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ABSTRACT Most existing human pose estimation methods focus on enhancing the accuracy performance
alone while ignoring the critical model efficiency issue. This dramatically limits their scalability and
deployability in large-scale applications. In this paper, we consider the under-studied model efficiency
problem in pose estimation. We demonstrate the advantages and potential of hierarchical context learning
in the convolutional neural network. Specifically, we formulate a novel hierarchical context network (HCN)
architecture that can be trained and deployed efficiently while achieving competitive model generalization
capability. This is achieved by progressively forming and imposing multi-granularity context information
during the pose regression learning process in a coarse-to-fine manner. The extensive comparative evalua-
tions validate the superiority of the proposed HCN over a wide variety of the state-of-the-art human pose
estimation models on two challenging benchmarks: MPII and LSP.

INDEX TERMS Fast deployment, human pose estimation, hierarchical context, model cost-effectiveness.

I. INTRODUCTION
Human pose estimation is a task of identifying local body
parts/joints in scene images [1]. It is intrinsically challeng-
ing due to the unconstrained covariates in body appearance,
viewpoint, illumination, occlusion, and background clutter.
Earlier methods [2], [3], [34], [46] rely on hand-crafted rep-
resentations (e.g. SIFT, HoG) and shallow recognition mod-
els (e.g. pictorial structures) learned independently, hence
often yielding suboptimal performance. Deep CNN meth-
ods dominate the recent progress by jointly learning more
discriminative features and inference models [9], [11], [41].
However, existing deep models are typically with complex
designs therefore sacrificing the model efficiency in training
and test, i.e. poor cost-effectiveness (Fig 1). This significantly
limits their scalability and usability in real-world large scale
deployments. Whilst the accuracy has clearly improved, how
to design efficient deep models remains under-studied and
challenging.

The associate editor coordinating the review of this manuscript and
approving it for publication was Shuai Liu.

In this work, we investigate the pose estimation efficiency
problem. Our contributions are summarized as below:

1) We study the model efficiency issue in pose estimation
for both training and test, which is largely neglected
in the literature but critical in scaling up real-world
deployments.

2) We formulate a novel Hierarchical Context Net-
work (HCN) framework capable of being trained
and deployed efficiently while simultaneously achiev-
ing competitive performance. This is inspired by
the coarse-to-fine human visual perception principle.
Specifically, HCN is designed to progressively inte-
grate multi-granularity context constraints into the pose
regression learning in a coarse-to-fine sequential man-
ner so that themodel size and optimization search space
can be effectively minimized without sacrificing the
model discrimination capability.

3) To validate the effectiveness, we further implement a
concrete HCN pose estimation model by exploiting
the Hourglass CNN module [26] and introducing extra
design enhancements.
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FIGURE 1. Comparison of state-of-the-art human pose estimation methods in model (left) training and (right) test costs. Unit: 1015 (P) or 109

(G) FLOPs (FLoating point OPerations).

Extensive comparative evaluations demonstrate the perfor-
mance superiority and advantages of the proposed HCN
approach over a wide range of state-of-the-art human pose
models in terms of trade-off between model efficiency and
accuracy performance on two challenging benchmarking
datasets: MPII [1], and Leeds Sports Pose (LSP) [22]. The
source codes will be publicly released.

II. RELATED WORK
The research attempts on human pose estimation have gradu-
ally shifted from hand-crafted feature based
approaches [2], [3], [10], [30], [34], [46] to deep learning
paradigm since ‘‘DeepPose’’ [41]. Beyond performing the
direct joint location regression [41], Tompson et al. [39]
adopt a multi-resolution sliding window strategy in a
Siamese network [5] to refine the locations. Some works
additionally integrate the spatial relationships between
joints [10], [15], [31].

Another common approach is making successive predic-
tions by stacked inference [9], [18], [26], [43]. Whilst sig-
nificant accuracy gains have been generated, these existing
methods overlooked the critical model efficiency issue as
studied in this work.

There have been a few attempts at devising efficient pose
models. In particular, Bulat and Tzimiropoulos [7] develop
binarised nets for better test efficiency but sacrifices signif-
icantly the accuracy. Rafi et al. [32] boost the model train-
ing efficiency by using multi-scale learning and multi tricks
including optimized learning rate and batch normalization.
Cao et al. [8] seek for system-level real-time performance
of multi-person pose estimation via joint part detection and
association. In contrast, we present a unified network archi-

tecture specialized for improving the model training and test
efficiency whilst simultaneously retaining the model gener-
alization capability. Recently, more efficient U-Net [37], [38]
and low-bit quantized nets have been concurrently developed.
Conceptually, our method is largely orthogonal to the existing
approaches in design from a different learning aspect.

