Visual-visual feature correlation Visual-visual feature correlation is typically quantified based

on their similarity in inducing split node partitions L and R (Breiman, 2001). In particular, given

a split node s and its final optimal split, say Lν̂ and Rν̂ by a visual feature ν̂ . From Equation (2.2),

we recall that this feature ν̂ is selected out from dtry randomly sampled features { f1, . . . , fdtry}.

Let ν ∈ { f1, . . . , fdtry} \ ν̂ and its optimal left-right partitions be Lν and Rν respectively. The

node-level correlation between features ν̂ and ν is then defined as

λs(ν̂ ,ν) =
pν̂ − (1− |Lν̂∩Lν |

|Lν̂∪Rν̂ |
− |Rν̂∩Rν |
|Lν̂∪Rν̂ |

)

pν

, (5.3)

where pν̂ = min( |Lν̂ |
|Lν̂ |+|Rν̂ |

, |Rν̂ |
|Lν̂ |+|Rν̂ |

), thus pν̂ ∈ (0, 1
2 ]. With Equation (5.3) we assign a strong

correlation (λs(ν̂ ,ν) = 1) to a feature pair (ν̂ , ν) if they produce the same data partition, whilst

a weak correlation (λs(ν̂ ,ν)≤−1) when their partitions have no overlaps. For simplicity we let

λs(ν̂ ,ν) = max(λs(ν̂ ,ν),0) such that λs(ν̂ ,ν) lies in the range of [0,1]. The final visual-visual

feature correlation λ (ν̂ ,ν) is obtained via

λ (ν̂ ,ν) =
1

τclust

τclust

∑
t=1

 1
nt
(ν̂ ,ν)

nt
(ν̂ ,ν)

∑
k

λs(ν̂ ,ν)

 , (5.4)

where nt
(ν̂ ,ν) refers to the number of sampling co-occurrences of a feature pair (ν̂ , ν) during the

splitting process of a MSC-tree t.

Visual-nonvisual feature correlation Recall that visual and non-visual data play different

roles in our MSC-Forest, e.g. the former as splitting features whereas the later as auxiliary

information. This difference makes the above equations not applicable to the computation of

visual-nonvisual feature correlation since no data split is associated with non-visual features. In-

stead, we adopt information gain as the visual-nonvisual feature correlation metric. This metric

is appropriate in that it also reflects the intrinsic mutual interaction between visual and non-visual

features during joint information gain optimisation (Equation (5.1)). Formally, we quantify the

node-level correlation between the optimal splitting visual feature ν̂ and a non-visual feature ω

as λs(ν̂ ,ω) = ∆ψω

ψω0
(the non-visual term of Equation (5.1)). The final visual-nonvisual feature

correlation λ (ν̂ ,ω) is computed similarly by Equation (5.4).

Correlation between sources Given between-feature correlation, the final correlation between

any two sources Ssrc
i and Ssrc

j can then be estimated through

ϕ(Ssrc
i ,Ssrc

j ) =
1

|Ssrc
i ||Ssrc

j | ∑
νi∈Ssrc

i ,ν j∈Ssrc
j

λ (νi,ν j). (5.5)
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Figure 5.3: The pipeline of our multi-source referenced key-clips detection algorithm. (a) Chan-
nel a clip x∗ into MSC-trees. (b) Search tree-level nearest clusters of x∗, hollow circle denotes
cluster. (c) Predict the final nearest cluster. A red ? depicts a representative previously-unseen
clip.

5.2 Semantic Video Summarisation

In Section 5.1 we presented multi-source data clustering by learning a Multi-Source Clustering

Forest (MSC-Forest), resulting in a consistent cluster formation. Once this multi-source model

is learned, it can be deployed for semantic video summarisation. Specifically, we follow the

established approach of summarising videos by clustering (Truong and Venkatesh, 2007) but

with the introduction of two noticeable differences in our method.

Firstly, our video summary is multi-source referenced. Specifically, the MSC-Forest is trained

on heterogeneous sources, its optimised split functions {h} (Equation (2.1)) therefore implicitly

capture the complex multi-source structures. When one deploys the trained model for content

summarisation of previously-unseen video data, the model only needs to take visual inputs with-

out any non-visual data sources. And yet it is able to induce video content partitions that not

only correspond to visual feature similarities, but also are consistent with meaningful non-visual

semantic interpretations. Secondly, our video summary is automatically tagged as the result of

model inference. This is made possible through exploiting the non-visual data distributions as-

sociated with the discovered clusters on the training data (see Equation (5.2) and Figure 5.2(d)).

Below we discuss the details of generating a semantic video summary.

5.2.1 Key-Clip Extraction and Composition

Suppose we are given a previously-unseen surveillance video footage without meta-data tag-

ging/script. The video is pre-processed by segmenting it into a set of n∗ either overlapping or

non-overlapping short clips {x∗i }n∗
i=1 with equal duration. Our aim is to first assign cluster mem-
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bership to each previously-unseen clip using the trained multi-source model, and then select

key-clips from the resulting clusters2. The chosen key-clips are then chronologically ordered to

construct a video summary.

Clustering previously-unseen video clips Inferring cluster memberships of previously-unseen

clips is an intricate task. A straightforward method is to assign cluster membership by identify-

ing the nearest cluster c∗ ∈ C to a sample x∗, where C represents all clusters we discovered in

Section 5.1.2. However, we found this hard cluster assignment strategy susceptible to outliers in

C and source noise. To mitigate this problem, we consider an alternative approach by utilising

the MSC-Forest tree structures for soft cluster assignment. This is more robust to either source

noise or outliers.

Figure 5.3 depicts the soft cluster assignment pipeline. First, we trace the leaf lt(x∗) of

each tree t where x∗ falls by channelling x∗ into the tree (Figure 5.3(a)). This step is critical

as it establishes a connection for x∗ with an appropriate training subset Xlt(x∗) using the split

functions {h}t optimised by multi-source data. Here, Xlt(x∗) represents the set of training samples

associated with lt(x∗). The set is consistent with x∗ both visually and semantically since they

encompass identical response w.r.t. {h}t .

Second, we retrieve the cluster membership Ct = {ci} ⊂C of Xlt(x∗), against which we search

for the tree-level nearest cluster c∗t for x∗ (Figure 5.3(b)) via

c∗t = argminc∈Ct
||x∗−µc||, (5.6)

with t the tree index, and µc the centroid of cluster c, estimated as

µc =
1
|Xc| ∑

xi∈Xc

xi, (5.7)

where Xc represents the set of training samples in c. Performing nearest cluster search within Ct

rather than the whole cluster space C brings a key benefit: since the search space is constrained

by MSC-tree, it is more meaningful and also less noisy than the entire space C, leading to more

accurate c∗t estimation.

Once we obtain all tree-level nearest clusters from all the trees in the forest, {c∗t }τclust
t=1 , the

2 It is worth noticing that the purpose of this clustering step is completely different from the multi-
source data clustering during model training, as presented in Section 5.1.2. The latter is a component
of our multi-source model training pipeline (Figure 5.2), whilst the former aims at revealing the latent
structure over testing data for video summarisation.
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final nearest cluster c∗ is obtained as the one with maximal votes from all the trees (Figure 5.3(c))

c∗ = max{c∗t }τclust
t=1 (5.8)

By repeating the above steps on all previously-unseen clips {x∗i }n∗
i=1, we obtain their cluster labels

as C∗ = {c∗i }n∗
i=1 (Figure 5.3(e)).

Extracting key-clips With the assigned cluster memberships C∗ on all previously-unseen clips,

the key-clip of a previously-unseen video data cluster c∗ can be represented by the representative

previously-unseen clip x∗r that is closest to the cluster centroid µc∗ (Figure 5.3(e)). Concatenating

these key-clips chronologically establishes a visual summary. Such a summary, however, is likely

to be discontinuous in preserving visual context therefore non-smooth visually due to abrupt

changes between adjacent key-clips. To enforce some degrees of smoothness in the visualisation

of video summary whilst minimising redundancy, we adopt a shortest path strategy (Boccaletti

et al., 2006) to induce an optimal path between two temporally-adjacent representative x∗r on a

graph G̈. This approach produces a visually more coherent video summary whilst discards as

much redundancy as possible.

More precisely, we construct a graph G̈=(V̈ , Ë), where V̈ and Ë indicate the set of previously-

unseen video clip vertices and edges (Figure 5.3(d)). The weights of edges can be efficiently esti-

mated using Equation (3.4) and (3.5). Note that the graph G̈ is also multi-source referenced since

it is derived from our multi-source MSC-Forest model. We then perform shortest path search

between temporally-adjacent x∗r on G̈ (Figure 5.3(f)) and all the samples that lie on the shortest

paths compose the final key-clip set K (Figure 5.3(g)).

5.2.2 Video Tagging

Summarising video with high-level interpretation requires plausible meaningful content infer-

ence from video data x∗. We derive a tree-structure aware tag inference algorithm capable of

predicting tag types same as training non-visual data, based on the learned MSC-Forest and dis-

covered training data clusters. Specifically, we first obtain the tree-level nearest cluster c∗t of a

previously-unseen sample x∗ using Equation (5.6). Second, the p(yi|c∗t ) associated with c∗t is

utilised as the tree-level non-visual tag estimation for the i-th non-visual data type. To achieve a

smooth prediction, we average all p(yi|c = c∗t ) obtained from individual trees as

p(yi|x∗) =
1

τclust
∑

τclust

t=1 p(yi|c∗t ). (5.9)
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Algorithm 3: Infer non-visual tags of previously-unseen clips.
Input: A previously-unseen clip x∗, a trained MSC-Forest, training data clusters C;

Output: Predicted tag ŷi;

1 Initialisation:

2 Compute p(yi|c) for each training data cluster (Equation (5.2));

3 Compute cluster centroid µc (Equation (5.7));

4 Non-Visual Tag Inference:

5 for t← 1 to τclust do

6 Trace the leaf lt(x∗) where x∗ falls (Figure 5.3(a));

7 Retrieve the training samples Xlt(x∗) associated with lt(x∗);

8 Obtain the clusters Ct = {ci} ⊂C of Xlt(x∗);

9 Search the tree-level nearest cluster c∗t of x∗ within Ct (Equation (5.6));

10 end

11 Estimate tag distribution p(yi|x∗) (Equation (5.9));

12 Compute the final tag ŷi (Equation (5.10)).

The final tag ŷi for the ith non-visual type is obtained as

ŷi = argmaxyi
p(yi|x∗). (5.10)

With the above steps, we can estimate all m non-visual tags ŷis with i∈ {1, . . . ,m}. The procedure

of our tagging algorithm is summarised in Algorithm 3.

Given the extracted key-clips K and automatic assignment of non-visual tags (Equation (5.10)),

we can now construct a video summary by chronologically concatenating each clip x∗ ∈ K with

smooth inter-clip transition, e.g. cross-fading, and labelling each clip with their inferred tags.

5.3 Datasets and Experimental Settings

Datasets We conducted experiments on two datasets collected from publicly accessible web-

cams that feature an outdoor and an indoor scene respectively: (1) the TImes Square Intersection

(TISI) dataset, and (2) the Educational Resource Centre (ERCe) dataset3. There are a total of

7324 video clips spanning over 14 days in the TISI dataset, whilst a total of 13817 clips were

collected across a period of two months in the ERCe dataset. Each clip has a duration of 20

3 Datasets available: www.eecs.qmul.ac.uk/%7Exz303/download.html
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Table 5.1: Details of datasets. FPS = frames per second.

Dataset Resolution FPS # Training Clip # Deployment Clip

TISI 550×960 10 5819 1505

ERCe 480×640 5 9387 4430

seconds. The details of the datasets and training/deployment partitions are given in Table 5.1.

Example frames are shown in Figure 5.4.

The TISI dataset is challenging due to severe inter-object occlusion, complex behaviour pat-

terns, and large illumination variations caused by both natural and artificial lighting sources at

different day time. The ERCe dataset is non-trivial due to a wide range of physical events in-

volved that are characterised by large changes in environmental set-up, participants, crowded-

ness, and intricate activity patterns.

(a)

(b)

Figure 5.4: Examples of the (a) TISI and (b) ERCe datasets.

Visual and non-visual sources We extracted the following set of visual features for represent-

ing visual content in each clip: (a) colour features including RGB and HSV; (b) local texture

features based on Local Binary Pattern (LBP) (Ojala et al., 2002); (c) optical flow; (d) holistic

features of the scene based on GIST (Oliva and Torralba, 2001); and (e) person and vehicle4

4No vehicle detection on the ERCe dataset.
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detection (Felzenszwalb et al., 2010).

