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Fast Open-World Person Re-Identification
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Abstract—Existing person re-identification (re-id) methods
typically assume that (1) any probe person is guaranteed to
appear in the gallery target population during deployment (i.e.
closed-world), and (2) the probe set contains only a limited
number of people (i.e. small search scale). Both assumptions
are artificial and breached in real-world applications, since the
probe population in target people search can be extremely vast
in practice due to the ambiguity of probe search space boundary.
Therefore, it is unrealistic that any probe person is assumed as
one target people, and a large-scale search in person images is
inherently demanded. In this work, we introduce a new person
re-id search setting, called Large Scale Open-World (LSOW) re-
id, characterised by huge size probe images and open person
population in search thus more close to practical deployments.
Under LSOW, the under-studied problem of person re-id effi-
ciency is essential in addition to that of commonly-studied re-id
accuracy. We therefore develop a novel fast person re-id method,
called Cross-view Identity Correlation and vErification (X-ICE)
hashing, for joint learning of cross-view identity representation
binarisation and discrimination in a unified manner. Extensive
comparative experiments on three large scale benchmarks have
been conducted to validate the superiority and advantages of the
proposed X-ICE method over a wide range of the state-of-the-art
hashing models, person re-id methods, and their combinations.

Index Terms—Person re-identification, large probe population,
open search space, fast search, efficient matching, hashing.

I. INTRODUCTION

THE aim of person re-identification (re-id) is to match
people across non-overlapping cameras distributed over

wide physical areas [1]. Person re-id is inherently challenging
due to the large unknown variations across camera views in
human pose, illumination condition, view angle, occlusion and
background clutter. Re-id is usually performed by matching
visual appearance features of person images [2,3,4,5,6,7,8,9,
10,11,12,13,14,15,16,17,18]. Two unscalable assumptions are
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Fig. 1: Large scale open-world person re-identification aims
to re-identify a gallery target person (right box) among an
inherently immense probe search population (left box). This is
due to no prior knowledge about the search space boundary
and many non-target people are inevitable in deployments.
Target identity is indicated with coloured bounding box.

often made by existing methods: (1) Closed-world matching
where every probe person guarantees to exist in the gallery set,
which however is largely invalid for real-world applications
owning to no such prior knowledge available in deployments;
and (2) Small search space in contrast to enormous search
space in practice. Except the former closed-world assumption,
this is mainly due to the neglect of open-world matching nature
with no precise search space boundary available. Hence, it
is inevitable to consider a sufficiently large number of probe
people where an unknown high fraction are non-target persons.

Open-world person re-id has been recently investigated by a
few studies [19,20]. Specifically, Liao et al. [19] only discussed
a generic open-world re-id evaluation metrics. Zheng et al.
[20] presented a watch-list based open-world re-id setting
along with a transfer learning algorithm for overcoming label
scarcity. However, both works consider only a small scale re-
id matching scenario (i.e. the search space consists of a limited
number of probe people), while the inherent large scale search
scalability problem is still overlooked.

In this work, we propose a more realistic re-id setting, called
Large Scale Open-World (LSOW) person re-id. LSOW has
four important features: (I) Vast probe search population -
The probe image set captured by many cameras in open world
contains inevitably a large number of non-target people (also
known as imposters), th search space is therefore inherently
“large”. (II) Fast disjoint-view search - Fast search in large
data pools has been extensively investigated in image retrieval
[21]. However, the re-id problem is not a conventional image
retrieval problem, as it is particularly constrained by searching
person images across disjoint views. Cross-view search can
be largely influenced by significant appearance variation of a
person due to view transformation, pose and lighting condition
change, occlusion and etc. Thus, any fast re-id search models
should intrinsically address these challenges while achieving
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rapid matching. (III) Sparse training person identities - In
practice only a limited number of persons with cross-view
pairwise labelled data are available for building discriminative
person re-id models. (IV) Zero-shot transfer learning - In
contrast to conventional fast search methods that consider the
matching of training classes in deployment, re-id requires the
model transfer knowledge induced from seen training person
classes to unseen test person classes in cross-view sense. In a
nutshell, the LSOW re-id we investigate here can be regarded
as a hybrid of “open-world” re-id and fast search across
disjoint views. It challenges existing re-id models in search
efficiency and fast search models in re-id efficacy. Under
LSOW, re-id efficiency becomes substantially critical: Without
the capability of “fast search” over a huge probe population,
performing person re-id is not practically applicable and usable
even with satisfied recognition accuracy.

To overcome the LSOW challenges, we propose a fast
person re-identification matching approach. It enables to not
only learn jointly cross-view identity correlation and discrim-
ination, but also perform efficient cross-view matching in
deployment. This is realised by exploiting the hashing strat-
egy commonly used in large scale nearest neighbour search
[21]. Specifically, we formulate a novel cross-view identity
discriminative hashing approach to simultaneously binarising
identity representation and learning person discrimination in
a unified formulation. In deployment, person images can be
represented by short hash codes. Fast re-id search is then
achieved by efficient hamming distance. Note, the proposed
model is unique to conventional fast search approaches [22,23,
24,25,26,27,28,29,30,31] due to the capability of addressing
the significant matching challenges inherent to large viewing
condition variations across cameras under the “open-world”
setting. It is also unique to conventional re-id approaches
[4,6,12,32,33,34,35,36,37] due to the capability of learning
compact binary representation for effective fast matching.

We extend significantly our preliminary work [38] by mak-
ing three contributions in this manuscript: (1) We propose
a more realistic Large Scale Open-World (LSOW) person re-
id problem. The LSOW eliminates two artificial assumptions
made by existing re-id models that fundamentally prevent them
from being scalable and applicable to real-world deployments.
(2) We develop a new person re-id method, called Cross-view
Identity Correlation and vErification (X-ICE), for efficiently
and effectively addressing LSOW re-id matching. In particular,
X-ICE learns a re-id discriminative binary coding space by si-
multaneous cross-view identity correlation hashing and person
class discrimination verification. (3) We extensively evaluate a
wide range (14) of state-of-the-art hashing methods for LSOW
person re-id. To our knowledge, this is the first attempt to
investigate fast search solutions for large scale re-id in open
world. We validated the effectiveness and advantages of X-
ICE by extensively comparing both state-of-the-art hashing
and person re-id models on three large benchmarking datasets,
CUHK03 [39], SYSU [36], and Market-1501 [40].

II. RELATED WORK

Person re-identification. Existing person re-id methods
focus on either extracting discriminative view-invariant fea-

tures [3,6,16,18,32,33,39,41,42,43,44,45] or learning match-
ing distance metrics [4,7,8,12,14,34,35,36,37,46,47,48,49,50,
51,52,53]. They typically assume an impractical closed-world
person re-id scenario – probe and gallery people are com-
pletely overlapping in model deployment. This is not true
considering the complex camera network topology in common
video surveillance sites, unknown probe search scope, and
inevitable occurrence of imposters. In practice, re-id of gallery
target people is carried out against a large probe search
population, i.e. large scale open-world person matching. The
recent person search work [54] considers jointly detection
and re-id in a closed-world scenario. While a few works
consider open-world person re-id [19,20], their setting is still
not practical for real-world deployments, due to the small
search scale assumption. In contrast to these existing works,
the proposed Large Scale Open-World (LSOW) re-id setting
eliminates both closed-world and small probe search space
assumptions. This opens a more meaningful research topic for
developing scalable person re-id methods. Under the LSOW
setting, we further investigate particularly the under-studied
but critical re-id matching efficiency issue. This is done by
jointly exploring learning to hash and discriminative person
re-id matching in a principled formulation.

Hashing. Hashing is commonly adopted in large scale
similarity search, due to its low time and space complexity
[21]. From data modality view point, existing hashing methods
can be broadly grouped into two classes: (1) single-modality
based, and (2) multi-modality based. Algorithmically, cross-
view methods [22,23,24] should be regarded as a special
case of the latter if treating a camera view as an individual
modality. In the literature, single-modal hashing methods have
been extensively investigated. Representative unsupervised
and supervised models include Locality Sensitive Hashing
[25,26], Spectral Hashing [27], PCA Hashing [28], Anchor
Graphs Hashing [29], Kernel-based Supervised Hashing [30],
Supervised Discrete Hashing [31], and so forth. Multi-modal
hashing methods can be summarised as some joint learning
of individual data modalities for establishing a shared cross-
modal coding space. In this space, semantically similar cross-
modal samples are enforced to be close, otherwise distant.
As such, cross-modal search and matching can be similarly
realised as the single-modal case. Notable multi-modal hashing
models are Predictable Dual-view Hashing [55], Cross-View
Hashing [56], Cross-Modality Similarity Sensitive Hashing
[57], Deep Hashing [58], to name a few.

All these existing hashing methods are designed for generic
classification tasks given a large search database, e.g. match-
ing the category semantics (among the seen ones in model
training) of a query sample. They are less suitable (see
evaluations in Section IV-C) for the more challenging person
re-id problem characterised by disjoint training and test person
classes, more subtle difference between classes, and complex
appearance change of the same class across camera views.
The proposed LSOW problem is even more difficult due to:
(1) A limited amount of target person class training data,
(2) A large number of (potentially infinite) person classes in
deployment, and (3) Many different person classes may share
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visually similar appearance. All these issues pose additional
modelling challenges to existing hashing methods. In this
study, we jointly cope with these challenges by formulating
a new cross-camera hashing based person re-id method. The
proposed method combines the advantages of both supervised
hashing and person re-id models in a principled manner in
order to favourably solve the LSOW problem.