III. MODEL DESIGN
Problem Formulation: To train a pose model, we often have a
set of N labeled training samples D={I i,Zi}Ni=1, where Zi=
{z1, · · · , zJ } (with z = (u, v) ∈ R2) defines the ground-truth
locations of all J joints of the training image I i ∈ Rh×w×3

(h and w the image height and width). We aim to formulate a
deep learning pose estimator, f (·; θ ), optimized to identify
these joints in form of generating J 2D spatial confidence
maps {m1, · · · ,mJ } with size h×w for an input image. Each
map corresponds to an individual joint. We formally express
this process as:

f (I; θ ) = {mi}
J
i=1, mi ∈ [0, 1]h×w (1)

wheremi(u, v) specifies themodel inference confidence score
of assigning the location (u, v) to the i-th joint.

In contrast to existing methods stacking multiple identi-
cal blocks [26] to gain higher modeling capacity which is
expensive, we design a new CNN architecture offering fast
trainable and deployable capabilities characterized by a hier-
archical context learning mechanism with only little model
generalization degradation.

A. HIERARCHICAL CONTEXT NETWORK
Design Rational: To formulate an efficient pose model,
we explore the idea of hierarchical context learning, moti-
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FIGURE 2. Overview of the Hierarchical Context Network (HCN). The HCN consists of S stages (S−1 context stages and 1 prediction stage). All stages
share the same structure with a low level feature module, a context incorporation module, a pose backbone module, and an intermediate context
learning module. The first stage has no context incorporation module. The last stage replaces the intermediate context learning module with a pose
prediction module (a 1×1 conv layer).

vated by the psychophysical research that human visual
perception can leverage jointly both global contextual and
local saliency information in object detection and recogni-
tion [24], [33]. Specifically, the contextual clues allow the
perception system to narrow down the searching space effi-
ciently and effectively in a coarse-to-fine manner. We hypoth-
esize that, such a principle may offer a means of establishing
more efficient pose estimation models with satisfactory per-
formance.
Overview: In light of this inspiration, we formulate aHier-

archical Context Network (HCN) architecture (see overview
in Fig 2(a)). The HCN involves two types of stages: (1) S−1
context stages and (2) one prediction stage. Any context stage
takes as input a small resolution of the same image I to
learn the corresponding granularity of context. The context
can be learned efficiently, because simple features suffice to
represent it [24]. It is this property that opens up the possi-
bility of boosting the model efficiency whilst maintaining the
performance – the foundation of designing HCN. In compar-
ison, the prediction stage takes the finest input (i.e. highest
resolution), yielding the final model predictions. Stacking all
stages together forms a feed-forward HCN with increasingly
fine-grained input resolutions, enabling to sequentially learn
hierarchical context information for efficient pose inference.
Critically, HCN is flexible in integrating distinct CNN mod-
ule designs therefore providing a generic solution with the
potential of benefiting more advanced block designs. We
provide more details of key HCN components below.

1) CONTEXT INCORPORATION
For sequentially embedding the context information to form
a multi-level semantic representation, we need an incorpo-
ration mechanism. We achieve this by carrying the context
output of the preceding stage on to the current context or
prediction stage with a Context Incorporation (CI) module
(Fig 2(b)). Specifically, the input to a CI module in the s-
th stage includes: (1) the higher-level context xctx(s−1) from

the preceding stage (Fig 2(c)) and (2) the low-level features
xllvs from the current stage, both of which are used to induce
a context enriched representation xinputs as the s-th stage’s
input. Formally, we formulate this integration by a learnable
function gctxs (·; γ s) as:

xinputs = gctxs
(
xctx(s−1), x

llv
s ; γ s

)
(2)

where γ s is the parameters of the CI module at the s-th stage.
Given the semantic gap between xctx(s−1) and xllvs , we add a
1×1 sized conv layer to xllvs . This helps to improve the fusion
compatibility. We perform bi-linear upsampling on xctx(s−1) to
match the spatial size of xllvs in prior to merging them by
element-wise addition.
Discussion: The context incorporation takes place between

every two adjacent stages. In doing so, hierarchical context
learning can be naturally and progressively realized in every
mini-batch training. We do not use the Batch Normalization
(BN) [21] for context incorporation, because the two input
signals carry respective scale information at distinct seman-
tics levels which can be ruined by BN. We will verify this
design (Table 5).