We collected 10 types of non-visual sources for the TISI dataset: (a) weather data extracted

from the WorldWeatherOnline with 9 elements: temperature, weather type, wind speed, wind

direction, precipitation, humidity, visibility, pressure, and cloud cover; (b) traffic speed data

from the Google Maps with 4 levels of traffic speed: very slow, slow, moderate, and fast. For

the ERCe dataset, we collected data from multiple independent on-line sources about the time

table of campus events including: No Scheduled Event (NoEvt), Cleaning (Cln), Career Fair

(CrF), Gun Forum Control and Gun Violence (GunFrm), Group Studying (GrStd), Scholarship

Competition (SchlCpt), Accommodative Service (AcmSvc), Student Orientation (StdOrt).

Note that other visual features and non-visual data types can be considered without altering

the training and inference methods of our model in that the MSC-Forest model is capable of

coping with different families of visual features as well as distinct types of non-visual sources.

Baselines To evaluate the proposed method for multi-source video clustering and tag infer-

ence, we compared the Visual + Non-Visual + MSC-Forest (VNV-MSC-Forest) model against

the following baseline models:

1. VO-Forest: a conventional forest (Breiman, 2001) trained with visual feature vectors alone,

to demonstrate the benefits from using non-visual sources5. Note that although no non-

visual data is utilised for training the random forest, we still assume the availability of non-

visual data after the video clusters are formed for the purposes of measuring the clustering

coherence and video tagging.

2. VNV-Kmeans: k-means (Jain, 2010) using concatenated vectors of visual and non-visual

features, to highlight the heteroscedasticity and dimensionality discrepancy problem caused

by heterogeneous visual and non-visual data.

3. VNV-Forest: a conventional forest (Breiman, 2001) trained with concatenated visual and

non-visual feature vectors, to compare the effectiveness of MSC-Forest that exploits non-

visual data during forest formation.

4. VNV-AASC: a state-of-the-art multi-source spectral clustering method (Huang et al., 2012)

learned by treating each type of visual or non-visual feature as an individual source, to

demonstrate the superiority of MSC-Forest in handling diverse data representations and

5 Evaluating a forest that takes only non-visual inputs is not possible, since non-visual data is not
available for previously-unseen video footages.
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correlating multiple sources.

5. VNV-COP-Mahal: a state-of-the-art Mahalanobis distance metric learning method (Xing

et al., 2002) using both data features and two types of pairwise constraints, i.e. must-links:

the two linked samples are in the same cluster; and cannot-links: the two linked samples

are from two different clusters. In our multi-source data context, these pairwise constraints

are generated from all non-visual data sources. Specifically, first, we computed individual

similarity matrices from each non-visual source and averaged them for getting the fused

pairwise similarity measure between video samples. The top-k highest and lowest pair-

wise similarity values were then used to generate must-links and cannot-links respectively.

We set k = η × n× (n− 1)× 10−5 where n is the number of training samples, whilst

η was cross-validated in a range between 1 and 10, (i.e. k lies in [339,3390] on TISI,

[881,8810] on ERCe), and the best results were utilised for comparison in our evaluation.

Once the Mahalanobis distance metric was learned from both the visual feature data and

the generated pairwise links using the algorithm proposed in (Xing et al., 2002), COP-

Kmeans (Wagstaff et al., 2001) was employed along with pairwise links as well as the

learned metric to obtain the final clusters of video data.

6. VNV-DAKM (Jones and Shao, 2014): a state-of-the-art dual assignment clustering method,

Dual Assignment k-Means (DAKM), which is capable of performing two co-occurring

clustering tasks simultaneously, while exploiting the correlation information to enhance

both clusterings. In this multi-source context, visual and non-visual features are considered

as two different views of clips. By exploiting their inherent correlation, DAKM attempts to

improve the clustering on visual data while considering the semantic information encoded

in the non-visual data. The parameter λ (in Equation (6) for controlling the uniformity of

matrix R
′
) was cross-validated in the range of {1,10,100,1000}, and the best results were

selected and compared.

7. VNV-MSC-Forest-hard: a variant of our model using hard cluster assignment strategy for

inferring tags of previously-unseen samples (Section 5.2.2), to highlight the effectiveness

of the proposed tree structure based tag inference algorithm.

8. VT-MSC-Forest: a variant of our model using only temporal information and visual data.

In order to show the exact effectiveness of exploiting non-visual data, the weight ratio

between visual data and time retains the same as in VNV-MSC-Forest with the only dif-
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ference of discarding non-visual data during model training.

9. VPNVρ-MSC-Forest: a variant of our model but with ρ% of training samples having ar-

bitrary number of missing non-visual types, to evaluate the robustness of MSC-Forest in

coping with partial/missing non-visual data.

Implementation details The clustering forest size τclust was set to 1000, including both the

conventional forest and the proposed MSC-Forest. We observed a slight increase in performance

given a larger forest size, which agrees with (Criminisi and Shotton, 2012). The training set

Xt of the t-th MSC-tree was obtained by performing random selection with replacement from

the augmented data space (Figure 2.3(b)). We set dtry =
√

d with d the data feature dimension

(Equation (2.2)). This is typically practised (Breiman, 2001). We employed axis-aligned data

separation (Criminisi and Shotton, 2012) as the test function for node splitting. This cluster

number was discovered automatically using the method presented in (Zelnik-manor and Perona,

2004). We set the same number of clusters across all compared methods. For each dataset,∼ 75%

out of the total data was utilised for model training, and the remaining was reserved for testing.

Additional previously-unseen video data was collected from the Time Square Intersection scene

on a separate day for video summarisation.

5.4 Experiments and Evaluations

5.4.1 Evaluation on Multi-Source Data Structure Discovery

To evaluate the effectiveness of different clustering models for multi-source video clustering, we

compared the quality of their clusters formed on the training dataset. For determining clustering

quality, we quantitatively measured the mean entropy (Zhao and Karypis, 2004) of non-visual

distributions p(yi|c) (Equation (5.2)) associated with training data clusters to evaluate how co-

herent video content are partitioned, assuming all methods have access to non-visual data during

the entropy computation.

It is evident from Table 5.2 that our VNV-MSC-Forest achieves the best cluster purity on both

datasets6. Despite that there are gradual degradations in clustering quality when we increase the

non-visual data missing proportion, overall the VNV-MSC-Forest model copes well with par-

tial/missing non-visual data. With no aid of non-visual tag information, VT-MSC-Forest forms

much worse clusters. Whilst the superiority of VT-MSC-Forest over VO-Forest suggests the

6 VNV-MSC-Forest-hard shares the same clusters as VNV-MSC-Forest.



5.4. Experiments and Evaluations 123
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 (29/31) 
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(24/29) 
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(60/67) 

VNV-COP-Mahal   
(84/1077) 

Figure 5.5: Qualitative comparison on cluster quality on TISI. A key frame of each video is
shown. Numbers in brackets: First: the number of clips with sunny weather; Second: the total
number of clips in a cluster. The frames inside the red boxes are inconsistent clips in a cluster.

effectiveness of temporal information with MSC-Forest. Inferior performance of VO-Forest to

VNV-MSC-Forest suggests the importance of learning from auxiliary non-visual sources. Never-

theless, not all methods perform equally well when learning from the same visual and non-visual

sources: the Kmeans, AASC, and COP-Mahal perform much poorer in comparison to MSC-

Forest. The results suggest the proposed joint information gain criterion (Equation (5.1)) is more

effective in handling heterogeneous data than the conventional clustering models.

For qualitative comparison, we show examples in Figure 5.5 using the TISI dataset for de-

tecting ‘sunny’ weather. It is evident that only VNV-MSC-Forest is able to provide coherent

video grouping, with only slight decrease in clustering purity given partial/missing non-visual

data. Other methods including VNV-AASC result in a large cluster either leaving out some rele-

vant clips or including many non-relevant ones, with most of them under the influence of strong

artificial lighting sources. These non-relevant clips are visually ‘close’ to sunny weather, but se-

mantically not. The VNV-MSC-Forest model avoids this mistake by correlating both visual and

non-visual sources in an information theoretic sense.
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Table 5.2: Compare cluster purity in mean entropy. Lower is better.

Dataset TISI ERCe

p(y|c) traffic speed weather event

VO-Forest (Breiman, 2001) 0.8675 1.0676 0.0616

VNV-Kmeans (Jain, 2010) 0.9197 1.4994 1.2519

VNV-Forest (Breiman, 2001) 0.8611 1.0889 0.0811

VNV-AASC (Huang et al., 2012) 0.7217 0.7039 0.0691

VNV-COP-Mahal (Xing et al., 2002) 0.8523 1.2301 1.0685

VNV-DAKM (Jones and Shao, 2014) 0.7454 0.8088 0.6531

VT-MSC-Forest 0.7275 0.9577 0.0580

VNV-MSC-Forest 0.7262 0.6071 0.0024

VPNV10-MSC-Forest 0.7190 0.6261 0.0024

VPNV20-MSC-Forest 0.7283 0.6497 0.0090

VNV-Kmeans 

Sunny 

Cloudy 

Rainy 

VO-Forest VNV-Forest 

VNV-MSC-Forest-hard VNV-MSC-Forest VT-MSC-Forest 

Sunny Cloudy Rainy 

VPNV10-MSC-Forest 

VNV-AASC 

Sunny 

Cloudy 

Rainy 

Sunny Cloudy Rainy Sunny Cloudy Rainy Sunny Cloudy Rainy 

VPNV20-MSC-Forest 

VNV-COP-Mahal 

Sunny Cloudy Rainy 

Figure 5.6: Weather tagging confusion matrices (TISI dataset).

5.4.2 Evaluation on Video Tagging

Generating video summary with semantic interpretations requires accurate tag prediction. In

this experiment we compared the performance of different methods in inferring semantic tags

given previously-unseen clips extracted from long videos. The proposed tagging algorithm (Sec-

tion 5.2.2) is used for VO-Forest, VT-MSC-Forest, VNV-MSC-Forest, and VPNV10/20-MSC-

Forest, whilst nearest neighbour (NN) strategy for the others. For quantitative evaluation, we

manually annotated 3 weather conditions (sunny, cloudy and rainy) and 4 traffic speeds on TISI

previously-unseen clips, whilst 8 event categories on ERCe previously-unseen clips.
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Table 5.3: Comparison of tagging accuracy on the TISI dataset.

(%) traffic speed weather

VO-Forest (Breiman, 2001) 27.62 50.65

VNV-Kmeans (Jain, 2010) 37.80 43.14

VNV-Forest (Breiman, 2001) 34.95 43.81

VNV-AASC (Huang et al., 2012) 36.13 44.37

VNV-COP-Mahal (Xing et al., 2002) 26.22 40.03

VNV-DAKM (Jones and Shao, 2014) 45.31 42.87

VNV-MSC-Forest-hard 32.86 49.59

VT-MSC-Forest 35.99 54.47

VNV-MSC-Forest 35.77 61.05

VPNV10-MSC-Forest 37.99 55.99

VPNV20-MSC-Forest 38.05 54.97

Tagging video by weather and traffic conditions The experiment was conducted on the TISI

outdoor dataset. It is observed that the performance of different methods (Table 5.3) is mostly

in line with their performance in data clustering (Section 5.4.1). Poor result of tagging traffic

conditions is yielded by VO-Forest. This suggests the significance of exploiting non-visual data

during model training. It is also seen from Figure 5.6 that VNV-MSC-Forest not only outper-

forms other baselines in isolating the sunny weather, but also performs well in distinguishing

visually ambiguous cloudy and rainy weathers. In contrast, both VNV-Kmeans and VNV-AASC

mistake most of the ‘rainy’ scenes as either ‘sunny’ or ‘cloudy’, as they can be visually similar.