III. FAST OPEN-WORLD PERSON RE-IDENTIFICATION

A. Problem Statement

Suppose we need to identify a small set of ng gallery
(target) people G̃ = {Ĩgi }

ng

i=1 (see Figure 1) captured from mg

cameras {Camg
i }
mg

i=1 in deployment. To automate the person
re-id process, we extract the visual features x̃gi ∈ R1×d (with d
the feature dimension) to characterise the appearance pattern
of corresponding person images. The feature matrix for all
gallery people is denoted as X̃g ∈ Rng×d where each row
represents a person image. The search space is formed by np
probe person images P̃ = {Ĩpi }

np

i=1 captured by different mp

cameras {Camp
i }
mp

i=1 with disjoint field of view against any of
ng gallery cameras. The visual features of probe images P̃
are denoted as X̃p ∈ Rnp×d. For both P̃ and G̃ image sets,
one person may be associated with multiple images from the
same camera view, i.e. multi-shot re-id setting [59]. For brevity
and clarity, in the remainder, we may use feature vectors to
stand for the corresponding images. Test data are indicated
with mathematics mode accent ∗̃ (e.g. x̃ as a test image feature
vector) for clear differentiation from training data (e.g. x).

In real-world applications, the probe set P̃ can be rather
vast, e.g. np >> ng . Also, we have no knowledge whether a
probe image x̃ describes one gallery target person in prior
to re-identification, i.e. open-world. There can be a large
quantity of non-target people (imposters) in the probe set
P̃ . For building a discriminative re-id model, a reasonable
amount of human labelling budget is often allocated to collect
a set of pairwise training data Dtr = {xpi ,x

g
j ,Sij}ni=1 for one

or multiple camera pairs. The label Sij ∈ {0, 1} indicates
whether a image pair describes the same person (1) or not
(0). To make the labelled data effective for re-id the gallery
people G̃, human annotators are likely to form camera pairs
by selecting one from gallery views {Camg

i }
mg

i=1 and the one
from probe views {Camp

i }
mp

i=1 in constructing the cross-camera
training data. Due to limited budget and likely large number
of gallery/probe cameras involved, it shall be impossible to
exhaustively enumerate all such camera pairs. We call the
problem above Large Scale Open-World (LSOW) person re-
identification. The proposed LSOW is more realistic to practi-
cal deployments, different significantly from existing settings
with closed-world and small search scale assumptions [59].

B. Approach Overview

Under LSOW, it is desired and necessary to resolve the
person re-id efficiency issue. To this end, we propose exploring
the hashing scheme, a well-known fast approximate nearest
neighbourhood search approach by learning short binary codes
[21]. However, traditional hashing methods are typically de-
veloped for the generic classification problem, rather than

person re-id requiring the challenging knowledge transfer
from seen training classes to unseen test classes. Hence,
they are potentially suboptimal. In this work, we formulate
a new model for LSOW. Formally, we assume n cross-view
true matching training image pairs {(xpi ,x

g
i )}ni=1 from nid

different persons, with their corresponding feature matrices:
Xp ∈ Rn×d (of training probe images) and Xg ∈ Rn×d (of
training gallery images), where xpi and xgi are the i-th row
of Xp and Xg , respectively. Each training image xi from
any camera is associated with a one-hot identity label vector
yi ∈ Rnid×1 with the corresponding element as “1” and all
others as “0”. The feature data are preprocessed to be zero-
centered [28,60], i.e.

∑n
i=1 x

p
i = 0 and

∑n
i=1 x

g
i = 0 where

0 is d-dimensional zero vector. The identity label matrix S is
defined on cross-view image pairs, with elements as:

Sij =

{
1 if xpi and xgj are of the same person,
0 otherwise.

(1)

We want to learn two hashing functions in training:

fp(x
p
i ) = xpiWp, fg(x

g
j ) = xgjWg, (2)

where Wp ∈ Rd×c (for probe views) and Wg ∈ Rd×c (for
gallery views) denote the to-be-learned function parameters
(data projection matrices). The hash codes of length c can be
obtained by thresholding as

Bp = sign(XpWp) ∈ {−1, 1}np×c,

Bg = sign(XgWg) ∈ {−1, 1}ng×c,
(3)

where the element-wise function sign(·) returns “1” for
positive numbers and “−1” for non-positive numbers. For
performing LSOW re-id matching, two steps are included:
(1) Encoding person images into compact hash codes; (2)
Matching the identity of a given gallery image against a large
open probe population by the efficient hamming distance in
hash coding space. For achieving re-id discrimination, we shall
require that the hash codes are similar for intra-identity images
and dissimilar for inter-identity ones in cross-camera sense.
This is realised by formulating a novel Cross-view Identity
Correlation and vErification (X-ICE) model.

C. Joint Correlation Hashing and Discriminative Verification

X-ICE has two parts: (I) cross-view identity correlation
hashing, and (II) cross-view identity verification regularisation.

(I) Cross-view Identity Correlation Hashing. For extracting
person-sensitive appearance information, we exploit positive
pairwise training data since they encode most discriminative
knowledge for person re-id. To characterise the underlying
identity correlation across camera views, we adopt the cosine
similarity between cross-camera person images:

cosine
(
fp(x

p
i ), fg(x

g
j )
)

=
fp(x

p
i )
(
fg(x

g
j )
)>

‖fp(xpi )‖2‖fg(x
g
j )‖2

=
xpiWpW

>
g xg>j√

xpiWpW>
p xp>i

√
xgjWgW>

g xg>j

.

(4)
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In spirit of maximum margin [61,62], we further replace the
ratio relation with subtraction in Eqn. (4) as:

cosine
(
fp(x

p
i ), fg(x

g
j )
)
≈ (5)

xpiWpW
>
g xg>j −

√
xpiWpW>

p xp>i

√
xgjWgW>

g xg>j .

Then, we define the hashing quantisation loss:

lquan =
∑

s∈{p,g}

‖Bs −XsWs‖2F , (6)

with ‖ · ‖F denoting the Frobenius/Euclidean norm. After
combining the quantisation loss into Eqn. (5), we have the
following hashing optimisation (minimisation) problem:

Oic =
(
‖Bp −XpWp‖2F + ‖Bg −XgWg‖2F

)
︸ ︷︷ ︸

Quantisation loss

−α
∑
(i,j)

Sij

(7)

×
(
xpiWpW

>
g xg>j −

√
xpiWpW>

p xp>i

√
xgjWgW>

g xg>j

)
︸ ︷︷ ︸

Approximated cross-view positive correlation

s.t. W>
p Wp = Ic×c, W>

g Wg = Ic×c,

where α is a trade-off parameter. The two constraints under-
neath enforce Wp and Wg to be orthogonal projections. Note
that, we use a single model to characterise either all probe
cameras (Wp) or all gallery cameras (Wg). This not only
simplifies the model learning and deployment task, but also
mitigates significantly the tedious requirement of collecting
per camera-pair training data (prohibitive in real-world since
there are a quadratic number of camera pairs).

View Context Discrepancy Regularisation. Visual context
has proven important in various vision problems [63,64,65]. In
person re-id, visual context refers to the similarity/dissimilarity
relation of different camera views in terms of imaging charac-
teristics and environmental factors, e.g. viewpoint, background
and illumination conditions. Intuitively, similar imaging con-
dition between probe and gallery cameras should mean small
discrepancy between hashing models Wp (probe) and Wg

(gallery), and vice verse. Motivated by [36], we enforce a View
Context Discrepancy (VCD) regularisation into our cross-
view identity correlation hashing algorithm. The purpose is to
globally and contextually regularise the identity coding proce-
dure by explicitly imposing the viewing condition correlation
constraint in model optimisation.

Formally, we model the discrepancy between hashing mod-
els Wp and Wg by the Bregman divergence [66,67]:

dhbreg = h(Wp)− h(Wg)−∆h(Wg)
>(Wp −Wg), (8)

where h denotes a strictly convex function: h : Rd×c → R,
with its derivative defined as ∆h(·). We adopt the Frobenious
norm due to its formulation consistency with the proposed
identity correlation modelling (Eqn. (7)) and therefore facil-
itating model optimisation. Specifically, by setting h(W∗) =
‖W∗‖2F , we have

Rvcd = ‖Wp −Wg‖2F . (9)

We then extend our objective function (Eqn. (7)) as

Oic + λvcd‖Wp −Wg‖2F︸ ︷︷ ︸
VCD

, (10)

where λvcd > 0 is the trade-off parameter for balancing
hashing loss and VCD regularisation.

Upper Bound Approximation. It is difficult to exactly optimise
Oic. We therefore derive an upper bound. Specifically, by the
Jensen’s inequality [68], we have√

xpiWpW>
p xp>i

√
xgjWgW>

g xg>j

≤ 1

2

(
xpiWpW

>
p xp>i + xgjWgW

>
g xg>j

)
,

(11)

which can be used to simplify the approximated cross-view
positive correlation in Eqn. (7). The matrix form is:

tr(W>
p X>p SXgWg)−

1

2

(
tr(W>

p X>p LrXpWp) + tr(W>
g X>g LcXgWg)

)
.