2) INTERMEDIATE CONTEXT LEARNING SUPERVISION
We exploit the intermediate supervision mechanism in HCN
(Fig 2(c)), inspired by previous pose models [13], [26] and
cross-layer skip design [19] in the sense of enhancing the
accessibility of ground-truth information in training. How-
ever, the objective of our model significantly differs as the
supervision across HCN stages aims to enhance contextual
constraint learning, instead of predicting the output pose
structures.

Specifically, we pose a supervised loss constraint based on
the ground-truth Z at the s-th context stage:

Lctx
s = gloss

(
Ms,Z , s

)
, with Ms = hctxs (xinputs ; θ s) (3)
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where gloss(·) defines a loss function, and Ms indicates joint
predictions (the confidence maps in Fig 2(c)).
Discussion: This multi-supervision scheme not only

addresses the notorious difficulty of vanishing gradients but
also makes the context information stronger and more rel-
evant. Crucially, this design matches our ultimate objective
of boosting model efficiency through reducing the parameter
size without performance drop.

3) STAGE SHARED LOW-LEVEL FEATURES
We construct all stages on a shared low-level feature (LLF)
module (Fig 2(a)) to facilitate cross-stage commonality learn-
ing. The intuition is that, the starting layers capture elemen-
tary patterns such as edges and corners commonly useful at
resolutions. This is in a spirit of multi-task learning [14].

In particular, we rescale a raw image I to generate S
samples {Is}Ss=1, each of which matches the resolution of a
specific stage. For the s-the stage, we feed Is into the shared
LLF module and obtain the corresponding representation as:

xllvs = fllv(Is; η), (4)

where η represents the module parameters. The LLF module
is applicable to different input resolutions with the output
feature maps linearly proportional to the input size.
Discussion: Sharing low-level layers reduces the model

parameter size and hence model overfitting risks, making
the model further concise and efficient. This is also useful
to make pose models robust against unconstrained visual
ambiguity especially when the labeled training data is small.

4) LOSS FUNCTION
For the model training, we adopt the Mean-Squared
Error (MSE) as the optimization loss for both context
and prediction stage learning consistently and concurrently.
Each HCN stage is trained to optimize the inference of J
ground-truth confidence maps. We supervise the model opti-
mization process to maximize the inference discrimination
by deploying a separate MSE loss function to the output Ms
of each stage s. In particular, we generate the ground-truth
confidence map m̃i for each single joint i (i ∈ {1, · · · , J})
by placing a Gaussian distribution centered at the labeled
location zi = (u, v). A Gaussian heatmap m̃i to represent the
i-th joint label is defined as:

m̃i(j, k) =
1

2πσ 2 exp
(
−[(j− u)2 + (k − v)2]

2σ 2

)
(5)

where (j, k) denotes the spatial location and σ is the spatial
variance (σ = 1 pixel in our evaluations). The heatmap’s
spatial size for each stage is identical to the input image size.
We formulate the stage-wise MSE loss function as:

gloss(Ms,Z , s) =
1
J

J∑
i=1

‖mi − m̃i‖
2
2 (6)

The overall HCN loss function is then formulated as:

L(M ,Z ) =
1
S

S∑
s=1

gloss(Ms,Z , s) (7)

whereM = {Ms}
S
s=1 specifies the predicted confidencemaps.

We treat all stages equally important in the loss composition
for simplicity.
Model Training: The HCN model can be trained using the

SGD algorithm in an end-to-end manner. Specifically, three
types of gradient are involved in the back-propagation of the
HCN loss (Eq. (7)) as below.
(1) The gradient for the s-th stage backbone module parame-
terized by θ s (s = 1, 2, 3, ..., S):

∂L
∂θ s
=

1
S

S∑
s′=s

∂Lctx
s′

∂θ s

=
1
S

S∑
s′=s

∂Lctx
s′

∂hctxs′

∂hctxs′
∂θ s

(8)

The updating of s-th stage’s parameters relies on the gradient
of higher-level stages.
(2) The gradient for the CI module parameterized by γ s:

∂L
∂γ s
=

1
S

S∑
s′=s

∂Lctx
s′

∂γ s

=
1
S

S∑
s′=s

∂Lctx
s′

∂hctxs′

∂hctxs′
∂gctxs′

∂gctxs′
∂γ s

(9)

where s = 2, 3, ..., S.
(3) The gradient for the LLF module parameterized by η:

∂L
∂η
=

1
S

S∑
s′=1

∂Lctx
s′

∂η

=
1
S

S∑
s′=1

∂Lctx
s′

∂hctxs′

∂hctxs′
∂gctxs′

∂gctxs′
∂fllv

∂fllv
∂η

(10)

which is collectively constrained by the loss of all stages due
to the stage sharing nature (Eq. (4)).
Model Deployment: Once the HCN model is trained, we

can deploy it for pose estimation to a given test image. As
in training, we first scale the test image into S different
resolutions to match the resolution. Then, we feed them
into the corresponding stages and obtain the predicted joint
confidence maps at the last prediction stage.
Remarks: HCN is designed specially for efficient pose

inference by hierarchical context learning. This not only
enables rapid model training and test with lower model infer-
ence cost, but also retains the model generalization capability
as compared to the common stacking scheme. Moreover,
HCN is generic in terms of backbone module design. In the
modeling idea, our method fundamentally differs from [9]
and [43] that iteratively refine the prediction errors, versus
progressively propagating coarse-to-fine context knowledge
over HCN stages. HCN also differs to recurrent pose mod-
els [4] that consider neither context nor model efficiency.
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TABLE 1. Configuration of an HCN model using Hourglass as the backbone module. A total of 8 HG blocks are used. Stage input is in square shape.

FIGURE 3. HCN Instantiation. (a) Hourglass with 4 scales of
representation learning, rectified by adding cross-layer batch
normalization to the skip Residual Block and the Upsampling operation.
(b) The low-level feature module design.

B. HCN INSTANTIATION
We instantiate a HCN model. The detailed configuration is
given in Table 1. This HCN model contains 5 context stages
with square input sizes 32/64/96/128/192, and 1 prediction
stage with input size 256.

1) LOW-LEVEL FEATURE MODULE
The LLF module (Fig 3(b)) starts with a 3×3 conv layer with
stride 2. We use totally three such layers. This both reduces
the number of parameters and introduces more non-linearity.
We further use three Residual units [17] to gain sufficient
learning capacity.

2) BACKBONE MODULE
For the backbone modules (the blue boxes in Fig 2), we select
the Hourglass [26] which has proven effective in state-of-the-
art models [12], [13], [35]. The Hourglass itself involves a
loss term which can be directly integrated into the HCN loss
(Eq. (7)).

3) EFFICIENT HIERARCHICAL CONTEXT
HCN aims for efficiency enhancement. The original Hour-
glass is hence too heavy due to 4 scales of representation
learning (Fig 3(a)). To alleviate this issue, we reduce the
scale depth of Hourglass for all context stages. Given the
coarse-to-fine structure of HCN, we allocate fewer scales
to higher-level context stages (Table 1). This respects the
‘‘preattentive’’ concept in human visual perception that more

efficient and simpler features are processed in the starting
stage [24].

4) HOURGLASS IMPROVEMENT
We improve Hourglass’s feature fusion. In particular, for
each scale, we additionally add batch normalization on
top-down and bottom-up features before combining them by
element-wise addition (Fig 3). Note, this improvement is not
for model efficiency.

This scheme eliminates the cross-layer feature discrepancy
whilst strengthens the model training stability. We verify the
effect of this refinement in experiments (Table 7). We further
introduce a cross-layer batch normalization to mitigate the
feature discrepancy issue between layers (Fig 3(a)).
Discussion: Hourglass involves multi-scale feature learn-

ing, appearing very similar to the proposed multi-resolution
context input in HCN stages. But, they are conceptually
different. In particular, learning one scale in Hourglass com-
pletely relies on the previous scale. which is not context
constrained recursive learning as the HCN performs. In
contrast to HCN learns from multi-resolution contextual
images, Hourglass conducts amulti-scale learning only on the
single-resolution observation. Meanwhile, it is due to these
intrinsic differences that make HCN and Hourglass comple-
mentary to each other and able to contribute respectively in a
unified model as shown in our evaluations.