DAKM produces the best accuracy on traffic speed while much poor on predicting weather. By

examining the visual and non-visual, we found the plausible reason that weather data is more

likely to be noisy, which may affect the correlation learning in DAKM and in turn leading to sub-

optimal interaction between the two views. Interestingly, the poorest tagging results are obtained

by VNV-COP-Mahal where non-visual data is alternatively used as side information for gen-

erating pairwise constraints over video samples. The potential reasons include (1) COP-Mahal

assumes completely-accurate pairwise links, which however is largely invalid in our context due

to the intrinsic noisy nature of non-visual data sources; (2) the errors in pairwise constraints can

be propagated during the clustering process of COP-Kmeans and therefore is likely to further
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Table 5.4: Comparison of tagging accuracy on the ERCe dataset.
(%) NoEvt Cln CrF GunFrm GrStd SchlCpt AccSvc StdOrt Average

VO-Forest (Breiman, 2001) 79.48 39.50 94.41 74.82 92.97 82.74 00.00 60.94 65.61

VNV-Kmeans (Jain, 2010) 87.91 19.33 59.38 44.30 46.25 16.71 00.00 09.77 35.45

VNV-Forest (Breiman, 2001) 32.47 30.25 65.46 45.77 41.25 33.15 13.70 33.59 36.96

VNV-AASC (Huang et al., 2012) 48.51 45.80 79.77 84.93 96.88 89.40 21.15 38.87 63.16

VNV-COP-Mahal (Xing et al., 2002) 41.98 71.43 54.61 15.07 21.88 00.00 00.24 00.00 25.65

VNV-DAKM (Jones and Shao, 2014) 65.35 25.63 62.34 44.49 53.75 18.61 7.21 14.06 36.43

VNV-MSC-Forest-hard 81.25 41.60 70.07 60.48 84.22 82.88 10.82 47.85 59.89

VT-MSC-Forest 57.43 70.17 91.45 79.96 99.22 90.08 00.00 43.75 66.50

VNV-MSC-Forest 55.98 41.28 100.0 83.82 97.66 99.46 37.26 88.09 75.69

VPNV10-MSC-Forest 47.96 46.64 100.0 85.29 97.66 99.73 37.26 92.38 75.87

VPNV20-MSC-Forest 55.57 46.22 100.0 85.29 95.78 99.59 37.02 88.09 75.95
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Figure 5.7: Event tagging confusion matrices (ERCe dataset).

worsen the cluster solution and finally the tagging accuracy. This reflects the significant diffi-

culty of jointly learning inherently heterogeneous and inaccurate visual and non-visual data as

aforementioned, and in turn the advantages of the proposed joint information gain formulation

over existing competitive algorithms.

Tagging video by activity events Tagging semantic events was tested using the ERCe dataset.

By VO-Forest, poor results (Table 5.4 and Figure 5.7) are obtained especially on ‘Accommoda-

tion Service’, which involves only subtle activity patterns, i.e. students visiting particular rooms,

suggesting using visual data alone is not sufficient to detect such visually subtle events. VT-

MSC-Forest over-fits to ‘Cleaning’ event, therefore performs poorly on ‘Student Orientation’

event.

Due to the typical high-dimension of visual sources compared to non-visual data, the lat-

ter is often overwhelmed by the former in representation. VNV-Kmeans severely suffers from

this problem as its most predictions are biased to ‘No Scheduled Event’ that is more common
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and frequent visually. This suggests that this distance-based clustering is poor in handling the

heteroscedasticity and dimension discrepancy problems in learning heterogeneous data. VNV-

AASC attempts to circumvent these problems by seeking for an optimal combination of affinity

matrices derived independently from distinct data sources. However this is proved challenging,

particularly when each source is inherently noisy and inaccurate. Similar to the observation on

TISI, DAKM obtains poor results in distinguishing complex social events mainly because the

corresponding event non-visual data is not well synchronised with visual data, which results in

inaccurate mutual correlation and finally negative interaction to each other. As an alternative way

of utilising non-visual data, VNV-COP-Mahal yields again the lowest overall accuracy. This fur-

ther shows the unsuitability of COP-Mahal in learning ambiguous heterogeneous data due to

its stringent assumption on the availability of accurate and reliable pairwise links and the lack

of noisy data handling mechanism. In contrast, the proposed MSC-Forest correlates different

sources via a joint information gain criterion to effectively alleviate these problems, leading to

more robust and accurate tagging performance. Again, VPNV10/20-MSC-Forest perform com-

parably to VNV-MSC-Forest, further validating the robustness of MSC-Forest in tackling par-

tial/missing non-visual data with the proposed adaptive weighting mechanism (Section 5.1.1).

Interestingly, in some cases, VPNV10/20-MSC-Forest models even outperform VNV-MSC-

Forest slightly. We observe that this can be caused by missing noisy non-visual data, which may

lead to better results. Overall, the performance difference is marginal and the results demonstrate

that MSC-Forest provides stable tagging results across both datasets.

Evaluating α sensitivity We analyse the relative significance of visual data against non-visual

and temporal data by varying its weight αv (Equation (5.1)) in MSC-Forest during model training.

The average tagging accuracy is utilised as performance measure criterion. It is observed from

Figure 5.8 that setting αv = 0.5 achieves satisfactory results for both datasets. This observation

suggests that visual and non-visual data are almost equally informative. This setting of α is

adopted throughout our experiments.

5.4.3 Evaluation on Semantic Video Summarisation

In this experiment, we follow the method described in Section 5.2, and show that the learned

model MSC-Forest can be easily extended to produce compact yet meaningful video summary

of previously-unseen video footage, e.g. from the Time Square Intersection scene, with automat-
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Figure 5.8: The average tagging accuracy against varying visual data weight αv in Equation (5.1).

ically generated tags. Despite captured from the same scene as the TISI dataset, this previously-

unseen video is challenging in that it contains a number of events not seen before (e.g. scaffold-

ing event), with very different weather and traffic conditions. It is interesting to examine how

well the multi-source model could generalise for drawing meaningful summarisation given such

unexpected disparities.

A Quantitative Evaluation on Summary Quality

Measuring the quality of video summary quantitatively is non-trivial since there is no formal def-

inition in the literature. In this study, we employ a coverage metric – an ideal summary should

cover as many events of interest as possible7. More precisely, given a video summary V smr, its

coverage is defined as c̃ = ncvd
nall

(
maxi |V smr

i |
|V smr|

)
, where ncvd and nall represent the number of covered

and all events of interest, respectively. The |V smr| is the length of the current summary, whilst

maxi |V smr
i | represents the maximum length of all comparative synopses. The term

(
maxi |V smr

i |
|V smr|

)
thus penalises a summary with longer length. Higher coverage is better, implying lower redun-

dancy.

In order to generate unbiased ground truth of event of interest, we asked 10 annotators to

watch the previously-unseen video carefully and label each video clip with arbitrary event tags.

Although these event tags were produced independently in a somewhat subjective manner, the

repetition of similar tagging among different annotators is high, e.g. most annotators labelled

‘unloading scaffolding tubes’, ‘policemen on-duty’, as events of their interest. Thus, we formed

the ground truth with events that were agreed by over 50% of the annotators. The final ground

truth consists of 12 events (Figure 5.9).

Given the ground truth, we compared the quality of summary generated using the proposed

multi-source MSC-Forest with the baselines: (1) Uniform-Sampling: a straightforward way of

7The event of interest is analogous to important objects/regions in (Lee et al., 2012).
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summarising video by uniformly sampling video clips over time, assuming key events are dis-

tributed evenly (Truong and Venkatesh, 2007; Lee et al., 2012). (2) Sufficient-Change: a type of

classical summarisation strategy generic to video category (Zhang et al., 1997; Kim and Hwang,

2002; Truong and Venkatesh, 2007). The idea is to select the clip significantly different from

the previous key clip e.g. using threshold based strategy and thus the extracted key clips may

be of great diversity and complete. The threshold can be estimated based on the number of key

clips. For the distance metric, we adopt L1-norm and L2-norm to measure pairwise similarity

between clips in our experiment. (3) VO-Forest: the conventional Forest (Breiman, 2001) that

exploits visual features alone. For VO-Forest and MSC-Forest, we applied the summarisation

pipeline described in Section 5.2 for summary composition. We generated the video summary

by the remaining methods via setting a duration similar to the summary by MSC-Forest. Note

that non-visual information are not available during the summarisation stage. Hence, for cluster-

ing based models, the quality of a summary essentially ties to the purity and coherency of video

clusters discovered using different methods.

The results are shown in Figure 5.9 and Table 5.5. It is evident that the MSC-Forest model

achieves higher event coverage than the baselines. This is in large due to the MSC-Forest’s

ability for latent data structure discovery (Section 5.4.1). To reveal concrete reasons on the

summarising performance difference, for the same previously-unseen samples x∗ with event of

interest, e.g. parcel delivery, we compared the assigned clusters: c∗vnv by our model and c∗vo by

VO-Forest. It is found that samples in c∗vnv are visually consistent each other and the majority

share some similarity with x∗, e.g. someone standing at the edge of pathway; whilst cluster

c∗vo is much larger with no obvious visual commonality over its cluster members. Uniform-

Sampling performs poorly since the assumption of uniform event distribution is often invalid.

Significant-Change is inferior to our model since the visual data distance/similarity measure can

be inaccurate and less meaningful due to the challenging semantic gap problem.

A User Study on Summary Quality

We conducted a user study to examine if the non-visual tags inferred using the MSC-Forest

model could complement the unilateral perspective offered by pure visual summary alone. We

showed two video summaries to 10 volunteers: (i) a pure visual summary, and (ii) the same

summary but enriched with semantic tags inferred using the proposed multi-source model8. The

8The inferred non-visual tags include weather, traffic conditions, and typicality. The typicality tag, i.e.
usual and interesting, of each clip, is computed based on the size of their assigned clusters (Figure 5.3(c)).
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Table 5.5: Quantitative comparison of video summary. Length = clip number.

Method Length Event number Coverage

Uniform-Sampling 28 3 25.9%

Sufficient-Change(L1) 29 2 16.7%

Sufficient-Change(L2) 29 4 33.3%

VO-Forest 21 3 34.5%

VNV-MSC-Forest(Ours) 28 7 60.4%

(1) (3) 

(8) 

(12) 

(2) (4) 

(11) 

(5) 
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(7) 

(9) (10) 

Time 
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Figure 5.9: The multi-source affinity matrix constructed by our model, along with key frames
corresponding to ground truth events of interest: (1) policemen on-duty, (2) blocking pathway,
(3) workers unloading scaffolding tubes, (4)-(6) different stages of scaffolding, (7)(9)(10) van
parking aside, (8) parcel delivery, (11)(12) loitering events. The event covered by some particular
method is indicated on the left-bottom corner of key frame with their ID defined as: (a) Uniform-
Sampling; (b) Sufficient-Change (L1); (c) Sufficient-Change (L2); (d) VO-Forest; (e) VNV-
MSC-Forest.
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Figure 5.10: A storyboard version of our video summary enriched with non-visual tags.
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Figure 5.11: User study: tagged versus pure-visual summary.

tagged summary is shown in Figure 5.10. Each volunteer was asked to compare and rate the

two summaries based on their preference. It is worth pointing out that passing the user test is

challenging because providing additional non-visual tags to summary is not necessarily better

than none. Tags that correlate poorly with visual context could even jeopardise user experience.

It is evident from Figure 5.11 that visual summary augmented with non-visual tags was well

accepted by all participants over the conventional visual-only summary. A follow-up survey with

the volunteers reveals several interesting reasons of their selection. Many volunteers found that

the inferred non-visual tags were valuable in providing auxiliary context to achieve better global

situational awareness. In particular, the tags helped them to ‘connect the dots’ and making sense

of the previously-unseen (and likely unfamiliar) video footages. Some other volunteers credited

the additional non-visual tags in focusing their attention on particular events, and helping them

in spotting ‘outliers’ of interest.

This user study provides an independent means to analyse and validate the usefulness of vi-

sual summarisation with auto-tag inference of previously-unseen video footages without a priori

semantics or meta-data, mostly typical of surveillance videos. It also shows the effectiveness

of the proposed model for mapping multi-source non-visual information to unstructured and

previously-unseen video data in automatic tagging and summarisation of the videos.

Clips assigned to the top 20% smallest clusters are treated as ‘interesting’.
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5.4.4 Multi-Source Model Visualisation

The superior performance of VNV-MSC-Forest can be better explained by examining more

closely the capacity of MSC-Forest in uncovering and exploiting the intrinsic correlation among

different visual sources and more critically among visual and non-visual sources. This indirect

correlation among heterogeneous sources results in well-structured decision trees, subsequently

leading to more consistent data clusters and more accurate semantics inference. The details of

computing the multi-source correlation are presented in Section 5.1.3. Here we show an example

multi-source correction revealed by our MSC-Forest for model visualisation purpose.

Intuitively, vehicle and person counts should correlate in a busy scene like TISI. Our MSC-

Forest discovered this correlation (see Figure 5.12(a)), so the less reliable vehicle detection from

distance against a cluttered background, could enjoy a latent support from more reliable person

detection in regions 5-16 close to the camera view.

Moreover, visual sources also benefit from correlated support from non-visual data through

our cross-sources information gain optimisation (Equation (5.1)). An example is the intuitive

correlation between traffic speed and visual appearance, e.g. slow traffic speed often corresponds

to crowded scenarios with a large quantity of pedestrians and vehicles whilst fast traffic speed

to sparse people and cars. Such cross-source correlation can be captured by our MSC-Forest, as

observed in Figure 10(b) that the vehicle detection responses over road area present a stronger

interaction with traffic speed data than those on walk path where vehicles should not appear.