(12)

As such, we build an upper bound Oub
ic as

Oic ≤ Oub
ic = (13)(

‖Bp −XpWp‖2F + ‖Bg −XgWg‖2F
)
−

α
(

tr(W>
p X>p SXgWg)−

1

2
tr(W>

p X>p LrXpWg)−
1

2
tr(W>

g X>g LcXgWg)
)
,

where Lr and Lc are diagonal matrices with elements as the
row and column summation of identity label matrix S. We
then assemble parameters from different camera views as

Z =

[
Xp 0
0 Xg

]
, S̃ = α

[
−Lr S
S> −Lc

]
+ λvcd

[
−I I
I −I

]
(14)

Hence we obtain

Oub
ic + λvcdRvcd

= ‖B −ZW ‖2F − tr(W>Z>S̃ZW )

= ‖B‖2F + ‖ZW ‖2F − 2tr(BW>Z>)− tr(W>Z>S̃ZW )

= nc+ tr(ZWW>Z>)− 2tr(BW>Z>)− tr(W>Z>S̃ZW )

s.t. W>W = I, with W =
[
W>

p ;W>
g

]>
∈ R2d×c

(15)

where I is identity matrix. We impose the orthogonality
constraint on W for facilitating optimisation. We call this
above formulation Cross-view Identity Correlation Hashing.

(II) Cross-view Identity Verification Regularisation. We
leverage the available person class labels by Cross-view
Identity Verification regularisation for further benefiting re-
id discriminative hashing. Specifically, we introduce a linear
transformation U = [u1, . . . ,unid ] ∈ Rc×nid to model the
relation between binary hash codes and identity class labels.
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This connection is quantified by a loss function lie(yi,U>bi)
under cross-view identification, e.g. hinge loss1:

lie(yi,U
>bi) = ‖U‖2F + ηhinge

n∑
i=1

εi (16)

s.t. ∀i, j u>kibi − u>j bi + yi,j ≥ 1− εi, εi ≥ 0

where ki denotes the person identity class of sample xi, εi
refers to the non-negative slack variable, ηhinge is a balance
parameter, yi is identity one-hot label vector of image xi with
the element yi,ki = 1 and all others 0. In essence, identity
verification regularisation by hinge loss enforces a one-vs-all
optimisation constraint through posing discriminative margins
between different person classes in the coding space. This is
because U is no longer useful in deployment. This design
not only increases the identity discrimination of learned hash
functions, but also helps open-world re-id matching due to the
inherent person class verification regularisation given by the
loss function.

By incorporating the identity verification loss (Eqn. (16)),
we extend our model objective (Eqn. (15)) as follow:

Oice = Oic + λvcdRvcd + λie

n∑
i=1

lie(yi,U
>bi)︸ ︷︷ ︸

Identity Verification

(17)

= Oic + λieOie + λvcdRvcd,

s.t. W>W = I, (18)

where

Oie =

n∑
i=1

lie(yi,U
>bi) = lie(Y ,U

>B>) (19)

where Y ∈ {0, 1}nid×(np+ng) represents all training iden-
tity labels yi (nid the training identity size, np/ng the
probe/gallery image size), B = [Bp;Bg] is a row-wise
aggregation of the probe (Bp) and gallery (Bg) hash code
matrices (Eqn. (3)); λie is the weight of Oie. We call our
model “Cross-view Identity Correlation and vErification” (X-
ICE) hashing.

D. Model Optimisation

To learn the proposed X-ICE model, we develop an alternat-
ing optimisation algorithm to infer model parameters, i.e. W ,
B, and U . Specifically, we start by randomly initialising W (0)

and computing B(0) with Eqn. (3). We then perform iteratively
the following three routines until the model converges or the
pre-defined maximal iteration number nit reaches. Algorithm
1 summarises the optimisation of X-ICE.
(i) Fix W (t) and B(t) to optimise U (t). Oub

ic and Rvcd are
constant and we only need to optimise Oie. The loss function
lie in Eqn. (16) is a standard multi-class SVM formulation
[69,70]. It can be solved with any off-the-shelf solvers [71].

(ii) Fix B(t) and U (t) to optimise W (t+1). Oie is fixed and
we need to optimise Oub

ic + λvcdRvcd. Through introducing

1The loss function for cross-view identity verification regularisation can be
alternative forms, and we further discuss the regression (reg) loss later.

a Lagrangian multiplier Λ with respect to the constraint
W>W = I , we can rewrite Eqn. (15) as:

L = Oub
ic (W ) + λvcdRvcd −

1

2
tr
(
Λ(W>W − I)

)
. (20)

As W>W is symmetric, so is this Lagrangian multiplier Λ.
By setting the gradient of Eqn. (20) w.r.t W to zero, we have

∂L(W ,Λ)

∂W
=
∂Oub

ic (W ) + λvcdRvcd

∂W
−WΛ = 0. (21)

For expression simplicity, we define

G =
∂Oub

ic (W ) + λvcdRvcd

∂W
= 2(Z>ZW −Z>S̃ZW −Z>B).

(22)
After multiplying both sides of Eqn. (21) by W>, applying
W>W = I and the symmetric property of Λ, we have

Λ = W>G = G>W . (23)

From Eqns. (21) (22) (23), we obtain

∂L(W ,Λ)

∂W
= G−WG>W (24)

= GW>W −WG>W

= (GW> −WG>)W .

By further introducing a skew-symmetric matrix [72]:

A = GW> −G>W , (25)

we can subsequently update iteratively W by the Crank-
Nicolson-like scheme [73]:

W t
(ν+1) = W t

(ν) −
δ

2
A(W t

(ν) + W t
(ν+1)), (26)

where δ is the step size. By solving Eqn. (26), we obtain

W t
(ν+1) = QW t

(ν), (27)

with
Q = (I +

δ

2
A)−1(I − δ

2
A).

Hereafter, we iteratively update W t
(ν) with Eqn. (27) using

the Barzilai-Borwein method [72]. In particular, we start from
W t

(0) = W (t) and stop optimising W t
(ν) until it converges or

the maximum iteration number nwit reaches. We set W (t+1)

with the final W t
(ν). Note that solving W alone is by a separate

inner iterative procedure, different from the outer iteration
among U , B and W .

(iii) Fix W (t+1) and U (t) to optimise B(t+1). In this case,
Rvcd is constant, and we need to optimise

min
B

λielie(Y ,U
>B>)− 2tr(BW>Z>), (28)

which is a mixed-integer NP-hard optimisation problem. Note
that, in model optimisation, B depends on not only W but
also U for imposing identity class discrimination constraint.
A typical practice is by continuous relaxation: first obtaining
a continuous solution to B which is subsequently thresholded
to generate the binary codes [27,28,29]. However, such ap-
proximation may be sub-optimal. In this study, we seek for
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Algorithm 1: Learning the proposed X-ICE model
Input: Training data: Xp, Xg; identity label matrix: S; hash

code length: c; iteration numbers: nit, nwit;
hyper-parameters: α, λvcd, λie;

Output: Cross-view hashing function parameter: W ;

1 (I) Parameter initialisation
2 Randomly initialise W (0);
3 Compute B(0) with Eqn. (3);

4 (II) Model optimisation
5 for t = 0 : nit − 1 do
6 (i) Optimise U (t) when fixing W (t) and B(t);
7 – For the hinge loss, by Eqn. (16);
8 – For the regression loss, by Eqn. (36);

9 (ii) Optimise W (t+1) when fixing B(t) and U (t);
10 – For either hinge or regression loss, by Eqn. (27);

11 (iii) Optimise B(t+1) when fixing U (t) and W (t+1);
12 – For the hinge loss, by Eqn. (34);
13 – For the regression loss, by Eqn. (41);
14 end
15 Return W = W (nit).

the exact optimal solution in spirit of discrete hashing [31]. In
particular, we perform sample-wise optimisation as

min
B

‖bsi − xsiWs‖2F , s ∈ {p, g} (29)

s.t. ∀j u>kib
s
i − u>j b

s
i + yi,j ≥ 1− εi, (30)

where ki is the identity class of image xsi . By transforming
the constraints Eqn. (30) as

∀j Cj = (uki − uj)
>bsi + (yi,j − 1 + εi) ≥ 0, (31)

and incorporating them with Eqn. (29), we have

min
B

‖bsi − xsiWs‖2F − λb
nid∑
j=1

Cj (32)

≡ max
B

bs>i
(
xsiWs +

λb
2

nid∑
j=1

(uki − uj)
)
, (33)

where λb is a balancing parameter (we set λb = 1 in our
experiments). In other words, Eqn. (33) is a transformed
optimisation formulation of Eqn. (29) subject to the constraints
Eqn. (30). The optimal solution of Eqn. (33) is

bsi = sign
(
xsiWs +

λb
2

nid∑
j=1

(uki − uj)
)
. (34)

In this way, we can obtain the optimal binary codes for all
training samples.

E. Alternative Identity Verification Loss Function

Apart from the hinge loss for lie (Eqn. (16)), other function
forms can be flexibly adopted in our X-ICE model. We
additionally consider the Euclidean regression (reg) loss. As
such, we also need to modify the optimisation as Section III-D.
Specifically, in step (i), instead of Eqn. (16) we solve

min
U

‖Y −U>B>‖2F , (35)

which has a closed-formed solution:

U = B−1Y >. (36)

In step (iii), rather than Eqn. (29) we need to minimise

λie‖Y −U>B>‖2F − 2tr(BW>Z>) (37)

=λie

(
‖Y ‖2F − 2tr(BUY ) + ‖BU‖2F

)
− 2tr(BW>Z>)

=λie‖Y ‖2F︸ ︷︷ ︸
const

+λie‖BU‖2F − 2tr
(
B(λieUY + W>Z>)

)
,

where ‖Y ‖2F = np+ng is constant so ignorable. For notation
brevity, we denote R = λieUY + W>Z>. Rather than
learning the discrete B in one time, we alternatively optimise
it in a bitwise manner. Formally, at one time we optimise only
the i-th column b̈i ∈ {−1, 1}(np+ng)×1 of B (i.e. the i-th bit
of all training images) whilst all other columns are fixed. We
denote B−i = B \ b̈i. Similarly, we define üi as the i-th row
of U and U−i = U \ üi. As such, we have

‖BU‖2F = tr(U>B>BU) (38)

= tr(üib̈>i b̈iü
>
i )︸ ︷︷ ︸

const

+2ü>i U
>
−iB

>
−ib̈i + const,

where tr(üib̈>i b̈iü
>
i ) = (np + ng)ü

>
i üi is constant. Then,

we define r̈i as the i-th row of R and R−i = R \ r̈i. We
analogously obtain

tr(BR) = r̈>i b̈i + const. (39)

After integrating Eqns. (38) and (39) into Eqn. (37), our
optimisation problem becomes minimising

(λieü
>
i U
>
−iB

>
−i − r̈>i )b̈i, (40)

which can be directly solved as

b̈i = r̈i − λieB−iU−ir̈i. (41)

As such, we compute all b̈i of B iteratively and stop until
there is no change in each binary bit. Typically, we perform
only ≤ 5 times of optimisation for each bit in our experiments.