IV. EXPERIMENTS
A. EXPERIMENT SETUP
1) DATASETS
For model evaluation, we used two challenging human pose
datasets: MPII [1] and Leeds Sports Pose (LSP) [22]. The
MPII includes 40,522 persons in 24,920 imageswith arbitrary
occlusion and background clutters, inter-person interaction,
various clothing outfits, and unknown scale variation. MPII
images present a wide variety of daily activities in scenes and
therefore high challenges for pose estimation.We adopted the
standard 25,863/2,958/11,701 train/valid/test split [39]. The
LSP dataset consists of 12,000 images captured in different
sport events thus presenting rare and challenging poses.

2) EVALUATION METRICS
For MPII and LSP, we used the common pose accuracy
performance metrics, i.e. the Percentage of Correct Key-
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TABLE 2. Evaluation on the test set of MPII. Performance Metric: PCKh@0.5 and AUC. Train/Test Cost Metric: FLOPs. M = 106; G = 109; P = 1015. ‘‘-’’: Not
reported or lacking details to obtain.

points (PCK) measure that quantifies the percentage of cor-
rect detection falling in an error tolerance r [46]. The tol-
erance r is a normalized quantity w.r.t. the size of torso
(PCK@0.2, r=0.2 for LSP) or head, denoted as PCKh@0.5.
(PCKh@0.5, r = 0.5 for MPII). We measured per-joint PCK
scores. By varying r , we can obtain a PCK curve and further
use the Area Under Curve (AUC) as a more comprehensive
metric.

Besides accuracy measurement, we also considered model
training and test efficiency. We used the FLoating point
OPerations (FLOPs) as the metric. Specifically, we measured
the model test cost by the FLOPs required to forward
an image through the model, i.e. forward-FLOPs. For
training, the cost additionally relies on batch-size and
iterations. We hence measured the training cost as:
batch-size× iterations× forward-FLOPs.

3) IMPLEMENTATION DETAILS
All the training and test images are cropped according to the
provided positions and scales. Data augmentation includes
scaling, rotation, flipping, and color noise addition. We
adopted the RMSProp optimizer to train the HCN models.
We set the learning rate to 2.5×10−4, the mini-batch size to
4, and the epochs to 150/70 for MPII/LSP.

B. EVALUATION ON MPII
The comparisons between the HCN and 18 state-of-the-art
methods on MPII are shown in Table 2. We have two overall
observations: (1) The HCN model achieves the best train-
ing (90 P-FLOPs) and test efficiency (18 G-FLOPs), whilst
simultaneously yielding very competitive pose estimation
accuracy. (2) The HCN is most lightweight with the smallest
model size. Consequently, our model not only enables more
economical deployments on resource-limited platforms, but
also presents less stringent hardware requirements for model

training. This significantly improves the cost-effectiveness
for large scale deployments in realistic applications.

More specifically, we make three comparisons.
1) Whilst the most accurate model [27] outperforms the

HCN by 1.6% (92.4-90.8) in mean PCKh@0.5 and 2.8
(65.9-63.1) in AUC, it is 5.8 (407/70) times slower in
training, and 3.5(63/18) times slower in test. Moreover,
this model is more complex in design than HCN there-
fore potentially harder to train.

2) In comparison to themost efficient competitor [32], our
model is clearly superior in training (70P vs 87P) and
test (18G vs 28G) costs, in addition to the accuracy
performance (90.8 vs 86.3 in mean PCKh@0.5, 63.1
vs 57.3 in AUC).

3) Compared to Hourglass [26], HCN saves 79.6% ((343-
70)/343) training cost whilst attaining 3.1 times (55/18)
inference speedup in test. Critically, these advantages
are achieved with little model generalization sacrifice.

These evidences indicate that, the proposed HCN provides
a good trade-off between accuracy and efficiency in deploy-
ment whilst enjoying faster model training advantages.
Qualitative Evaluation: To perform visual evaluation, we

showed pose estimation results on MPII by our HCN model
in Fig 4. It is evident that our model provides accurate pose
recognition on images even with highly varying postures
against poor illumination, background clutters and occlu-
sions. Meanwhile, the proposed model is likely to fail on
extremely challenging cases with missing parts, rare poses,
or severe occlusions.