In other words, vehicle detection features of road area are preferred over those on walk path

in node splitting due to larger induced joint information gain (Equation (5.1)), which is clearly

desired. This discovered correlation is further exploited by MSC-Forest during the node splitting

optimisation process and thus facilitates the separation of different crowdedness levels of visual

data. This leads to better clusters and eventually benefits video summarisation.

5.4.5 Computational Cost Analysis

We examined the computational costs for training the proposed MSC-Forest, in comparison to

the conventional forests. Time is measured on a Windows PC machine with a dual-core CPU

@ 2.66 GHz, 4.0GB RAM, with C++ implementation. Only one core is utilised for training

each forest. We recorded the model training time under the same experimental setting as stated

in Section 5.3. It is observed from Table 5.6 that the training cost of a MSC-Forest model is
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Figure 5.12: The discovered multi-source correlations by our MSC-Forest on TISI.

Table 5.6: Random forest model training complexity. Lower is better. TT = Training Time (unit
is second).

Dataset TISI ERCe

- TT Φ∗ TT Φ∗

VO-Forest 10306 109392 21831 359247

VNV-Forest 10646 108865 22015 359364

VNV-MSC-Forest 8823 91316 7845 137620

significantly lower than that of learning conventional forests. In particular, VNV-MSC-Forest

records a reduced training time by 14.4% and 17.1% on TISI, and 64.1% and 64.4% on ERCe,

when compared with VO-Forest and VNV-Forest, respectively. We observed similar trend on the

model inference time.

The lower computational cost of MSC-Forest is owing to its shallow and balanced trees,

thanks to the additional non-visual and temporal information during tree optimisation. To make

this concrete, we showed in Table 5.6 the averaged tree fan-in Φ∗ = 1
τclust

∑
τclust
t=1 Φ(t) of different

forest models. A forest with shallow and balanced trees tend to have a small Φ∗ (see Section 5.1.1

for a discussion on tree fan-in). In addition, we also profiled the length of path (from root to leaf

node) traversed by training samples. A shallow and balanced tree tends to have shorter path

length. The distributions depicted in Figure 5.13 suggest that MSC-Forest has a shallower and

more balanced tree topology than that of conventional forests. It is worth pointing out that despite

the shallower structure, MSC-Forest outperforms other models in our clustering and tagging

experiments.
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Figure 5.13: Comparing tree path length statistics. The same legend is used for both charts.

5.5 Summary

In this chapter, an unsupervised multi-source data structure discovery model is formulated and

applied for semantic surveillance video summarisation. Specifically, we introduced a joint in-

formation gain function for discovering and exploiting latent correlations among independent

heterogeneous visual and non-visual data sources. This formulation naturally copes with di-

verse types of data with different representations, distributions, and dimensions. Importantly,

our model is capable of tolerating partial and missing non-visual data during model training, and

allowing automatic tag inference on previously-unseen video footages and for video summari-

sation. Furthermore, the proposed joint optimisation encourages more compact decision trees,

leading to more efficient model training and tag inference. Extensive comparative experiments

have demonstrated the advantages of the proposed multi-source video clustering model over ex-

isting visual-only models, for both discovering latent video clusters and inferring non-visual tags

on previously-unseen video footages. A comprehensive user study was carried out to validate in-

dependently the effectiveness of deploying the proposed model for generating contextually-rich

and semantically-meaningful video summary. The proposed model is not limited to surveillance-

type videos but can be generalised to other types of unstructured and un-tagged consumer videos

or egocentric videos, if 3D camera motion-invariant features or egocentric features (Lee et al.,

2012) are adopted.

The methods presented in the Chapters (3, 4, 5) are designed for data captured from a single

camera view. Their learning schemes may not be appropriate to process video data captured from

multiple cameras, much typical in video surveillance settings. Specifically, these algorithms are

likely to suffer from the large cross-view variations in lighting condition, background clutter

and occlusion. It is non-trivial for computing models to overcome these largely uncontrollable

difficulties and challenges. The following chapter presents a model that is particularly formu-
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lated for coping with multi-camera visual data through discriminative learning for quantifying

the considerable difference and disparity in viewing conditions across camera views. The aim

of multi-camera data structure discovery model is to identify person-specific structural patterns

among a population across multiple distributed surveillance cameras.
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Chapter 6

Person Identity Structure Discovery by Discriminative

Selection in Video Ranking

The proceeding Chapters (3, 4, 5) describe a set of data structure discovery algorithms for visual

data captured from a single camera view. The range from a single camera is limited in view-

ing field for video surveillance. This naturally necessities the deployment of multiple connected

cameras in order to jointly monitor wide public areas, e.g. underground stations and airport ter-

minals. In such multi-camera surveillance scenarios, an essential requirement is to associate peo-

ple across disjoint camera views so as to uncover person-specific activity distribution/structures

beyond the view range of single cameras. That is, it aims at finding person identity cluster struc-

tures among cross-camera visual data. This is also called person re-identification (ReID) in the

literature.

Existing person ReID methods typically rely on single-frame imagery features (Gong et al.,

2014a), whilst ignoring space-time information from image sequences often available in the

practical surveillance scenarios. Single-frame (single-shot) based visual appearance matching

is inherently limited for person re-identification in public spaces due to the challenging visual

ambiguity and uncertainty arising from non-overlapping camera views where viewing condi-

tion changes can cause significant people appearance variations. On the other hand, psychology

and physiology research studies suggest that human vision system’s capability to recognise dy-

namic sequential targets, e.g. face identity, is superior than that to static observations such as

still images. Bassili (1979) found that the movement of a sparse spatial arrange of white dots
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over a black face surface, i.e. space-time facial feature representation allows superior expression

recognition than stationary images, even though using a small number of features. Knight and

Johnston (1997) showed that faces in photographic negatives can be more effectively recognised

when shown moving than static. Moreover, Davis and Bobick (1997) demonstrated that actions

encoded in blurred image sequences where little structure knowledge is presented in individual

image frames can be easily recognised by human.

In this chapter, a person ReID approach is proposed for learning person discriminative space-

time dynamic information from image sequences. Specifically, this model can automatically

select the most discriminative video fragments from noisy and incomplete walking sequences of

people from which more reliable space-time and appearance features can be computed, whilst

simultaneously to learn a video ranking function for person re-identification.

The remainder of this chapter is structured as below. Section 6.1 provides the details of

the proposed space-time sequence based ReID method. Datasets and experimental settings are

described in Section 6.2. Followed are experiments and evaluations with comparison to contem-

porary gait recognition, holistic image sequence matching and state-of-the-art single-shot/multi-

shot based re-identification methods in Section 6.3. Finally, a summary is presented in Section

6.4.

6.1 Discriminative Video Ranking

We formulate the person re-identification problem as a ranking problem (Prosser et al., 2010;

Gong et al., 2014a). Although image sequences of people may provide intuitively richer con-

tent to learn discriminative information about individual’s visual appearance when compared

to a single still image widely used by existing person re-identification methods (Li and Wang,

2013b; Gray et al., 2007; Zheng et al., 2009; Loy et al., 2009), the availability of more (and

often redundant) data poses additional challenges in model learning, e.g. more random inter-

object occlusions and thus incomplete frames, arbitrary sequence duration and starting/ending

postures. Moreover, human annotators may implicitly and unconsciously have the tendency to

manually select carefully clearer and better-segmented person images for learning image-based

re-identification models. On the other hand, automatically detected and tracked sequences of

person bounding boxes in typical surveillance videos are inherently noisier and incomplete. Di-

rectly utilising all the sequence data for constructing re-identification models can easily result
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Figure 6.1: The training pipeline of the proposed discriminative video ranking framework. (a)
Image sequences of training people, Qa

i denotes the image sequence of person pi from camera
a (Section 6.1.1). (b)-(c) Generating candidate fragments for each sequence by motion energy
profiling (Section 6.1.2). (d) Creating cross-view fragment pairs as positive and negative in-
stances and pooling them into positive and negative bags respectively (Section 6.1.3). (e) Learn-
ing a sequence-based relative ranking model by simultaneously selecting and ranking iteratively
discriminative fragment pairs (Section 6.1.3).

in unstable models, therefore is undesirable. A selection mechanism is required to be part of

the learning model in order to optimally explore the redundant information available in sequence

data.

In the context of relative ranking based re-identification model learning, it is non-trivial to

automatically learn a robust discriminative ranking function from such contaminated image se-

quence data for person re-identification. Inherently, one needs to address the problem of how

to mitigate the negative influence of unknown noisy observations, e.g. various types of occlu-

sions and clutters in the background. This is more than solving the more common problem

of misalignment over time in sequence matching. In this work, we formulate a discriminative

re-identification model capable of simultaneously selecting and ranking informative video frag-

ments from pairs of unregulated image sequences of people captured in two non-overlapping

camera views. Our model not only mitigates unwanted data whilst exploring useful information

for person re-identification from image sequences, but also requires no rigid sequence alignment

as in the case of traditional methods, e.g. dynamic time warping. More specifically, our model

is based on : (i) Video fragmentation by motion energy profiling (Figure 6.1(b)(c) and Section

6.1.2) ; (ii) Learning a sequence-based relative ranking function by simultaneously selecting and

ranking cross-view video fragment pairs (Figure 6.1(d)(e) and Section 6.1.3) . Once learned, our

model can then be deployed to re-identify previously unseen people given cross-view unregulated

image sequences (Section 6.1.4). An overview diagram of the learning process of the proposed
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approach is presented in Figure 6.1.

6.1.1 Problem Definition

Suppose we have a collection of image sequence pairs {(Qa
i ,Q

b
i )}n

i=1, where Qa
i and Qb

i denote

the image sequences of person pi captured by two disjoint cameras a and b, and n the number

of people in the training set. Each image sequence is defined as a set of consecutive frames I

obtained by an independent person tracker, e.g. (Ben Shitrit et al., 2011; Hare et al., 2011) :

Q = {I1,I2, ...}, where |Q| is not a constant as in typical surveillance videos, tracked person

image sequences do not guarantee to have a uniform duration (arbitrary number of frames), nor

the number of walking cycles and starting/ending postures.

For model training, we aim to learn a ranking function f (Qa,Qb) of image sequence pairs

that satisfies the the following ranking constraints:

f (Qa
i ,Q

b
i )> f (Qa

i ,Q
b
j), ∀i = {1, ...,n}, ∀ j 6= i. (6.1)

That is, the image sequence pair (Qa
i ,Q

b
i ) of the same person pi is constrained/optimised to have

a higher ranking over any cross-view sequence pairing of person pi and p j where j 6= i.

Learning a ranking function holistically without discrimination and selection from pairs of

unsegmented and temporally unaligned person image sequences will subject the learned model

to significant noise and degrade any meaningful discriminative information contained in the im-

age sequences. This is an inherent drawback of any holistic sequence matching approach, in-

cluding those with dynamic time warping applied for non-linear mapping (see experiments in

Section 6.3). Reliable human parsing/pose detection (Kanaujia et al., 2007) or occlusion detec-

tion (Xiao et al., 2006) may help, but such approaches are difficult to be scaled, especially with

image sequences from crowded public scenes. The challenge is to learn a robust ranking model

effective in coping with incomplete and partial image sequences by identifying and selecting dis-

criminative/informative video fragments from each sequence suitable for extracting trustworthy

fragment features. Let us first consider generating a pool of candidate video fragments for each

image sequence, i.e. video fragmentation.

6.1.2 Video Fragmentation

Given the unregulated image sequences of people, it is too noisy to attempt holistically locating

and extracting reliable discriminative fragment features from an entire image sequence. Instead,
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Figure 6.2: (a) A person sequence of 50 frames is shown, with the motion energy intensity of each
component frame given in (b). The red dots in (b) denote the automatically detected local minima
and maxima temporal landmarks in the motion intensity profile, of which the corresponding
frames are provided at the vertically-aligned positions in (c). (d) Two example video fragments
(shown every 2 frames) with the landmark frames highlighted by red bounding boxes.

we consider breaking down each image sequence into localised video fragments and generate

a pool of video fragment candidates to allow for a learning model to automatically select the

discriminative fragments (Section 6.1.3).

It can be observed that motion energy intensity induced by the activity of human muscles dur-

ing walking exhibits regular periodicity (Waters and Morris, 1972). This motion energy intensity

can be approximately estimated by optic flow computation. We call this Flow Energy Profile

(FEP), see Figure 6.2. This FEP signal is particularly suitable to address our video fragmentation

problem due to: (i) the local minima and maxima landmarks are likely to correspond to some

characteristic gestures in a person’s walking process, thus help in estimating these characteristic

walking postures (e.g. one foot is about to land); (ii) relatively robust to changes in camera view-

point. More specifically, given a sequence Q = {I1,I2, ...}, we first compute the optic flow field

(Vx,Vy) for each image frame I. The flow energy e of I is defined as

e(I) = ∑
(i, j)∈U

‖[Vx(i, j),Vy(i, j) ]‖2, (6.2)

where U is the pixel set of the lower body, e.g. the lower half of an image I. The FEP Qfep of an

image sequence Q is then obtained as Qfep = {e(I1),e(I2), ...}, which is further smoothed by a

Gaussian filter to suppress noise.