IV. EXPERIMENTS

A. Datasets and Evaluation Settings

Datasets: Three large-scale contemporary person re-id datasets
were utilised in our evaluations: (I) The CUHK03 dataset
[39] has 13, 164 images from 1, 360 people captured by 6
surveillance cameras in a university. Each person identity is
observed by two different cameras, with an average of 4.8
images per view (Figure 2(a)). (II) The SYSU dataset [36]
contains totally 24, 446 images from 502 people captured by
2 cameras on a university campus (Figure 2(b)). (III) The
Market-1501 dataset [40] was collected from 6 surveillance
cameras near a university supermarket, including 32, 668
bounding boxes of 1, 501 identities (Figure 2(c)). All three
re-id datasets are challenging due to the significant unknown
covariates across different camera views, random inter-object
occlusion and distracting background clutters.
Baseline methods: We extensively considered a wide range
of state-of-the-art hashing methods, including (I) unsupervised
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(a) CUHK03 [39] (b) SYSU [36] (c) Market-1501 [40]

Fig. 2: Example person images, with two images in each column corresponding to the same person for every dataset.

Locality Sensitive Hashing (LSH) [25], Spectral Hashing
(SH) [27], Scalable Graph Hashing (SGH) [74], Iterative
Quantisation (ITQ) [75]; (II) supervised Kernel-based Super-
vised Hashing (KSH) [30], Canonical Correlation Analysis
[76] + Iterative quantisation [75] (CCA+ITQ) where CCA
is utilised for supervised projection learning, Fast Hashing
(FH) [77], Supervised Discrete Hashing (SDH) [31], Column
Sampling based Discrete Supervised Hashing (COSDISH)
[78]; (III) multi-modal Semantic Preserving Hashing (SePH)
[79], Semantic Correlation Maximization (SCM) [60], Cross-
View Hashing (CVH) [56], Collective Matrix Factorization
Hashing (CMFH) [80], Cross-Modality Similarity Sensitive
Hashing (CMSSH) [57]. For evaluating how competitive the
hashing based re-id models are against conventional person
re-id approach under the LSOW re-id scenario, we further
evaluated (IV) five state-of-the-art re-id methods, KISSME
[34], CVDCA [36], XQDA [6], MLAPG [11], and DNS [12].

Evaluation protocol: For simulating the practical large scale
open-world person re-id scenario, we created specifically the
following data partitions. We first split the whole person
identity population randomly into two disjoint parts: one for
training (360/202/501) and one for test (1000/300/1000)
on CUHK03, SYSU and Market-1501, respectively. In the
test data, we selected randomly 10 target people for re-
identification. As a result, there are 990/290/990 probe im-
posters for CUHK03, SYSU and Market-1501. To achieve
statistically reliable evaluations, we repeated 10 folds of train-
ing/testing data splits, on each of which we further performed
10 times of target people random selection. We utilised the
averaged results over all 100(= 10×10) trials for performance
comparison among all methods.

We set the probe and gallery camera view(s) as followings.
For CUHK03, person image data are provided in the form
of camera pair. We therefore used one camera of each pair as
gallery view and the other as probe view for ensuring the cross-
view matching property. For SYSU which has two cameras,
we similarly used one camera as gallery view and the other
as probe view. For Market-1501 which provides the camera
label for each person image, we utilised a 2(gallery)/4(probe)
camera split. The purpose is to simulate the open-world person
re-id scenario as well as possible: (1) Large search space, i.e.
more probe views to be searched against with a large number
of persons; and (2) Multiple gallery camera views.

We considered two performance evaluation criteria [20]:

(I) Set Verification (SV): Verifying whether a given probe
person belongs to any gallery target person; and (II) Individual
Verification (IV): verifying whether a given probe image is of
one specific target person. IV is a special case of SV when
there is only one target person in the gallery set.

Evaluation metrics: Given the existence of imposters (i.e.
non-target people) in the probe population, we need to measure
how well the probe images of target people are correctly
verified and how well the probe images of imposters are
successfully filtered out. We used two metrics [20]: (1) True
Target Rate (TTR) and (2) False Target Rate (FTR):

TTR =
Nt2t
Nt

, FTR =
Nnt2t
Nnt

(42)

where Nt and Nnt denote the numbers of probe images
from target and non-target people; Nt2t is the number of
correctly verified probe images of target people; Nnt2t denotes
the number of probe images of non-targets but verified as
target people. TTR and FTR can be applied for both set and
individual verification criteria due to their intrinsic connection.

Specifically, for set verification we compute TTR and
FTR as below: (1) We first compute the matching distance
{d(x̃p, x̃gi )} between a given probe x̃p and all gallery {x̃gi };
We denote i∗ = arg min

i
{d(x̃p, x̃gi )} and consider the i∗-th

gallery image as the most matched person. (2) Given a thresh-
old θm, we verify x̃p as the target person if d(x̃p, x̃gi∗) < θm,
otherwise as an imposter. (3) We count a correct target match
only when d(x̃p, x̃gi∗) < θm, also x̃gi∗ and x̃p are from the
same target person. In contrast, we mark a false target match
when d(x̃p, x̃gi∗) < θm but x̃p is actually from an imposter.
(4) We repeat these steps for every probe image. (5) We
compute TTR and FTR scores for all probes by Eqn. (42).
For individual verification, we compute TTR and FTR for
each target person with the same steps as set verification. In
this case, the gallery set contains the images of this target
person alone. We average over all target people to obtain the
final TTR and FTR scores w.r.t. a given θm. We can obtain
different (TTR, FTR) pairs and form a Receiver Operating
Characteristic (ROC) curve by varying θm. When evaluating
different methods, we compare their TTR measures against a
series of FTR so that model performance can be measured
under different verification standards.

Additionally, we utilised mean Average Precision (mAP) to
evaluate the holistic ranking performance. First, we compute
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TABLE I: Evaluating model components. (Metric: TTR (%) at varying FTRs (%). IV: Individual Verification, SV: Set Verification. Both SV and
IV utilise the same TTR/FTR metric.)

Loss Metric Dataset CUHK03 [39] SYSU [36] Market-1501 [40]
FTR 1% 5% 10% 20% 30% 1% 5% 10% 20% 30% 1% 5% 10% 20% 30%

hinge

IV

X-IC 42.45 72.59 84.52 93.29 96.61 54.79 80.04 88.75 94.93 97.59 55.52 81.10 89.07 95.42 97.83
X-ICE\VCD 42.78 73.19 84.23 93.19 96.76 54.50 81.02 89.75 95.65 97.89 57.85 84.44 91.93 96.31 97.99

ICE 47.09 74.18 85.73 93.68 96.83 60.48 83.36 90.66 95.97 97.92 63.79 87.10 93.18 97.14 98.67
X-ICE 49.67 79.60 89.50 96.09 98.48 61.86 84.10 91.47 96.35 98.26 66.52 88.03 93.66 97.15 98.55

SV

X-IC 12.02 30.17 43.58 60.59 72.32 17.25 38.18 52.45 68.59 78.18 21.73 43.62 56.69 71.37 79.88
X-ICE\VCD 13.31 31.98 45.45 62.27 72.85 19.36 41.86 55.32 70.91 80.08 18.53 43.11 58.41 74.09 82.62

ICE 15.40 35.34 48.50 64.48 73.75 24.43 47.42 60.09 73.36 81.36 20.69 46.80 62.91 77.69 85.03
X-ICE 16.41 37.50 50.14 66.56 77.30 23.32 46.84 60.48 74.20 82.37 26.81 52.73 66.47 79.66 86.16

regression

IV

X-IC 42.45 72.59 84.52 93.29 96.61 54.79 80.04 88.75 94.93 97.59 55.52 81.10 89.07 95.42 97.83
X-ICE\VCD 41.74 70.61 83.87 92.99 96.78 55.62 81.45 89.73 95.68 97.85 56.75 83.87 91.6 96.61 98.3

ICE 44.06 73.36 85.29 94.21 96.91 59.38 81.74 89.40 95.33 97.42 61.16 85.22 91.93 96.73 98.39
X-ICE 49.96 78.18 88.96 95.88 97.98 63.13 84.86 91.52 96.17 98.08 64.18 86.98 92.91 97.09 98.59

SV

X-IC 12.02 30.17 43.58 60.59 72.32 17.25 38.18 52.45 68.59 78.18 21.73 43.62 56.69 71.37 79.88
X-ICE\VCD 12.54 32.36 45.47 61.15 71.09 20.67 43.26 56.63 71.36 80.49 17.24 41.84 56.82 73.62 82.58

ICE 14.77 33.83 46.77 63.17 73.14 23.85 46.65 59.26 72.30 80.40 19.64 43.63 59.33 75.80 83.38
X-ICE 16.37 37.36 49.71 65.49 76.03 25.94 49.94 62.59 75.91 83.30 22.27 48.12 62.87 77.13 84.55

TABLE II: Evaluating different loss functions for cross-view identity verification. (Metric: TTR (%) at varying FTRs (%)).