C. EVALUATION ON LSP
We compared the HCN with the state-of-the-art methods
on the LSP benchmark in Table 3. In the standard evalua-
tion setting (the top part), it is evident that our method is
considerably superior in training efficiency, e.g. accelerating
the model training by 62.2% ((37-14)/37) compared to the
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TABLE 3. Evaluation on the test set of LSP. Performance Metric: PCK@0.2 and AUC. Train/Test Cost Metric: FLOPs. M = 106; G = 109; P = 1015. ‘‘-’’: Not
reported or lacking details to obtain. ‘‘*’’: Additionally using the MPII training set.

FIGURE 4. Qualitative evaluation of HCN on MPII and LSP. Failure cases indicated by red bounding box.

TABLE 4. Effect of HCN stage design on the MPII val set. Performance Metric: PCKh@0.5 and AUC. M = 106; G = 109; P = 1015.

TABLE 5. Effect of batch normalization (BN) in the Context Incorporation module on the MPII val set. Performance Metric: PCKh@0.5 and AUC.

efficient alternative method [32]. The HCN also yields the
best accuracy, improving the mean PCK@0.2 from 84.3%
by [47] to 87.0% (+2.7% gain), and the AUC from 55.2 to
59.5 (+4.3 gain). When using the MPII training set for data
augmentation (the bottom part), we obtained similar obser-
vations. These suggest the performance advantages of our
method in the challenging sport event scenarios in addition
to the diverse activity settings presented in the MPII test.

D. FURTHER ANALYSIS AND DISCUSSIONS
We conducted a set of model analysis to give further compar-
isons and model insight on the MPII benchmark [1].

1) STAGE DESIGN
We evaluated the structure of HCN context stages. In partic-
ular, we compare three HCN variants with 4/6/8 stages under
the constraint that each model consists of the same number
of (8 in this case) Hourglass modules with increasing scales
from the first to last stages. Table 4 suggests that the design
of 6 stages is a good choice giving the best trade-off between
model performance and cost.

2) BATCH NORMALISATION IN CI MODULE
Recall that in designing the Context Incorporation (CI) mod-
ule, we do not apply the Batch Normalization (BN) in prior to
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TABLE 6. Effect of sharing low-level feature on the MPII val set. Performance Metric: PCKh@0.5 and AUC.

TABLE 7. Effect of cross-layer normalization (CLN) on the MPII val set. Performance Metric: PCKh@0.5 and AUC.

fusing the context with low-level visual feature. We evaluated
this design by comparing with a HCN variant when BN is
applied. Table 5 shows that if using the BN for pre-fusion fea-
ture normalization, the model performance notably degrades,
e.g. −0.6% (91.5-90.9) in mean PCKh@0.5 and −0.5
(64.3-63.8) in AUC. This validates our consideration that the
scale information of low-level visual features and context
should be preserved in context incorporation at each stage.

3) SHARING LOW-LEVEL FEATURES
We evaluated the performance effect of sharing low-level
feature across all HCN stages. Table 6 shows that this design
brings+0.5% (91.5-91.0) gain in mean PCKh@0.5 and+0.1
(64.3-64.2) gain in AUC. Moreover, this reduces the param-
eter number, leading to a more concise pose model.

4) CROSS-LAYER NORMALIZATION
We evaluated the cross-layer normalization design newly
introduced to the Hourglass (Fig 3(a)). Table 7 shows that
this normalization is effective in improving pose estimation
performance, leading to+1.0% (91.5-90.5) increase in mean
PCKh@0.5 and+1.4 (64.3-62.9) increase in AUC. This vali-
dates our design motivation that the feature scale discrepancy
problem in cross-layer fusion may hinder model optimization
therefore yielding less discriminative generalization.

V. CONCLUSION
In this work, we have presented a novel and generic Hier-
archical Context Network (HCN) for efficiently training and
deploying deep human pose estimation models. In principle,
this method simulates the coarse-to-fine perception mecha-
nism inherent to the human visual system. This is in contrast
to most existing pose methods typically ignoring the crucial
model efficiency aspect and focusing only on boosting the
accuracy rates. Crucially, HCN is on par with non-efficient
alternative methods in model generalization capability whilst
enjoying significant training and test efficiency advantages.
We produced a HCN instantiation model using the Hourglass
with extra design improvements. Extensive comparative eval-
uations have been conducted on three human pose bench-
marks to validate the advantages of HCN over a wide range
of state-of-the-art methods in challenging daily activity and
sporting event scenarios. We performed detailed model com-

ponent analysis and shed insight into the model performance
advantages and design of HCN.
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