Subsequently, we locate the local minima and maxima landmarks { t } of Qfep and for each

landmark create a video fragment g by extracting the surrounding frames g= {It−lfrag , ...,It , ...,It+lfrag}.

We fix lfrag = 10 for all our experiments, determined by cross-validation on the iLIDS-VID

dataset. Finally, we build a candidate pool (set) of video fragments G = {g} by pooling all
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the fragments from the sequence Q. It is worth pointing out that some of the obtained frag-

ments of each image sequence can have similar phases of a walking cycle since the local min-

imum/maximum landmarks of the FEP signal are likely to correspond to certain characteristic

walking postures (Figure 6.2). This increases the possibility of finding temporally aligned video

fragment pairs (i.e., centred at similar walking postures) given a pair of video fragment sets

(Ga,Gb) from two disjoint camera views, facilitating discriminative video fragments selection

and matching during model learning. It is observed from Figure 6.2 that the FEP signal may be

sensitive to random occlusions and background clutters and lead to noisy/non-characterised video

fragments. This usually results in more redundant video fragmentation to some degree. However,

it has limited influence on the effectiveness of the learned model, as the proposed selection-and-

ranking model in Section 6.1.3 can automatically identify and select discriminative/informative

video fragments to train the re-identification ranking model.

Video fragment representation To encode both the dynamics and static appearance informa-

tion of the subjects, we represent video fragments with both space-time features and colour fea-

tures. These two types of features complement each other, especially in the context of person re-

identification. Colour features have been shown to be significant for person re-identification (Hirzer

et al., 2012; Gong et al., 2014a; Liu et al., 2012, 2014a; Zhao et al., 2013a), implicitly capturing

the chrome patterns of clothing/appearance that is independent from space-time characteristics

of a person’s appearance, such as the way people walk. In contrast, the latter is encoded by the

space-time features.

Space-time feature Particularly, we exploit HOG3D (Klaser and Marszalek, 2008) as space-

time feature representation of a video fragment, due to its advantages demonstrated for applica-

tions in action and activity recognition (Wang et al., 2009; Klaser and Marszalek, 2008). In order

to capture spatially more detailed and localised space-time information of a person in motion,

we decompose a video fragment spatially into 2× 5 even cells according to human biological

body topology such as head, torso, arms and legs. To capture separately the information of sub-

intervals before and after the characteristic walking posture (Figure 6.2 (d)) potentially situated

in the middle of a video fragment, the fragment is further divided temporally into two smaller

sub-phases, resulting in a total of 20 = 2× 5× 2 cells for every single video fragment. Two

adjacent cells have 50% overlap for increased robustness to possible spatio-temporal fragment

misalignment. A space-time gradient histogram is computed in each cell and then concatenated
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to form the HOG3D space-time descriptor xst of the fragment g.

Colour feature We adopt the localised average colour histogram as the appearance feature of a

video fragment because of its simplicity and effectiveness (Hirzer et al., 2012). Specifically, for

each component frame in a video fragment, the colour features are extracted from rectangular

patches (16×8 pixels in size) sampled from each frame with an overlap of 8 and 4 pixels verti-

cally and horizontally between each patch (i.e. 50% overlap between adjacent patches). In each

patch, we compute the mean values of the HSV and LAB colour channels and form a framewise

colour feature vector by concatenating the mean values of all the patches in a frame. To min-

imise noise and obtain a more reliable colour representation, all the framewise colour features of

a fragment are averaged over time to produce a fragment-wise appearance representation xa of

that fragment g.

Finally, both space-time and colour appearance features xst and xa are concatenated into a

fragment descriptor x = [xst;xa]. Note, the image frames of all sequences are normalised into a

fixed size (128×64 pixels in our implementation) before computing any features.

Notations Formally, for the k-th fragment ga
i,k from the person pi’s image sequence captured

in camera a, its descriptor is denoted by xa
i,k. The same is for gb

i,k and xb
i,k. We denote Xa

i =

{xa
i,k}
|Xa

i |
k=1 and Xb

i = {xb
i,k}
|Xb

i |
k=1 as the descriptor set for the fragments segmented from the image

sequences Qa
i and Qb

i of person pi in camera a and b respectively, where | · | represents the

cardinality of a set. The entire collection of descriptors for n training person image sequence

pairs {(Qa
i ,Q

b
i )}n

i=1 (Section 6.1.1) is denoted as {(Xa
i ,X

b
i )}n

i=1.

6.1.3 Selection and Ranking

As shown in Figure 6.2, the fragments of a person image sequence can be contaminated by

unknown occlusions and background dynamics, and may also be extracted at an arbitrary time-

instance of a walking phase. Given such noisy fragment pair collections generated from cross-

view person image sequences, a significant challenge for sequence matching based re-identification

is how to identify and select discriminative/informative and temporally aligned fragment pairs

(rather than the entire sequences) to learn a suitable ranking model. Formally, the objective is to

learn a linear ranking function on the entry-wise absolute difference of two cross-view fragments

xa and xb:

h(xa,xb) = www>abs(xa−xb). (6.3)
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Figure 6.3: The process of constructing the positive and negative bags of fragments for represent-
ing individual person sequences (examples of three people are shown). In this instance, symbol
ga

1,2 refers to the second fragment from the first person image sequence captured in camera a, and
similar for others. We form separately a positive (B+

i ) and negative (B−i ) bag for the i-th person.
Take the first person as an example, the cross-view pairings (red lines) of the fragments from the
first person form its positive bag B+

1 , while those pairings (blue lines) across the first person and
any different person are used to create the negative bag B−1 .

We assume that for each person there exists at least one cross-view fragment pair that is suffi-

ciently aligned over time and carries desired identity-sensitive information for this person. Our

aim is to construct a model capable of automatically discovering and locating not only the best

cross-view fragment pair but also multiple cross-view fragment pairs that are sufficiently aligned

and discriminative for re-identification. For model training with the best fragment pair, it is equiv-

alent to constraining a ranking function h to prefer the most discriminative cross-view fragment

pair of the same person pi over the pairings over pi and any other person p j, i 6= j, i.e.(
max

xa
i,·∈Xa

i ,x
b
i,·∈Xb

i

h(xa
i,·,x

b
i,·)

)
> h(xa

i,·,x
b
j,·), ∀ j 6= i, (6.4)

For notation simplicity, we define zzz+i,k = abs(xa
i,·− xb

i,·) as the k-th positive instance of person

pi, i.e., the entry-wise absolute difference of two cross-view fragments of the same person pi,

and zzz−i,k = abs(xa
i,·− xb

j,·), j 6= i as the k-th negative instance, i.e., the absolute difference of two

cross-view fragments of pi and another person. For each person pi, we form a positive bag

B+
i = {zzz+i,k}

|B+
i |

k=1 by pooling the positive instances, and a negative bag B−i = {zzz−i,k}
|B−i |
k=1 by pooling

the negative instances. Figure 6.3 illustrates the formation process of positive and negative bags
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for individual persons. By redefining the ranking function h(xa,xb) = h̃(abs(xa− xb)) = h̃(zzz),

Equation (6.4) can be rewritten as(
max

zzz+i,·∈B+
i

h̃(zzz+i,·)

)
> h̃(zzz−i,·),∀zzz−i,· ∈ B−i . (6.5)

With the ranking constraints in Equation (6.5), we aim to automatically discover and select the

most discriminative/informative and temporally aligned cross-view fragment pair zzz+i,· within the

positive bag B+
i for each person pi for learning an identity discriminative ranking model. To that

end, we introduce a binary selection variable vvvi with each entry being either 0 or 1 and of unity

l0 norm for each person pi, and then obtain

h̃(ZZZivvvi)> h̃(zzz−i,·),∀zzz−i,· ∈ B−i , (6.6)

where each column of ZZZi corresponds to one zzz+ ∈ B+
i , and ||vvvi||0 = 1, eee>vvvi = 1, eee denotes a

vector with each elementary being 1.

To achieve good generalisation ability for the ranking model given the ranking constraints

in Equation (6.6), we formulate our problem as a max-margin ranking problem by defining the

objective function as:

www∗ = arg min
www,vvv,ξξξ

1
2
||www||2 +ηeee>ξξξ

s.t. vvv>i ZZZ>i www− (zzz−i,k)
>www≥ 1−ξi,k,

ξi,k ≥ 0, ∀zzz−i,k ∈ B−i , k ∈ {1, . . . , |B−i |},

||vvvi||0 = 1, eee>vvvi = 1, i ∈ {1, . . . ,n}.

(6.7)

where www is the parameter of the objective ranking function as defined in Equation (6.3), and n

the number of persons in the training set. vvv is the concatenation of the binary selection variables

of all persons: vvv = [vvv1;vvv2; ...vvvn]. ξξξ is the flattened slack variable, formed by all the possible ξi,k.

We solve Equation (6.7) by iteratively optimising www and vvv between a ranking step and a selecting

step. η is a balancing parameter, which is set by cross-validation.

Ranking step We fix vvv to optimise www. Equation (6.7) turns into

www∗ = argmin
www,ξξξ

1
2
||www||2 +ηeee>ξξξ

s.t. vvv>i ZZZ>i www− (zzz−i,k)
>www≥ 1−ξi,k,

ξi,k ≥ 0, ∀zzz−i,k ∈ B−i , k ∈ {1, . . . , |B−i |},

i ∈ {1, . . . ,n}.

(6.8)
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With the fragment selections vvv known, Equation (6.8) is a standard RankSVM problem and can

be efficiently solved with a primal training algorithm (Chapelle and Keerthi, 2010).

Selecting step We fix www to optimize vvv. The term on www (i.e. 1
2 ||www||2) can be eliminated and

Equation (6.7) becomes

vvv∗ = argmin
vvv,ξξξ

eee>ξξξ

s.t. vvv>i ZZZ>i www− (zzz−i,k)
>www≥ 1−ξi,k,

ξi,k ≥ 0, ∀zzz−i,k ∈ B−i , k ∈ {1, . . . , |B−i |}

||vvvi||0 = 1, eee>vvvi = 1, i ∈ {1, . . . ,n}.

(6.9)

Considering that the person-wise vvvi is associated only with {ξi,k}|B
−
i |

k=1 and we are optimising the

summation of all possible ξi,k, Equation (6.9) is equivalent to optimising vvvi for each person pi

separately, as

vvv∗i = argmin
vvvi,ξξξ i

eee>ξξξ i

s.t. vvv>i ZZZ>i www− (zzz−i,k)
>www≥ 1−ξi,k,

ξi,k ≥ 0, ∀zzz−i,k ∈ B−i , k ∈ {1, . . . , |B−i |}

||vvvi||0 = 1, eee>vvvi = 1.

(6.10)

where ξξξ i = [ξi,1, . . . ,ξi,|B−i |
]>. The inequality constraints in Equation (6.10) can be transformed

as

ξi,k ≥ 1− vvv>i ZZZ>i www+(zzz−i,k)
>www,

ξi,k ≥ 0.
(6.11)

Therefore, for any particular vvvi ∈ V that holds ||vvvi||0 = 1 and eee>vvvi = 1 in the selecting space V ,

the entries ξ ∗i,k of the optimal ξξξ
∗
i that minimises the summation eee>ξξξ i shall be

ξ
∗
i,k = max{0,1− vvv>i ZZZ>i www+(zzz−i,k)

>www}. (6.12)

It is obvious that the summation eee>ξξξ i is a function of vvvi,

q(vvvi) =
|B−i |

∑
k=1

ξ
∗
i,k

=
|B−i |

∑
k=1

max{0,1− vvv>i ZZZ>i www+(zzz−i,k)
>www}.

(6.13)
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Finally we can obtain the vvv∗i by optimising q(vvvi) via:

vvv∗i = argmin
vvvi∈V

q(vvvi)

= argmin
vvvi∈V

|B−i |

∑
k=1

max{0,1− vvv>i ZZZ>i www+(zzz−i,k)
>www},

s.t. ||vvvi||0 = 1, eee>vvvi = 1.

(6.14)

For each person pi, we only have a limited number of vvvi in V . Therefore Equation (6.14) can be

efficiently solved even with a greedy search.