Criterion Dataset CUHK03 [39] SYSU [36] Market-1501 [40]
FTR 1% 5% 10% 20% 30% 1% 5% 10% 20% 30% 1% 5% 10% 20% 30%

IV hinge 49.67 79.60 89.50 96.09 98.48 61.86 84.10 91.47 96.35 98.26 66.52 88.03 93.66 97.15 98.55
regression 49.96 78.18 88.96 95.88 97.98 63.13 84.86 91.52 96.17 98.08 64.18 86.98 92.91 97.09 98.59

SV hinge 16.41 37.50 50.14 66.56 77.30 23.32 46.84 60.48 74.20 82.37 26.81 52.73 66.47 79.66 86.16
regression 16.37 37.36 49.71 65.49 76.03 25.94 49.94 62.59 75.91 83.30 22.27 48.12 62.87 77.13 84.55
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Fig. 3: Evaluating parameter sensitivity.

the Average Precision (AP) for each probe, i.e. the area under
the Precision-Recall curve; mAP is calculated as the mean of
APs over all probes. Hence, mAP provides a comprehensive
metric by considering the quality of all rank lists.

Visual features: We adopted a state-of-the-art re-id feature
LOMO [6] for person image representation. To remove redun-
dancy and noise, we performed principal component analysis
on the raw features and used the top-1000 dominant compo-
nents as the final features. We also evaluated the deep feature
and discussed the effect of different representations.

Implementation details: For fair comparison, we used the
same evaluation protocol for all compared models. We utilised
the codes released by the original authors if available with
their recommended parameter settings. The default parameter
settings in our evaluations are: c = 256 (Eqn. (3)); α = 2
(Eqn. (7)); λvcd = 0.05 (Eqn. (10)); λie = 0.01 (Eqn. (17));
ηhinge = 0.01 (Eqn (16)); nit = 20, nwit = 10 (Eqn. (27)), and
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Fig. 4: Model convergence analysis by tracking the hashing
objective function Eqn. (7) (dashed curves) and its upper
bound Eqn. (13) (solid curves) over training iterations.

λb = 1 (Eqn. (33)).

B. Evaluating Our Proposed Method

We evaluated the X-ICE method in the following aspects:
(1) Effect of model components; (2) Effect of different loss
functions in cross-view identity verification regularisation;
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TABLE III: Comparing state-of-the-art hashing methods. (Metrics: TTR (%) at varying FTRs (%), and mAP (%).)
Dataset CUHK03 [39] SYSU [36] Market-1501 [40]
Metric Individual Verification mAP Individual Verification mAP Individual Verification mAP

1% 5% 10% 20% 30% (%) 1% 5% 10% 20% 30% (%) 1% 5% 10% 20% 30% (%)
LSH [25] 15.03 34.87 48.12 64.66 75.20 1.91 21.21 43.73 57.42 72.17 81.17 5.48 37.00 61.56 73.43 85.12 90.92 8.28
SH [27] 11.97 27.8 39.99 54.73 65.35 1.49 17.60 34.21 45.63 60.14 70.27 4.18 38.54 58.69 69.47 80.71 86.75 9.29

SGH [74] 16.95 37.37 50.71 66.45 76.76 2.36 27.18 49.21 61.74 75.34 82.92 8.03 37.75 63.16 75.05 86.13 91.76 8.69
ITQ [75] 17.31 39.29 53.06 69.12 80.24 2.70 26.51 49.55 63.18 77.04 84.87 7.47 40.72 67.17 78.67 88.51 93.41 10.84

CCA+ITQ [75] 28.11 51.15 65.05 78.95 86.37 4.28 50.50 73.75 83.16 91.08 94.67 18.12 57.75 80.30 87.53 93.47 96.17 15.02
KSH [30] 32.29 57.54 69.78 81.73 88.96 5.49 53.23 77.28 85.88 92.62 95.62 22.29 59.03 81.83 89.01 94.26 96.41 17.34
FH [77] 20.01 40.07 52.32 67.35 77.39 1.03 29.48 50.56 62.42 75.58 83.65 8.07 28.24 48.88 60.59 73.92 81.61 5.07

SDH [31] 38.80 66.82 78.83 88.15 93.03 7.31 46.09 72.34 82.76 90.75 94.51 17.99 58.03 81.26 88.22 94.16 96.29 15.57
COSDISH [78] 13.19 29.18 40.33 56.88 68.23 1.55 38.04 61.43 72.73 83.95 89.38 11.51 39.29 62.26 73.49 83.68 89.04 8.44
CMSSH [57] 10.46 32.46 49.80 68.67 80.45 1.25 11.06 33.76 50.51 70.55 82.29 3.18 8.88 29.25 46.49 67.02 79.56 1.55

CVH [56] 2.83 10.09 17.81 31.05 42.51 0.39 5.76 19.67 31.77 49.33 62.21 1.30 3.51 13.38 22.62 37.31 50.55 0.53
CMFH [80] 11.85 31.23 46.40 64.63 75.56 1.27 25.73 54.24 68.73 82.09 89.14 6.32 24.96 52.96 67.52 81.62 89.11 4.07
SCM [60] 5.43 17.84 28.77 44.72 58.70 0.59 14.83 32.93 45.22 60.35 70.95 3.92 13.41 31.49 43.44 58.75 69.09 2.04
SePH [79] 26.98 52.69 65.88 79.29 86.24 4.18 37.15 64.01 75.75 86.09 91.56 13.56 41.88 70.39 80.72 88.89 93.09 8.80

X-ICE(hinge) 49.67 79.60 89.50 96.09 98.48 11.66 61.86 84.10 91.47 96.35 98.26 29.93 66.52 88.03 93.66 97.15 98.55 21.47
X-ICE(reg) 49.96 78.18 88.96 95.88 97.98 11.23 63.13 84.86 91.52 96.17 98.08 29.44 64.18 86.98 92.91 97.09 98.59 20.68

Metric Set Verification mAP Set Verification mAP Set Verification mAP
LSH [25] 4.81 13.97 21.83 35.01 45.88 1.91 7.25 18.13 27.35 41.18 52.31 5.48 17.17 33.22 43.85 57.75 67.36 8.28
SH [27] 3.91 12.00 19.93 31.72 43.41 1.49 7.22 16.36 24.39 36.62 46.96 4.18 21.52 36.77 46.41 58.33 68.00 9.29

SGH [74] 5.42 14.34 22.87 36.84 48.89 2.36 10.20 22.06 31.91 46.08 56.88 8.03 16.59 34.04 45.33 59.12 69.60 8.69
ITQ [75] 5.45 14.9 23.96 37.95 49.51 2.70 8.81 21.47 31.42 45.82 56.73 7.47 17.39 35.66 47.25 60.90 70.46 10.84

CCA+ITQ [75] 10.52 23.86 34.05 49.95 59.58 4.28 21.08 42.10 53.63 67.05 75.76 18.12 18.30 45.05 60.16 73.75 81.38 15.02
KSH [30] 11.65 27.43 38.19 52.68 63.62 5.49 22.07 43.13 55.44 69.26 77.25 22.29 21.74 47.36 61.28 74.78 82.22 17.34
FH [77] 7.66 17.92 26.82 40.15 52.08 1.03 12.82 26.19 35.86 48.86 59.28 8.07 13.32 27.17 36.78 50.13 60.84 5.07

SDH [31] 13.59 31.37 43.59 60.08 70.34 7.31 15.46 36.48 49.00 63.30 72.79 17.99 20.95 47.01 61.17 75.19 82.16 15.57
COSDISH [78] 5.07 13.37 21.71 34.27 43.74 1.55 16.86 33.10 43.36 57.20 66.38 11.51 15.80 35.00 46.81 60.49 69.66 8.44
CMSSH [57] 2.32 10.32 19.42 32.44 45.06 1.25 2.66 11.13 19.29 33.87 46.11 3.18 2.20 8.93 17.42 31.57 44.29 1.55

CVH [56] 1.31 5.62 12.06 23.29 32.45 0.39 1.75 7.65 14.44 27.18 38.12 1.30 1.57 6.83 12.83 24.39 35.74 0.53
CMFH [80] 3.49 11.91 20.06 34.46 45.35 1.27 7.25 21.42 32.99 48.97 60.98 6.32 7.95 22.60 33.55 48.81 60.49 4.07
SCM [60] 1.91 7.64 14.74 27.22 37.74 0.59 5.75 15.55 23.82 37.04 48.23 3.92 5.29 15.23 23.20 36.53 47.93 2.04
SePH [79] 9.64 23.22 33.51 49.79 60.94 4.18 12.40 30.40 42.85 57.81 67.73 13.56 11.78 32.98 46.91 63.28 73.64 8.80

X-ICE(hinge) 16.41 37.50 50.14 66.56 77.30 11.66 23.32 46.84 60.48 74.20 82.37 29.93 26.81 52.73 66.47 79.66 86.16 21.47
X-ICE(reg) 16.37 37.36 49.71 65.49 76.03 11.23 25.94 49.94 62.59 75.91 83.30 29.44 22.27 48.12 62.87 77.13 84.55 20.68

(a) CUHK03 [39] (b) SYSU [36] (c) Market-1501 [40]

Fig. 5: Visualising person re-id performance by four top methods X-ICE (1st row), KSH (2nd row), CCA+ITQ (3rd row) and
SDH (4th row). For each dataset, the left-most image is the probe person image, followed by top 10 most matched gallery
images by respective methods with red boxes indicating true matches.

(3) Sensitivity of model parameters; (4) Analysis of model
convergence.
Effect of model components. We introduce three stripped-
down variants of our full X-ICE for component analysis: (1)
X-IC: With Eqn. (10) as the model objective therefore lacking
the cross-view identity verification regularisation component.
This allows evaluating the efficacy of both identity correlation
hashing and identity verification. (2) X-ICE\VCD: Removing
the View Context Discrepancy (VCD) regularisation (Eqn. (9))
from X-ICE for evaluating view correlation modelling. (3)
ICE: Learning a uni-view re-id model from the assembled
training data of all cameras, so that camera view information

is discarded. This allows evaluating cross-view modelling.
Table I. shows that with only cross-view identity correlation
hashing, our X-IC model is already able to effectively perform
LSOW person re-id. By accommodating identity verification
regularisation, re-id performance can be consistently boosted
across all datasets. This is in alignment with the previous
finding that discriminative learning on training person classes
is generalisable for recognising unseen test classes [81,82].
This also suggests the great complementary benefits between
cross-view identity correlation hashing and class discrimina-
tive verification regularisation in our formulation. Without the
cross-view modelling, ICE performs clearly poorer than X-
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ICE. This implies the importance of camera view domain
information in person matching. Camera view correlation
regularisation is also critical, as indicated by the performance
drop with X-ICE\VCD.
Effect of identity verification loss function. We evaluated
the influence of different loss functions (e.g. hinge and regres-
sion) in cross-view identity verification regularisation. Table
II shows that the two loss functions produce similar re-id
accuracies, with hinge loss slightly better than regression (reg)
loss on CUHK03 and Market-1501 but worse on SYSU. This
suggests the flexibility of X-ICE in choosing loss function.
Sensitivity of model parameters. We analysed the im-
pact of model parameters α (Eqn. (7)), λvcd (Eqn. (10)),
λie (Eqn. (17)), and λb (Eqn. (33)). Figure 3 reveals four
observations: (1) “α” is most sensitive among the four, with
the best values lying in [2, 5]. In X-ICE, the essence of α
is about Identity Correlation (IC) learning. When α = 2,
we obtained 75.61%/85.20%/73.98% IC gain in training on
CUHK03/SYSU/Market-1501, respectively. This justifies the
effectiveness of our model design and optimisation. (2) “λvcd”
is less sensitive and the optimal value may depend on specific
camera viewing conditions. For example, higher values should
be used when viewing condition is similar among different
cameras such as on Market-1501, whilst lower ones for oppo-
site cases like on CUHK03 and SYSU. (3) “λie” has a wide
satisfactory range and small values are typically preferred. The
plausible reason is that, fitting overwhelmingly the training
person classes may render the final model less generalisable to
unseen test person classes. (4) “λb” also has a wide satisfactory
range and large values (>0.1) are required. This suggests
the positive effects of identity verification regularisation and
the necessity of sufficiently ensuring discriminative margins
among different identity classes during model optimisation.
Model convergence analysis. We adopt the upper bound min-
imisation strategy for approximately optimising our hashing
function parameter W (Section III-C). This upper bound Oub

ic
(Eqn. (13)) is supposed to decline gradually in training time.
To validate this, we tracked normalised Oub

ic and Oic (Eqn. (7))
in parallel over optimisation iterations. As shown in Figure
4, we indeed observed the expected trend. Additionally, it is
shown that the X-ICE can converge within a small number of
iterations on all three datasets. This validates empirically our
optimisation algorithm design and derivation.

C. Comparing State-of-the-Art Hashing Methods

We evaluated a wide range (14) of state-of-the-art hashing
models for LSOW re-id. Table III shows that the X-ICE model
surpasses all the hashing competitors on all three datasets by
a large margin in both mAP and set/individual verification
rates. This demonstrates the efficacy and advantages of X-ICE
over existing hashing methods for LSOW re-id matching. This
superiority is due to a collective effect of identity correlation
hashing, inter-camera contextual regularisation, and person
class discrimination in a jointly optimised cross-view model
(Table I). Conceptually, the proposed X-ICE model joins the
merits of both supervised hashing (i.e. cross-camera hashing
by identity correlation) and person re-id (i.e. inter-camera

context modelling by VCD and person class discrimination
learning by Identity Verification Regularisation) models in a
principled manner, therefore yielding favourable performance.

Among existing hashing methods, best performers are KSH,
SDH, CCA+ITQ, COSDISH and SePH, with the former four
taking single-modality modelling and the last one multi-
modality modelling. This implies that existing multi-modal
hashing methods do not necessarily have advantages over
single-modal counterparts in LSOW re-id matching. It is
observed in surprise that the worst performers are supervised
methods FH, CVH and CMSSH, rather than unsupervised
models LSH, SH, SGH, and ITQ. The plausible reasons are:
(1) The state-of-the-art LOMO feature possesses good re-
id discrimination and cross-view invariance property, which
makes unsupervised methods fairly effective. (2) The ne-
glect of cross-view identity correlation modelling by existing
supervised hashing methods may lead to model overfit in
discriminative learning. In all unsupervised methods, there is
no clear winner: ITQ generates the best results on CUHK03
and Market-1501; SGH and ITQ are top-2 on SYSU; and LSH
is very competitive to other alternatives on all three datasets.
This seems reasonable because all these unsupervised hashing
models do not exploit labelled data for discriminative model
learning. A qualitative evaluation is presented in Figure 5.
Hash code length. We evaluated the hash code length effect
using top-5 hashing methods (KSH, SDH, CCA+ITQ, COS-
DISH, SePH). We used four code lengths {32, 64, 128, 256}.
Table IV shows that longer hash codes generally yield better
re-id performances across all methods. This is consistent with
existing findings in the hashing literature. The X-ICE surpasses
all competitors in every case. This validates the advantages of
our method over alternatives across various code lengths.

D. Comparing State-of-the-Art Person Re-Id Methods

We compared the proposed X-ICE method with five state-
of-the-art supervised person re-id models (e.g. KISSME [34],
CVDCA [36], XQDA [6], MLAPG [11], DNS [12]). Table
V shows that the X-ICE hashing method is very competitive
in re-id accuracy as compared to these strong non-hashing
person re-id models in many cases, although sometimes
outperformed by 6∼12% in TTR across different FTRs in
individual verification and by ≤15% in set verification, and by
4∼10% in mAP. This performance gap is partially attributed
to information loss in converting long float-valued feature
representations into short binary-valued hash codes. This form
change typically leads to degraded representation capability
as experienced in existing fast similarity search models [21].
Importantly, X-ICE demonstrates the critical efficient search
advantage over all these re-id competitors. For example, X-
ICE is at least over two orders of magnitude faster than non-
hashing person re-id methods in searching a gallery person
against the large probe population. We measured the search
time on a workstation of Intel CPU @ 2.66 GHz, 4.0GB
RAM. This suggest a favourable trade-off between person
search efficiency (due to feature binarisation) and effectiveness
(due to feature discrimination) for LSOW person re-id by the
proposed X-ICE model.
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TABLE IV: Evaluating the effect of hash code length. (Metric: TTR (%) when FTR = 1%; IV: Individual Verification, SV: Set Verification.)

Criterion Dataset CUHK03 [39] SYSU [36] Market-1501 [40]
Code length (bits) 32 64 128 256 32 64 128 256 32 64 128 256

IV

CCA+ITQ [75] 29.09 30.35 28.81 28.11 39.72 44.44 45.87 50.50 43.90 50.84 53.69 57.75
KSH [30] 20.74 23.18 25.38 32.29 30.44 37.39 46.31 53.23 38.27 45.70 51.44 59.03
SDH [31] 11.46 19.87 29.72 38.80 15.00 27.11 37.65 46.09 19.05 33.01 47.18 58.03

COSDISH [78] 1.86 4.05 7.41 13.19 6.66 13.82 25.59 38.04 6.85 15.11 27.49 39.29
SePH [79] 4.53 9.34 16.93 26.98 9.17 16.55 26.78 37.15 11.24 19.78 30.22 41.88

X-ICE(hinge) 35.22 42.01 47.50 49.67 43.24 52.26 58.96 61.86 45.32 56.08 62.00 66.52
X-ICE(reg) 37.12 42.29 46.24 49.96 42.32 53.07 57.34 63.13 45.96 53.18 59.26 64.18

SV

CCA+ITQ [75] 9.19 10.87 10.63 10.52 12.38 16.08 18.97 21.49 11.31 13.58 15.80 18.72
KSH [30] 5.91 8.70 9.40 11.65 11.25 14.61 18.96 22.07 11.46 16.07 19.38 21.74
SDH [31] 2.90 6.36 10.67 13.59 4.08 8.83 12.68 15.46 6.38 12.01 18.24 20.95

COSDISH [78] 1.53 1.36 2.88 5.07 2.83 5.10 10.86 16.86 2.02 5.85 11.49 15.80
SePH [79] 1.44 2.82 5.55 9.64 2.45 5.62 8.68 12.40 4.53 7.30 9.68 11.78

X-ICE(hinge) 9.46 12.46 15.67 16.41 13.00 18.43 22.53 23.32 12.91 18.93 23.82 26.81
X-ICE(reg) 10.62 12.80 14.39 16.37 11.57 18.39 21.60 25.94 11.33 15.73 19.59 22.27

TABLE V: Comparing state-of-the-art non-hashing person re-id methods. (Metrics: TTR (%) at varying FTRs (%), and mAP (%); ST:
Search Time (smaller is better), with unit set as the search time of X-ICE.)