To begin the model training process, we set vvvi =
1
|B+

i |
eee to initiate a balanced/moderate start

since the quality of zzz+i,· is unknown a priori. The iteration terminates when vvvi does not change

any more. Typically, the training process stops after 4 ∼ 5 iterations. For learning efficiency,

10% out of all the zzz−i,· are randomly selected to form B−i . Since only a single zzz+i,· for each person

pi is selected and utilised for model learning, we call this model DVR(single).

Multiple Cross-View Fragment Pairs Selection

Thus far we have detailed the procedure of training our DVR (single) model via identifying the

best cross-view fragment pair in each positive bag B+
i (corresponding to a particular person) for

learning the ranking function (Equation (6.3)). This allows us to largely avoid the contamination

effect from harmful data. Nevertheless, we may simultaneously lose some useful information

from discarding the majority of instances zzz+i,· of each bag B+
i , as some of these ignored zzz+i,· can be

of good-quality. To identify and exploit these good though not-best fragment data zzz+i,· is likely to

benefit the model learning. To that end, we shall describe next our multiple cross-view fragment

pairs selection algorithm for achieving better harness of image sequence data.

Our multiple fragment-pair selection algorithm is based on a goodness/quality measure of

individual zzz+i,·. Once all instances zzz+i,· of person pi are measured by assigning a score γi,· (higher is

better) to each instance, we can easily locate multiple (top-k̃) discriminative zzz+i,· from the ranked

list of all zzz+i,· sorted in descending order by the score γi,·. Formally, we define γi,· for each zzz+i,· as

γi,· =
|B−i |

∑
k=1

(1−ξ
∗
i,k). (6.15)

We denote 1− ξ ∗i,k as the ranking margin of zzz+i,· against the negative instance zzz−i,k, which can be

obtained by Equation (6.12). Given Equation (6.15), the zzz+i,· with larger cumulated ranking margin

over all the negative instance zzz−i,k is preferred. This formulation generalises the single selection
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case that searches for the best vvv∗i (Equation (6.14)), i.e. the vvv∗i and the highest γi,· corresponds to

the same selection of positive instance zzz+i,·.

After the top-k̃ zzz+i,· for each person pi are found and selected, we can obtain multiple (i.e.

k̃) vvv∗i s by setting the corresponding entry of each vvv∗i to 1 whilst the remains to 0. We call this

model DVR(top-k̃). Similar to the single selection model DVR(single), these ranking constraints

associated with the selected top-k̃ zzz+i,· are then employed for optimising www with Equation (6.8).

In Section 6.3.1, we shall evaluate the effect of different top-k̃ positive instances on the person

re-identification performance. An overview of learning the proposed DVR model is presented in

Algorithm 4.

DVR Model Complexity

We analyse the training complexity of the DVR model, focusing on the ranking and selecting

steps. For our model training, we adopt the primal RankSVM scheme (Chapelle and Keerthi,

2010) as the ranking solver whose complexity is O(nrank×d2)+O(d3), taken by Hessian com-

putation and the linear search in Newton direction respectively, with nrank and d referring re-

spectively to the number of ranking constraints (see Equations (6.4) and (6.8)) and the feature

dimensions. Suppose η̃ positive instances per person are selected for learning the ranking func-

tion, then crank = η̃ ∑
n
i=1 |B−i |, where n is the number of all training people.

The cost for the selection process mainly involves measuring the quality score of each pos-

itive instance of all training people with Equation (6.12) and Equation (6.15). Its complexity is

O(crank×d×urank), where urank = ∑
n
i=1 |B+

i | denotes the total number of positive instance across

all training data. The overall complexity of model training including both the ranking and selec-

tion steps is O(crank×d2+d3+crank×d×urank). We evaluate and report the model training cost

in our experiments (Section 6.3.1).

6.1.4 Person Identity Structure Discovery by DVR

Once learned, the ranking model (Equation (6.3)) can be deployed to perform person re-identification

by matching a probe person image sequence Qprob observed in one camera view against a gallery

set {Qgal} in another disjoint camera view. Formally, the ranking/matching score of a gallery

person sequence Qgal with respect to the probe Qprob is computed as

f (Qprob,Qgal) = max
xi,·∈Xprob,x j,·∈Xgal

www>abs(xi,·−x j,·), (6.16)
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Algorithm 4: DVR Learning
Input: Training image sequence pairs {(Qa

i ,Q
b
i )}n

i=1;

Output: The ranking function www (Equation (6.3));

1 (I) Video fragmentation (Section 6.1.2):

2 - Segment each Q into a set of fragments {g};

3 - Extract space-time and appearance features x from g;

4 (II) Bag construction (Figure 6.3): for each person pi,

5 - Form a positive bag B+
i with positive instance zzz+i,·;

6 - Form a negative bag B−i with negative instance zzz−i,·;

7 (III) Learning (Section 6.1.3):

8 /* Initialise selection vectors */ :

9 vvviii =
1
|B+

i |
, i = 1, ...,n;

10 while true do

11 /* Ranking step */ :

12 Obtain www∗ with fixed {vvvi} (Equation (6.8));

13 /* Selecting step */ :

14 for i = 1, ...,n do

15 if single selection then

16 Obtain vvv∗i (Equation (6.14));

17 end

18 else

19 /* Multiple selection */ :

20 Compute γi,· for each zzz+i,· (Equation (6.15));

21 Rank zzz+i,· with γi,· descendantly;

22 Find the top-k̃ zzz+i,·;

23 Obtain k̃ vvv∗i s (Section 6.1.3);

24 end

25 end

26 /* Convergence check */ :

27 if no vvvi changed then

28 Return www∗.

29 end

30 end
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(a) iLIDS-VID

(b) PRID 2011

Figure 6.4: Example pairs of image sequences of the same people appearing in different camera
views from (a) the iLIDS-VID dataset, (b) the PRID 2011 dataset. Only every 3rd frame is shown
and the total number of frames for each sequence is not identical.
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where Xprob and Xgal are the feature sets of the video fragments extracted from the sequences

Qprob and Qgal, respectively. The same video fragmentation process as used for model training

(Section 6.1.2) is employed for deploying a trained model. Finally, the gallery persons are sorted

in descending order of their assigned matching scores to generate a ranking list.

Combination with prior spatial feature based models Our approach can complement ex-

isting spatial feature based re-identification approaches. In particular, we incorporate Equa-

tion (6.16) into the ranking scoresRi obtained by other models as

f̂ (Qprob,Qgal) = ∑
i

αiRi(Qprob,Qgal)+ f (Qprob,Qgal), (6.17)

where αi refers to the weighting assigned to the i-th method, which is estimated by cross-

validation.

6.1.5 Discussion on Related Models

We discuss the relationship of the proposed DVR model with other relevant contemporary models

in the literature, with a focus on their differences. First, most existing max-margin ranking

methods (Chapelle and Keerthi, 2010; Prosser et al., 2010) do not consider uncertainty in the

ranking constraints during model optimisation. In contrast, the proposed DVR model jointly

optimises both the selection of the ranking constraints and the ranking function. This is necessary

because the bag-level (e.g. image sequences) supervision cannot directly determine the instance-

level (e.g. fragments) constraints (Section 6.1.3).

Second, our model also differs notably from other multi-instance ranking models (Bergeron

et al., 2008, 2012; Hu et al., 2008) in a number of aspects as follows: (1) Bergeron et al. (2008)

relaxed the selection vectors vvvi (Equation (6.6)) to be continues during model optimisation, whilst

our model searches for exact solutions of instance selection. As shown in our evaluation (Sec-

tion 6.3.1), Bergeron et al.’s relaxation method can significantly increase the cost of constraint

selection when the training set is large, though it does not compromise the model performance.

(2) The model presented in (Hu et al., 2008) focuses on encoding bag-level (or sample-level) con-

straints into the ranking function by modelling instance-level constraints, assuming all instances

can provide contributions to model optimisation. In contrast, we emphasise the selection of dis-

criminative/informative instance data (e.g. fragments) for robust learning, necessary for coping

with very noisy and incomplete data (e.g. unregulated image sequences), whilst the stronger as-

sumption made in (Hu et al., 2008) is less valid therein. (3) Different from all these multi-instance
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models (Bergeron et al., 2008, 2012; Hu et al., 2008), the proposed DVR model is unique in its

capability for allowing different quantities of explicit discriminative instance selection and then

exploitation, due to our formulation of a principled instance quality measure (Equation (6.15)).

This can potentially increase the flexibility and scalability of our model in a variety of problem

settings (e.g. varying degrees of noise) and applications (e.g. other sequence matching based

tasks).

6.2 Datasets and Experimental Settings

Datasets Extensive experiments were conducted on two image sequence datasets designed for

person re-identification, the PRID 2011 dataset (Hirzer et al., 2011) and the iLIDS Video re-

IDentification (iLIDS-VID) dataset (Wang et al., 2014b).

The iLIDS-VID dataset Our new iLIDS-VID person sequence dataset (Wang et al., 2014b) was

created based on two non-overlapping camera views from the i-LIDS Multiple-Camera Tracking

Scenario (MCTS) (UK , 2008), which was captured at an airport arrival hall under a multi-

camera CCTV network. It consists of 600 image sequences for 300 randomly sampled people,

with one pair of image sequences from two disjoint camera views for each person. Each image

sequence has a variable length consisting of 23 to 192 image frames, with an average number

of 73. This dataset is very challenging due to clothing similarities among people, lighting and

viewpoint variations across camera views, cluttered background and occlusions (Figure 1.6 and

Figure 6.4 (a)).

The PRID 2011 dataset The PRID 2011 re-identification dataset (Hirzer et al., 2011) includes

400 image sequences for 200 people from two camera views that are adjacent to each other. Each

image sequence has a variable length consisting of 5 to 675 image frames 1, with an average

number of 100. Compared with the iLIDS-VID dataset, it is less challenging due to captured

in uncrowded outdoor scenes with relatively simple and clean background and rare occlusions

(Figure 6.4 (b)).

Evaluation metrics Person ReID results are shown in Cumulated Matching Characteristics

(CMC) curves. To obtain stable statistical results, we repeat the experiments for 10 trials and

report the average results.

1Sequences with more than 21 frames from 178 persons are used in our experiments.
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Table 6.1: Comparing different variants of the proposed DVR model in top matching rates (%).
Video fragments are represented with HOG3D&Colour. (RT: Ranking Time; ST: Selecting Time;
Unit is second).

Dataset PRID 2011 iLIDS-VID

Rank R (%) R=1 R=5 R=10 R=20 RT ST R=1 R=5 R=10 R=20 RT ST

DVR(float) 38.9 68.8 81.1 91.3 6 8 36.8 59.3 70.9 80.1 28 740

DVR(single) 38.9 68.8 81.1 91.3 6 9 36.8 59.3 70.9 80.1 28 97
DVR(top-2) 39.4 70.6 83.7 91.8 13 9 37.7 60.1 71.1 81.4 42 97
DVR(top-3) 40.0 71.7 84.5 92.2 15 9 39.5 61.1 71.7 81.0 58 97
DVR(top-4) 40.0 71.6 84.0 92.8 20 9 39.2 62.3 71.7 81.9 70 97
DVR(top-5) 40.8 71.7 84.9 93.1 21 9 39.9 62.1 71.9 81.9 81 97

Implementation details From both datasets, the total pool of sequence pairs is randomly split

into two subsets of equal size, one for training and one for testing. Following the evaluation

protocol on the PRID 2011 dataset (Hirzer et al., 2011), in the testing phase, the sequences from

the first camera are used as the probe set while the ones from the other camera as the gallery set.

6.3 Experiments and Evaluations

6.3.1 Evaluation on Model Variants

We evaluated and analysed the proposed DVR model in two perspectives: (1) the effectiveness

of different selection mechanisms; (2) the effectiveness of different fragment representations (i.e.

HOG3D and HOG3D&Colour) on person re-identification, given a chosen selection algorithm.

Note that HOG3D&Colour is adopted as the default fragment representation in our DVR model

throughout the following experiments, unless specified otherwise.

For the selection mechanism, we conducted two comparisons: (a) the DVR(single) model

versus our preliminary model reported in (Wang et al., 2014b) which we call DVR(float) since

its selection involves a (float) weighted combination of instances in contrast to our new single or

multiple explicit instance selection strategies, (b) single versus multiple fragment-pairs selection

(Section 6.1). The results in Table 6.1 (the first two rows) show that identical scores are obtained

by DVR(single) and DVR(float) (Wang et al., 2014b). This is further verified by the observation

that both models select almost identical discriminative video fragments. On the other hand, the

computational cost and time required are different for these two models, in particular when the

content in the data is more crowded therefore selection becomes harder. More specifically, for

model training including both the ranking and selecting steps, Table 6.1 shows that both models

require similar time for the ranking step of model training on both datasets. This is because
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Table 6.2: Comparing different video fragment representation in top matching rates (%) using
the DVR (single) model.