Dataset CUHK03 [39] SYSU [36] Market-1501 [40]
Metric Individual Verification mAP ST Individual Verification mAP ST Individual Verification mAP ST

1% 5% 10% 20% 30% (%) - 1% 5% 10% 20% 30% (%) - 1% 5% 10% 20% 30% (%) -
X-ICE(hinge) 49.67 79.60 89.50 96.09 98.48 11.66 1 61.86 84.10 91.47 96.35 98.26 29.93 1 66.52 88.03 93.66 97.15 98.55 21.47 1
X-ICE(reg) 49.96 78.18 88.96 95.88 97.98 11.23 1 63.13 84.86 91.52 96.17 98.08 29.44 1 64.18 86.98 92.91 97.09 98.59 20.68 1

no
n-

ha
sh

KISSME [34] 33.66 61.67 74.69 86.14 91.29 7.97 954 33.67 58.30 70.79 83.57 90.08 19.31 2056 59.40 81.55 89.19 94.87 96.84 21.64 1447
CVDCA [36] 41.73 68.65 80.63 89.91 94.52 8.50 367 58.39 81.89 89.75 94.94 97.09 23.88 486 32.87 52.90 63.15 74.81 81.45 11.25 456

XQDA [6] 56.96 82.67 91.71 97.04 98.29 15.93 1775 59.93 83.31 91.04 96.32 98.09 34.28 4311 71.40 90.00 94.70 97.98 99.04 28.95 3185
MLAPG [11] 53.97 83.05 92.35 97.56 99.02 12.79 128 55.61 79.55 88.17 94.77 97.54 29.13 159 66.71 87.93 94.04 97.73 98.95 22.30 154

DNS [12] 59.68 84.68 92.25 97.05 98.50 17.52 316 59.62 82.12 89.52 95.10 97.37 29.29 164 75.33 91.55 95.83 98.26 99.13 31.48 262
Metric Set Verification mAP ST Set Verification mAP ST Set Verification mAP ST

X-ICE(hinge) 16.41 37.50 50.14 66.56 77.30 11.66 1 23.32 46.84 60.48 74.20 82.37 29.93 1 26.81 52.73 66.47 79.66 86.16 21.47 1
X-ICE(reg) 16.37 37.36 49.71 65.49 76.03 11.23 1 25.94 49.94 62.59 75.91 83.30 29.44 1 22.27 48.12 62.87 77.13 84.55 20.68 1

no
n-

ha
sh

KISSME [34] 9.00 23.77 34.78 50.64 62.29 7.97 954 12.35 25.26 35.66 50.95 62.16 19.31 2056 31.42 50.39 61.30 73.88 81.37 21.64 1447
CVDCA [36] 15.27 33.04 44.94 60.61 70.89 8.50 367 21.55 46.22 59.37 73.29 81.31 23.88 486 15.55 31.37 41.00 53.67 63.02 11.25 456

XQDA [6] 15.43 38.83 54.55 71.38 80.87 15.93 1775 23.33 45.07 58.14 73.04 82.23 34.28 4311 34.18 58.71 70.53 82.21 88.50 28.95 3185
MLAPG [11] 13.86 38.19 54.15 71.54 82.00 12.79 128 22.00 43.00 56.29 71.31 80.06 29.13 159 30.79 55.14 68.69 81.78 88.62 22.30 154

DNS [12] 18.91 41.09 54.86 71.88 81.65 17.52 316 20.42 39.01 50.95 65.82 75.57 29.29 164 41.34 62.74 73.12 83.63 89.42 31.48 262

TABLE VI: Evaluating model training time (in seconds) on CUHK03.
LSH SH SGH ITQ CCA+ITQ KSH FH

0 8.08 552.75 5.43 6.17 3290.22 469.21

SDH COSDISH CMSSH CVH CMFH SCM SePH
18.37 2040.76 2591.98 5.19 47.69 1109.21 2997.52

CVDCA XQDA MLAPG DNS KISSME X-ICE(hinge) X-ICE(reg)
42.25 45.22 332.53 127.51 16.32 243.67 540.38

E. Further Analysis

Model training time. We evaluated the model training time
on CUHK03. Table VI shows that LSH (no model learning)
and KSH (expensive kernel based learning) is the fastest and
slowest, while the X-ICE is moderately fast. Since model
learning is conducted off-line, a high training cost does not
pose stringent constraint on model deployment.

Joining re-id & hashing. We evaluated the re-id+hashing
joining approach using five state-of-the-art re-id (KISSME,
MLAPG, CVDCA, XQDA and DNS) and two top hash-
ing (KSH and SDH) models, resulting in totally 10 LSOW
solutions. In each solution, we first learn a re-id model
for projecting the visual features of person images into a
discriminative subspace; We then train a hashing model in
the subspace for allowing fast search. Table VII shows that
re-id+hashing is competitive. For example, MLAPG performs
well when integrated with KSH or SDH. However, the X-
ICE model still yields the best overall mAP performances on
all three datasets. On the other hand, the X-ICE requires no

feature subspace projection and therefore not only giving more
efficient deployment, but also eliminating the need for tuning
the subspace dimension. This validates the superiority of our
joint learning scheme over the re-id+hashing approach.

Larger search pool. We evaluated competitive hashing
models on larger search pools by using 34,574 person images
from an auxiliary dataset [84] (independent of CUHK03,
SYSU, and Market-1501) as additional imposters. In this larger
scale evaluation, we considered only hashing methods due to
their unique fast search capability as compared to conventional
re-id models. Table VIII shows that all these methods suffer
lower mAP performances given more open search spaces, but
the X-ICE model remains the best. This validates the clear
scalability and superiority of the proposed model in larger
scale deployments.

Moreover, we enlarged the Market-1501 dataset by adding
237,256 person bounding box images from its video based
sibling dataset MARS [82]. We call this dataset “ExMarket”.
We conducted an experimental evaluation with comparisons
to top-2 hashing competitors KSH [30] and SDH [31] on
ExMarket. Table IX suggests the consistent performance ad-
vantages of the proposed X-ICE method over top-performing
alternatives by a clear margin.

Effect of visual features. We evaluated the effect of visual
features by additionally examining data-driven deep features.
This also allows to examine the interaction between features
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TABLE VII: Evaluating the re-id+hashing joining approach. (Metrics: TTR (%) at varying FTRs (%), and mAP (%).)
Dataset CUHK03 [39] SYSU [36] Market-1501 [40]
Metric Individual Verification mAP Individual Verification mAP Individual Verification mAP

1% 5% 10% 20% 30% (%) 1% 5% 10% 20% 30% (%) 1% 5% 10% 20% 30% (%)
KISSME [34] & KSH [30] 29.38 54.83 67.19 79.46 86.89 5.09 49.03 73.24 82.68 90.46 94.14 18.92 58.99 81.83 89.09 94.04 96.55 16.04
MLAPG [11] & KSH [30] 50.79 76.87 86.18 92.38 95.34 11.62 61.32 83.21 89.48 94.31 97.98 27.88 63.47 87.90 93.86 97.06 98.33 19.03
CVDCA [36] & KSH [30] 15.83 37.27 53.38 71.09 82.10 3.10 44.82 71.41 82.04 90.44 94.27 15.85 27.20 52.90 65.84 79.60 86.93 5.63

XQDA [6] & KSH [30] 41.96 67.57 77.89 86.77 90.92 8.35 58.28 80.05 87.72 93.50 96.05 24.98 62.53 84.90 91.37 95.62 97.54 18.03
DNS [12] & KSH [30] 47.86 76.26 86.02 93.19 95.89 10.57 55.73 81.94 89.79 95.27 97.40 25.25 66.94 88.00 93.07 96.64 98.15 20.25

KISSME [34] & SDH [31] 32.25 57.86 71.42 83.77 90.10 5.83 44.72 69.39 79.45 88.60 93.14 16.39 59.17 82.59 90.04 94.91 97.00 16.46
MLAPG [11] & SDH [31] 49.10 77.33 85.92 91.51 94.27 9.82 60.78 83.28 89.74 94.59 96.51 26.94 62.57 87.19 92.32 95.39 96.93 17.23
CVDCA [36] & SDH [31] 47.02 76.78 86.98 94.25 96.98 9.83 53.16 79.21 88.43 94.56 97.20 23.52 44.97 78.13 88.31 95.13 97.55 11.25

XQDA [6] & SDH [31] 36.85 64.13 76.79 87.47 92.94 7.24 49.28 72.92 82.10 89.45 93.32 19.39 63.01 84.81 91.22 96.09 97.84 18.61
DNS [12] & SDH [31] 49.82 79.00 88.81 95.41 97.82 11.40 52.56 79.46 88.55 94.99 97.44 25.33 60.31 86.17 93.29 97.16 98.66 18.83

X-ICE(hinge) 49.67 79.60 89.50 96.09 98.48 11.66 61.86 84.10 91.47 96.35 98.26 29.93 66.52 88.03 93.66 97.15 98.55 21.47
X-ICE(reg) 49.96 78.18 88.96 95.88 97.98 11.23 63.13 84.86 91.52 96.17 98.08 29.44 64.18 86.98 92.91 97.09 98.59 20.68

Metric Set Verification mAP Set Verification mAP Set Verification mAP
KISSME [34] & KSH [30] 9.61 24.25 35.07 50.58 61.27 5.09 20.47 40.10 51.87 65.46 74.18 18.92 23.14 47.99 62.18 75.28 82.86 16.04
MLAPG [11] & KSH [30] 19.82 42.35 55.56 69.76 78.81 11.62 23.89 49.94 62.95 76.08 83.39 27.88 20.92 50.20 65.69 80.37 87.66 19.03
CVDCA [36] & KSH [30] 2.02 9.48 22.07 39.77 53.12 3.10 16.42 36.13 48.95 64.02 73.61 15.85 8.52 23.96 35.99 50.62 62.09 5.63

XQDA [6] & KSH [30] 14.78 34.24 46.90 62.54 72.07 8.35 25.58 48.47 60.00 72.64 80.28 24.98 21.89 48.67 63.98 78.13 85.28 18.03
DNS [12] & KSH [30] 16.52 37.58 51.27 66.52 76.67 10.57 18.10 42.44 56.93 72.55 81.20 25.25 20.36 50.41 67.46 80.74 87.45 20.25

KISSME [34] & SDH [31] 11.18 26.50 38.00 53.37 63.00 5.83 19.83 36.99 48.70 62.55 72.10 16.39 20.34 45.88 60.92 75.43 82.95 16.46
MLAPG [11] & SDH [31] 13.75 38.41 54.33 70.54 80.47 9.82 24.48 50.33 63.30 76.31 83.78 26.94 18.83 49.67 65.85 80.80 88.01 17.23
CVDCA [36] & SDH [31] 14.85 35.91 50.29 67.41 78.20 9.83 18.41 39.57 52.94 68.08 77.42 23.52 11.97 31.80 47.63 65.58 76.68 11.25

XQDA [6] & SDH [31] 12.15 29.77 41.93 57.84 68.73 7.24 22.05 41.36 52.05 65.44 74.12 19.39 24.48 49.42 64.02 77.28 84.71 18.61
DNS [12] & SDH [31] 14.28 36.24 50.69 67.99 78.47 11.40 16.26 37.46 51.20 67.04 77.03 25.33 14.63 36.35 53.49 72.91 82.17 18.83

X-ICE(hinge) 16.41 37.50 50.14 66.56 77.30 11.66 23.32 46.84 60.48 74.20 82.37 29.93 26.81 52.73 66.47 79.66 86.16 21.47
X-ICE(reg) 16.37 37.36 49.71 65.49 76.03 11.23 25.94 49.94 62.59 75.91 83.30 29.44 22.27 48.12 62.87 77.13 84.55 20.68

TABLE VIII: Evaluating larger search pools with 34,574 imposters. (Metrics: TTR (%) at varying FTRs (%), and mAP (%).)
Dataset CUHK03 [39] SYSU [36] Market-1501 [40]
Metric Individual Verification mAP Individual Verification mAP Individual Verification mAP

1% 5% 10% 20% 30% (%) 1% 5% 10% 20% 30% (%) 1% 5% 10% 20% 30% (%)
CCA+ITQ [75] 11.38 30.57 41.38 58.39 68.58 0.46 52.23 73.90 82.90 91.11 94.82 9.36 58.80 78.75 86.10 93.03 96.09 8.78

KSH [30] 12.88 29.84 45.29 61.17 72.55 0.61 49.54 73.07 82.67 90.20 93.84 9.91 61.75 80.26 87.30 92.91 95.89 9.76
SDH [31] 17.50 38.86 52.90 66.89 77.44 0.64 46.50 69.65 79.78 88.93 93.49 9.08 63.64 82.74 87.76 93.06 95.87 8.75

COSDISH [78] 10.24 27.87 41.18 60.10 70.75 0.32 36.70 59.61 71.14 82.30 88.50 5.24 38.61 61.00 71.50 82.72 88.67 4.11
SePH [79] 6.91 23.42 36.71 54.03 66.41 0.23 30.62 54.42 67.24 80.48 87.30 4.28 32.71 55.94 67.64 80.18 86.58 2.26

X-ICE(hinge) 28.31 56.05 68.47 82.47 89.98 1.48 66.40 86.88 93.07 96.87 98.28 17.97 75.66 91.50 95.79 98.38 99.01 12.57
X-ICE(reg) 29.47 56.51 70.17 82.81 90.43 1.43 67.20 86.79 92.70 96.37 98.10 17.90 72.85 90.59 95.66 97.97 99.06 12.30

Metric Set Verification mAP Set Verification mAP Set Verification mAP
CCA+ITQ [75] 3.32 10.98 18.65 33.45 45.43 0.46 24.90 45.08 56.37 69.13 77.16 9.36 31.17 53.66 63.42 74.51 80.19 8.78

KSH [30] 4.41 11.24 18.51 30.81 40.89 0.61 23.47 41.78 53.78 66.29 74.93 9.91 35.25 54.75 65.50 76.21 82.19 9.76
SDH [31] 5.47 15.04 24.09 39.59 51.16 0.64 19.59 38.69 50.83 64.40 72.97 9.08 34.87 56.43 66.22 76.53 83.73 8.75

COSDISH [78] 6.52 21.86 35.57 56.37 71.08 0.32 17.41 32.90 42.78 57.16 67.76 5.24 22.78 38.74 48.15 60.15 68.28 4.11
SePH [79] 0.96 5.80 11.27 23.96 35.84 0.23 12.43 26.98 38.05 51.95 63.23 4.28 17.86 33.28 43.45 56.41 65.02 2.26

X-ICE(hinge) 6.28 20.30 33.13 51.57 64.50 1.48 27.61 52.02 64.67 78.61 85.92 17.97 38.73 64.16 75.18 85.08 90.76 12.57
X-ICE(reg) 7.28 22.84 36.04 52.86 64.39 1.43 31.66 55.27 66.83 79.65 86.49 17.90 33.98 60.63 73.71 84.94 90.46 12.30

TABLE IX: Evaluating larger search performance on ExMarket. (Metrics: TTR (%) at varying FTRs (%), and mAP (%).)
Metric Individual Verification Set Verification mAP

1% 5% 10% 20% 30% 1% 5% 10% 20% 30% (%)
KSH [30] 52.59 73.31 81.72 89.00 92.39 26.83 47.56 57.39 68.52 77.20 15.10
SDH [31] 51.98 73.56 80.05 86.58 90.90 23.87 47.96 58.23 69.71 76.83 14.55

X-ICE(hinge) 59.93 82.31 88.63 93.84 96.36 28.91 48.87 61.34 73.54 81.39 17.96
X-ICE(reg) 59.38 81.68 88.57 93.74 95.70 29.88 50.04 59.53 72.35 81.01 17.62

TABLE X: Evaluating the effect of different visual features.
(Metrics: TTR (%) at FTR = 1%, and mAP (%). IV: Individual Verification,

SV: Set Verification.)

Method Feature
CUHK03 [39] SYSU [36] Market-1501 [40]

IV SV mAP IV SV mAP IV SV mAP

DCNN [83] Deep 47.87 14.38 13.62 58.77 19.64 29.69 78.37 31.58 33.65

KSH [30]
LOMO 32.29 11.65 5.49 53.23 22.07 22.29 59.03 21.74 17.34
Deep 51.08 19.00 14.77 60.38 21.55 31.54 79.50 34.39 34.96

SDH [31]
LOMO 38.80 13.59 7.31 46.09 15.46 17.99 58.03 20.95 15.57
Deep 36.88 15.93 9.11 52.93 16.60 22.23 71.00 35.61 26.73

X-ICE(hinge) LOMO 49.67 16.41 11.66 61.86 23.32 29.93 66.52 26.81 21.47
Deep 51.79 18.29 15.33 63.08 23.35 32.95 80.90 41.52 37.34

X-ICE(reg) LOMO 49.96 16.37 11.23 63.13 25.94 29.44 64.18 22.27 20.68
Deep 52.62 17.63 15.21 64.05 24.57 33.07 80.37 41.01 37.23

and hashing functions on the LSOW re-id. Specifically, we
adopted the Deep Convolutional Neural Network (DCNN) to
learn visual features in the hashing context [83] and used the
4096-dimensional activation of the 7-th fully-connection layer
(previous to the latent hashing layer) as image representation.
As such, all compared hashing methods can benefit equally
from the deep learning advantages. Table X shows that the X-
ICE model outperforms again all alternatives. This suggests
the consistent superiority of our method over existing models
under different representations, thanks to the joint learning
of cross-view identity correlation hashing and person class
verification regularisation. Two additional observations are: (1)
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Non-deep hashing methods (e.g. KSH, SDH, and X-ICE) can
be well integrated with deep features. (2) While DCNN enjoys
the merit of jointly learning feature and hashing functions, it is
still inferior to KSH and our X-ICE. This suggests that feature
learning and hashing function learning are two important and
complementary aspects of a LSOW re-id method.

V. CONCLUSION

We presented a more realistic Large Scale Open-World
(LSOW) person re-id problem setting. LSOW is uniquely
characterised by vast probe search population with a large
number of imposters, without the unrealistic closed-world
and small search scale assumptions as made in existing re-
id methods. Importantly, LSOW raises the re-id matching
efficiency requirement and moves the re-id research a step
further towards practical deployments. To address LSOW re-
id, we proposed a new Cross-view Identity Correlation and
vErification (X-ICE) hashing re-id model. This is achieved by
a joint learning of cross-view identity correlation hashing and
discriminative person class verification regularisation. The X-
ICE model is learned by a principled alternating optimisation
algorithm. Extensive comparative evaluations have demon-
strated the superiority and advantages of the proposed X-ICE
method over a wide range of hashing and re-id competitors
on three large re-id benchmarks.
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