Dataset PRID 2011 iLIDS-VID

Rank R (%) R=1 R=5 R=10 R=20 R=1 R=5 R=10 R=20

HOG3D 28.9 55.3 65.5 82.8 23.3 42.4 55.3 68.4

Colour 30.1 54.3 64.9 79.7 24.2 44.6 56.0 67.4

HOG3D&Colour 38.9 68.8 81.1 91.3 36.8 59.3 70.9 80.1

they are subject to the same number of ranking constraints (Equation (6.8)). However, although

the time required for the selection routine is similar for the PRID 2011 dataset, DVR(single)

is significantly faster that DVR(float) for iLIDS-VID, resulting in over 7× speed-up. This was

performed on a 64-bit Intel CPU Processor @ 2.7 GHz with a MATLAB implementation in Linux

OS. These observations suggest that there is no advantage in considering the selector vector being

a float weighted combination of instances as originally defined in (Wang et al., 2014b; Bergeron

et al., 2008).

One may ask the question how many discriminative fragment pairs should be selected from

each cross-view image sequence pair of a person during model training. To that end, we evaluated

the performance of re-identification using different numbers of positive fragment pair per person.

It is evident from Table 6.1 that the use of additional discriminative fragment pairs can further

boost the overall performance of person re-identification at the price of increased model training

time. This empirically supports our analysis on the potential benefits of multiple fragment pair

selection and exploitation as discussed in Section 6.1.3. However, the margin of improvement

from additional fragment data quickly diminishes. In our experiments, we utilised upto the top

rank-5 fragment pairs per person. Any further addition of more pairs had very limited effect

in improving the learned ranking model. Moreover, it is also observed that the construction of

ranking constraints in RankSVM is a time consuming process and its complexity is linear to

the number of constraints. Empirically, selecting the top 3 discriminative fragment pairs from a

matched training image sequence pair for model learning provides a good trade-off between re-

identification accuracy and model learning cost. For the remaining experiments reported in this

section, a DVR(top-3) model was trained for both datasets in the comparative evaluation against

other baseline methods.

It is worth pointing out that our preliminary work presented in (Wang et al., 2014b) is some-

what limited on fragment representation as no colour appearance information is considered. Here
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Table 6.3: Comparison with gait recognition and temporal sequence matching methods in top
matching rates (%).

Input
Dataset PRID 2011 iLIDS-VID

Rank R (%) R=1 R=5 R=10 R=20 R=1 R=5 R=10 R=20

Vide
o

Gait Recognition (Martı́n-Félez and Xiang, 2012) 20.9 45.5 58.3 70.9 2.8 13.1 21.3 34.5
Colour&LBP+DTW(Rabiner and Juang, 1993) 14.6 33.0 42.6 47.8 9.3 21.7 29.5 43.0

HoGHoF+DTW 17.2 37.2 47.4 60.0 5.3 16.1 29.7 44.7
Colour&LBP&HoGHoF+DTW 14.7 33.5 42.7 47.8 10.1 22.5 29.9 43.6

Frag
men

t Colour&LBP+MAP-DTW 22.8 38.7 47.8 58.1 13.7 28.1 34.9 49.4
HoGHoF+MAP-DTW 28.2 49.6 67.6 82.8 12.7 34.5 47.2 64.9

Colour&LBP&HoGHoF+MAP-DTW 22.9 42.5 48.7 59.0 13.9 28.7 36.8 50.8
DVR (ours) 40.0 71.7 84.5 92.2 39.5 61.1 71.7 81.0

we report a significant improvement in performance from combining the space-time features

(HOG3D) with colour features (Section 3.2). For the DVR(single) model, Table 6.2 shows 34.6%

and 57.9% increase in Rank-1 recognition rate on PRID 2011 and iLIDS-VID respectively, as

compared to the results reported in (Wang et al., 2014b). This is because the colour information is

another important cue for re-identifying people, as indicated by the re-identification performance

when only colour features are utilised to represent video fragments. These results demonstrate

the importance of utilising both space-time and colour appearance information for person re-

identification in video sequence data, further supporting previous studies on the importance of

leveraging colour information for re-identification as reported in the literature (Hirzer et al., 2012;

Gong et al., 2014a; Liu et al., 2012, 2014a; Zhao et al., 2013a).

6.3.2 Comparing Gait Recognition and Temporal Sequence Matching

We compared the proposed DVR model with contemporary gait recognition and temporal se-

quence matching methods for person (re-)identification:

1. Gait recognition (GEI+RSVM) (Martı́n-Félez and Xiang, 2012): A state-of-the-art gait

recognition model using Gait Energy Image (GEI) (Han and Bhanu, 2006) (which is com-

puted from pre-segmented silhouettes in their datasets) as sequence representation and

RankSVM (Chapelle and Keerthi, 2010) for recognition. A challenge for applying gait

recognition to unregulated person sequences in re-identification scenarios is to generate

good gait silhouettes as input. To that end, we first deployed the DPAdaptiveMedianBGS

algorithm provided in the BGSLibrary (Sobral, 2013) to extract silhouettes from video se-

quences in the PRID 2011 and iLIDS-VID datasets, respectively. This approach produces

better foreground masking than other alternatives.
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Figure 6.5: Compare CMC curves of the DVR model, gait recognition and temporal sequence
matching based methods.
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2. DTW (Rabiner and Juang, 1993): We applied Dynamic Time Warping (Rabiner and Juang,

1993) to compute the similarity between two sequences, using either Colour&LBP (Hirzer

et al., 2012) or HoGHoF (Laptev et al., 2008) or their combination as per-frame fea-

ture descriptor. This is similar to the approach of Simonnet et al. (2012), except that

they only used colour features. In comparison, Colour&LBP is a stronger representa-

tion as it encodes both colour and texture. Alternatively, HoGHoF encodes both texture

and motion information. This baseline method is called in form of “feature+DTW”, e.g.

Colour&LBP+DTW.

3. MAP-DTW: Besides using the holistic sequences for matching, we also utilised the frag-

ments segmented by our fragmentation algorithm (Section 6.1.2) together with the DTW

model for matching person sequences. Specifically, given two sequences, we first obtained

their video fragments. Then we performed cross-sequence pairwise fragment matching

using the DTW model. The same three types of visual features were exploited as above.

Finally, we selected and used the most-matched fragment pair, i.e. the minimal matching

distance, to estimate the matching score between the two sequences. This method allows to

perform a certain degree of data selection. We call this baseline as “feature+MAP-DTW”

in that it selects the most probable fragment pairs as the eventual matching.

Table 6.3 and Figure 6.5 show the comparative results between DVR, GEI+RSVM (gait),

DTW using visual features Colour&LBP+DTW, HoGHoF+DTW, Colour&LBP&HoGHoF, and

MAP-DTW based on fragment-level matching. It is evident that the proposed DVR outperforms

significantly all others on both datasets.

In particular, gait recognition (Martı́n-Félez and Xiang, 2012) achieves the worst re-identification

accuracy on the iLIDS-VID dataset. This is largely due to very noisy GEI features available

from person sequences. This is evident from the examples shown in Figure 6.6 : the extracted

gait foreground masks tend to be affected/contaminated by other moving objects in the scene,

whilst our DVR model trains itself by simultaneously selecting and ranking only those frag-

ments of image sequences which suffer the least from occlusions and noise. Given the uniform

background and non-crowded scene in the PRID 2011 dataset, gait recognition obtains reason-

ably good accuracy on it. Moreover, DTW based sequence matching for re-identification using

either Colour&LBP, HoGHoF, or their combination also suffer notably from the inherent un-

certain nature of re-identification sequences and perform significantly poorer than the proposed
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(a) PRID

(b) iLIDS-VID

Figure 6.6: Two examples of GEI gait features and our video fragment pairs, each in one row. In
both examples, the leftmost thumbnail shows GEI gait features, while the remaining thumbnails
present some examples of fragment pairs, with the automatically selected pairs marked by red
bounding boxes. A fragment is visualised as the weighted average of all its frames with emphasis
on its central frame.

DVR approach. This is largely due to: (1) Person sequences have different durations with ar-

bitrary starting/ending frames, also potentially different walking cycles. Therefore, attempts to

match holistically entire sequences inevitably suffer from mismatching with erroneous similar-

ity measurement. (2) There is no clear (explicit) mechanism to avoid incompleteness/missing

data, typical in busy scenes. (3) Direct sequence matching is less discriminative than learning an

inter-camera discriminative mapping function explicitly, which is built into the DVR model by

exploring multi-instance (fragment-pair) selection and ranking.

By selecting the most-matched fragment pairs as DVR, MAP-DTW consistently improves the

people matching accuracy, particularly when using the HoGHoF feature. This suggests our DVR

model design principle that data selection is critical given inherently unaligned and inaccurate

person sequences. However, without discriminative learning, it is still largely inferior than the

proposed DVR model.

6.3.3 Comparing Spatial Feature Representations

To evaluate the effectiveness of discriminate video fragmentation selection and ranking using

both spatial appearance and space-time features for person re-identification, we compared the
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Table 6.4: Comparing spatial appearance feature based re-identification methods in top matching
rates (%). (SS: Single-Shot; MS: Multi-Shot).

Dataset PRID 2011 iLIDS-VID

Rank R (%) R=1 R=5 R=10 R=20 R=1 R=5 R=10 R=20

SS-Colour&LBP(Hirzer et al., 2012)+RSVM 22.4 41.8 51.0 64.7 9.1 22.6 33.2 45.5

SS-SDALF (Farenzena et al., 2010) 4.9 21.5 30.9 45.2 5.1 14.9 20.7 31.3

MS-SDALF (Farenzena et al., 2010) 5.2 20.7 32.0 47.9 6.3 18.8 27.1 37.3

Salience (Zhao et al., 2013b) 25.8 43.6 52.6 62.0 10.2 24.8 35.5 52.9

MS-Colour&LBP+RSVM 34.3 56.0 65.5 77.3 23.2 44.2 54.1 68.8

DVR (ours) 40.0 71.7 84.5 92.2 39.5 61.1 71.7 81.0

proposed DVR model against a wide range of contemporary re-identification models using spatial

features, either in single-shot or as multiple frames (multi-shot). In order to process the iLIDS-

VID dataset for our experiments, we mainly considered those methods with both their code

available publicly and being contemporary. They include

1. SDALF (Farenzena et al., 2010) (both single-shot and multi-shot versions);

2. Salience (Zhao et al., 2013b);

3. a combination of colour and texture (Colour&LBP) (Hirzer et al., 2012) with RankSVM (Chapelle

and Keerthi, 2010) as the distance metric;

4. Moreover, we also extended a Colour&LBP single-shot model to multi-shot by averaging

the Colour&LBP features of each frame over a person sequence to focus on stable appear-

ance cues and suppress noise, in a similar approach to (John et al., 2013). We call this

method MS-Colour&LBP+RSVM.

Table 6.4 and Figure 6.7 show the results. It is evident that the proposed DVR model out-

performs significantly all the spatial feature based methods on both datasets, e.g. 55.0% and

287.3% Rank-1 improvement over Salience, whilst 16.6% and 70.3% Rank-1 improvement over

MS-Colour&LBP+RSVM on PRID 2011 and iLIDS-VID, respectively. Note that the improve-

ment margin achieved by the DVR model on iLIDS-VID (a more challenging dataset) is much

more significant than that on PRID 2011. This suggests the exceptional effectiveness of the pro-

posed selection based sequence matching in dealing with challenging real-world data for learning

a robust re-identification ranking function. More concretely, the power of our DVR model can

be largely attributed to identity-sensitive space-time gradient cues learned by our discriminative

fragment selection based matching and ranking mechanism, beyond the conventional models of
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(a) PRID 2011

(b) iLIDS-VID

Figure 6.7: CMC curve comparison between DVR and existing spatial feature based models.
(SS: Single-Shot, MS: Multi-Shot).



6.3. Experiments and Evaluations 161

only learning from the spatial appearance data, e.g. colour and texture. For a further analysis on

the DVR model on its complementarity to existing spatial feature based methods, more details

are discussed next.

6.3.4 Complementary to Spatial Features

We further evaluated the complementary effect between the DVR model and existing colour and

texture feature based re-identification approaches. The results are reported in Table 6.5. It is

evident that for any existing appearance model, significant performance gain was achieved by

incorporating the DVR ranking score (Equation (6.17)) into its ranking list. More specifically,

the Rank-1 re-identification performance of using multi-shot colour and texture features (MS-

Colour&LBP) was boosted by 23.9% and 76.7% on PRID 2011 and iLIDS-VID respectively;

Rank-1 by Salience feature improved by 86.8% and 302.0%; Rank-1 score of the combination

of Salience and MS-SDALF boosted by 92.4% and 304.9%. Such a performance step-change

in improving conventional spatial feature based models is primarily due to the exploration of

discriminative space-time features by the proposed DVR selection model. This space-time se-

lective matching process discovers mostly independent source of information as compared to all

the static appearance features, therefore playing a significant complementary and beneficial role

to contemporary spatial feature based models. It is also worth pointing out that most existing

spatial feature based methods benefit more from combining with the DVR model when tested

against the iLIDS-VID dataset, and less so on the PRID 2011. This observation highlights the

importance and necessity of discriminative fragment selection for robust model learning given

video data from more crowded public scenarios where blindly learning a model from all the data

without selection leads to poorer and degraded models.

It is also evident from Table 6.5 that the DVR model can benefit from combining with other

spatial feature based re-identification models, although slightly. This gain may be explained as

the result by drawing diverse sources of spatial features. Overall, the best results are produced

by Salience&MS-SDALF+DVR, suggesting effective complementary benefit among them all.

6.3.5 Evaluation on Space-time Fragment Selection

To evaluate the space-time video fragment selection mechanism in the proposed DVR model, we

implemented two baseline methods without this selection mechanism:
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Table 6.5: The complementary effect of DVR to existing spatial features based models in top
matching rates (%). (MS: Multi-Shot).

Dataset PRID 2011 iLIDS-VID

Rank R (%) R=1 R=5 R=10 R=20 R=1 R=5 R=10 R=20

DVR (ours) 40.0 71.7 84.5 92.2 39.5 61.1 71.7 81.0

MS-Colour&LBP+RSVM 34.3 56.0 65.5 77.3 23.2 44.2 54.1 68.8

MS-Colour&LBP+DVR 42.5 70.1 83.5 92.8 41.0 62.1 73.6 82.5

MS-SDALF (Farenzena et al., 2010) 5.2 20.7 32.0 47.9 6.3 18.8 27.1 37.3

MS-SDALF+DVR 44.2 71.2 85.1 92.5 40.9 62.7 72.1 82.1

Salience (Zhao et al., 2013b) 25.8 43.6 52.6 62.0 10.2 24.8 35.5 52.9

Salience+DVR 48.2 75.2 87.0 94.2 41.0 63.7 72.7 83.3

Salience&MS-SDALF 25.1 42.9 52.0 62.2 10.2 25.3 35.2 52.9

Salience&MS-SDALF+DVR 48.3 74.9 87.3 94.4 41.3 63.5 72.7 83.1

Table 6.6: The effect of space-time video fragment selection. (SS: Single-Shot, MS: Multi-Shot).

Dataset PRID 2011 iLIDS-VID

Rank R (%) R=1 R=5 R=10 R=20 R=1 R=5 R=10 R=20

SS-HOG3D&Colour+RSVM 25.7 49.1 61.0 75.5 15.5 33.7 47.5 61.4

MS-HOG3D&Colour+RSVM 29.6 54.9 70.8 86.1 19.9 42.4 53.6 67.6

DVR (ours) 40.0 71.7 84.5 92.2 39.5 61.1 71.7 81.0

1. SS-HOG3D&Colour+RSVM: Each person sequence is represented by the HOG3D&Colour

descriptor of a single fragment randomly selected from the image sequence;

2. MS-HOG3D&Colour+RSVM: Each person sequence is represented by the averaged HOG3D

& Colour descriptor of four fragments uniformly selected from the sequence. In both base-

line methods, RankSVM (Chapelle and Keerthi, 2010) is used to rank the person sequence

representations. For a fair comparison, the length of these fragments used for both base-

lines is set the same as those utilised in our DVR model.

The results are presented in Table 6.6. On the PRID 2011 dataset, the DVR model outper-

forms SS-HOG3D&Colour +RSVM and MS-HOG3D&Colour+RSVM in Rank-1 by 55.6% and

35.1%, respectively. The performance advantage is even greater on the more challenging iLIDS-

VID dataset, with 154.8% and 98.5% in Rank-1 improvement. It demonstrates clearly that in

the presence of significant noise and given unregulated person image sequences, it is indispens-

able to automatically select discriminative space-time fragments from raw image sequences in

order to construct a more robust model for person re-identification. It is also noted that MS-
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HOG3D&Colour+RSVM outperforms SS-HOG3D&Colour+RSVM by suppressing noise using

temporal averaging. Although such a straightforward temporal averaging approach can have

some benefits over single-shot methods, it loses important discriminative space-time information

when applying uniform temporal smoothing.

6.4 Summary

This chapter has presented a Discriminative Video Ranking (DVR) framework for person identity

structure discovery (or person re-identification) by video ranking using discriminative space-time

and appearance feature selection. Our extensive evaluations show that this model outperforms

a wide range of contemporary techniques from gait recognition and temporal sequence match-

ing to state-of-the-art single-shot/multi-shot/multi-frame spatial feature representation based re-

identification models. In contrast to existing re-identification approaches that often employ spa-

tial appearance of person alone, the proposed method is capable of capturing more accurately

both appearance and space-time information that are discriminative to person re-identification

through learning a cross-view multi-instance ranking function. This is made possible by the

ability of our model to automatically discover and exploit the most reliable and informative

video fragments extracted from inherently incomplete and inaccurate person image sequences

captured against cluttered background, without any guarantee on person walking cycles and

starting/ending frame alignment. Moreover, the proposed DVR model significantly comple-

ments/improves existing spatial appearance features when combined for person re-identification.

Extensive comparative evaluations were conducted to validate the advantages of the proposed

model over a variety of baseline methods on two challenging image sequence based re-identification

datasets, the PRID 2011 and iLIDS-VID benchmarks. More experiments on different data set-

tings are needed to evaluate further the capacity of the proposed discriminative selection and

ranking strategy.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis has presented a collection of data structure discovery methods for automated surveil-

lance video content analysis and understanding (Figure 1 in Abstract). In particular, a variety

of data cluster analysis settings for discovering the inherent group structures on single-camera

data have been investigated and explored. Besides, multi-camera visual data structure analysis is

also studied, owing to the natural necessity and requirement of monitoring more expanded pub-

lic areas in video surveillance. These problems are inherently challenging due to intrinsic visual

ambiguities and various noises, or the significant appearance variations across camera views.

Specifically,

1. In Chapter 3, an unsupervised visual data structure discovery or clustering framework is

presented for sensing the weak and subtle data similarity. This allows to obtain more accu-

rate and meaningful data neighbourhood structures. The resulting data similarity measures

in turn significantly benefit graph based clustering algorithms for uncovering hidden data

group patterns.

2. In Chapter 4, a semi-supervised visual data structure discovery approach is formulated

for taking into account additional prior knowledge expressed in form of pairwise con-

straints. This model advances unsupervised clustering mechanisms by effectively incorpo-

rating sparse high-level relations between data samples. Therefore, this resulting cluster

structures mirror more agreement as human. Importantly, this model is characterised with
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the ability of tackling invalid pairwise links, which is mostly ignored in the previous works.

3. In Chapter 5, multi-source data structure discovery is investigated. In contrast to the typ-

ical single-source setting (as in the above two models), heterogeneous multi-source data

presents additional new challenges for computational methods such as the heteroscedastic-

ity and dimensionality discrepancy problem. To that end, a multi-source data joint learning

approach is formulated with characteristics of uncovering and exploiting latent correlations

between distinct data sources, and of being able to tackle partial or missing non-visual data.

This multi-source model can be applied to perform video summarisation by discovering

group structures and inferring high-level labels for new videos.

4. In Chapter 6, the multi-camera data structure discovery problem is considered, comple-

mentary to the above three structure analysis methods for single camera view data. Rel-

atively, a unique challenge in the multi-camera data setting is the large viewing condition

changes across distributed cameras. Instead of looking into group based events as in Chap-

ter 5, this multi-camera method examines and discover person-specific activity structures

over more expanded spaces from partially captured visual observation (a.k.a. person re-

identification). Different from most contemporary re-identification methods typically rely-

ing on static appearance of people, this model uniquely sets out to select and explore iden-

tity discriminative space-time dynamic patterns for recognising people among appearance-

similar population and discover person-centric distribution structures in crowded public

places.

It is demonstrated that these proposed models have potentials and benefits for dealing with

other similar tasks in computer vision, machine learning and pattern recognition, although orig-

inally proposed and primarily evaluated on surveillance videos and related applications/tasks.

Whilst the newly developed algorithms have touched quite a few issues and problems in surveil-

lance video structure analysis, other directions and dimensions are also possibly promising to

investigate and explore, as discussed below.

7.2 Future Work

The potential research directions for future work beyond the proposed methods are summarised

as follows to end this thesis.

1. (Chapter 3) Unsupervised visual data structure discovery: Unsupervised visual data
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cluster structure analysis remains an open problem even though large strides have been

made recently. With regards to similarity learning based methods as this proposed model,

more further research effort is still in need, e.g. one possible dimension is to combine

stronger localised similarity criteria in the proposed framework by defining more complex

and effective split functions (e.g. multi-layer perceptions (Rota Bulo and Kontschieder,

2014) and discriminative SVM classifiers (Yao et al., 2011)), or alternative training strate-

gies (e.g. minimising a global objective (Schulter et al., 2013b,a), utilising underlying tree

structures (Johnson and Zhang, 2014)), Alternatively, other unsupervised data partitioning

criteria can be considered (Yu et al., 2011; Criminisi and Shotton, 2012; Pei et al., 2013).

2. (Chapter 4) Semi-supervised visual data structure discovery: The consistency crite-

rion between constraints and data feature representations is shown to be a good metric for

noisy link detection. But, how to quantify and measure the consistency degree of individ-

ual constraints is still a challenging problem and far from being addressed. Specifically,

only a proportion of invalid constraints can be correctly filtered and thus more advanced

algorithms are required for this issue. Additionally, it is interesting to derive effective

approaches to actively selecting data pairs for nominating informative sample-pair query.

The aim is to reduce significantly the human labelling amount while still achieve similar

clustering results. Despite the already made efforts in (Basu et al., 2004a; Xu et al., 2005;

Mallapragada et al., 2008; Wang and Davidson, 2010), noisy constraints measure and de-

tection (Davidson et al., 2006; Ares et al., 2012; Van Craenendonck and Blockeel, 2015),

sparse constraint propagation (Lu and Ip, 2010; Lu and Peng, 2013a; Fu and Lu, 2015),

it remains valuable to develop a unified model considering simultaneously the problems

of sparse/noisy pairwise constraints and active annotation. Algorithmically, the ideas pre-

sented in existing semi-supervised random forests (Tang et al., 2013; Leistner et al., 2009)

may be useful in developing new more advanced models.

3. (Chapter 5) Multi-source data structure discovery: Our MSC-Forest model has demon-

strated favourable capabilities of handling heterogeneous noisy data. This indicates its

promising potentials to deal with other visual tasks involving intrinsically noisy data. The

potential of this proposed random forest variant for processing imperfect data in more

generic pattern recognition and data mining applications is interesting to investigate and

explore (Wang et al., 2016). On the other hand, the proposed approach requires to learn
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a separate model for each particular scene/camera view. This may limit its generality and

scalability in real-world applications. Therefore, it is also interesting to integrate existing

and/or design new transfer learning (Pan and Yang, 2010) and domain adaptation tech-

niques (Margolis, 2011) upon the proposed multi-source data learning algorithm.

4. (Chapter 6) Person identity structure discovery: The initial effort of exploiting space-

time information from image sequences for person structure discovery or ReID has shown

effective and encouraging by the proposed Discriminative Video Ranking (DVR) model.

Two lines of extension work can be considered. One is to develop a multi-instance learning

model based on random forests, as the previous chapters. The other concerns the person

ReID setting: similar to common supervised learning methods, this model requires a large

number of labelled cross-view pairwise people for each camera pair. This requirement can

restrict the scalability in large scale application scenarios, e.g. surveillance camera net-

works with many camera pairs. It is prohibitively expensive to collect sufficient pairwise

labels for all possible camera pairs in real-world settings. Hence, it is worth to explore

image sequence based ReID methods requiring less or even no cross-view labels e.g. by

adopting semi-supervised learning strategies (Zhu, 2005; Chapelle et al., 2006). Another

desired objective is to develop a general ReID model which can be applied to as many

camera pairs as possible once properly trained. One ideal solution is unsupervised people

matching although existing methods (Wang et al., 2014a; Zhao et al., 2013b; Farenzena

et al., 2010) are still largely inferior compared to supervised counterparts (Zhao et al.,

2014a; Paisitkriangkrai et al., 2015; Ding et al., 2015).
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