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a b s t r a c t 

Contemporary person re-identification (re-id) methods mostly compute independently a feature represen- 

tation of each person image in the query set and the gallery set. This strategy fails to consider any ranking 

context information of each probe image in the query set represented implicitly by the whole gallery set. 

Some recent re-ranking re-id methods therefore propose to take a post-processing strategy to exploit such 

contextual information for improving re-id matching performance. However, post-processing is indepen- 

dent of model training without jointly optimising the re-id feature and the ranking context information 

for better compatibility. In this work, for the first time, we show that the appearance feature and the 

ranking context information can be jointly optimised for learning more discriminative representations 

and achieving superior matching accuracy. Specifically, we propose to learn a hybrid ranking represen- 

tation for person re-id with a two-stream architecture: (1) In the external stream, we use the ranking 

list of each probe image to learn plausible visual variations among the top ranks from the gallery as the 

external ranking information; (2) In the internal stream, we employ the part-based fine-grained feature 

as the internal ranking information, which mitigates the harm of incorrect matches in the ranking list. 

Assembling these two streams generates a hybrid ranking representation for person matching. Extensive 

experiments demonstrate the superiority of our method over the state-of-the-art methods on four large- 

scale re-id benchmarks (Market-1501, DukeMTMC-ReID, CUHK03 and MSMT17), under both supervised 

and unsupervised settings. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Person re-identification (re-id) aims to match people across 

on-overlapping camera views deployed over distributed physical 

ocations [1–3] . This capability underpins a wide range of real- 

orld intelligent vision applications, such as video surveillance, 

otion analysis and anomaly detection. Although many effective 

e-id methods have been proposed in recent years [4–7] , matching 

eople across multiple disjoint camera views remains a challeng- 

ng task due to arbitrary person pose variation, background clutter, 

llumination variation, occlusion, etc. 

Contemporary person re-id methods are mostly designed to 

ompute the feature representation of each person image in the 

uery set and the gallery set independently [8–11] . In other words, 

he feature representation of a probe image in the query set is in- 

ependently inferred from that of the images in the gallery. This 

pproach does not leverage any useful ranking context information 
∗ Corresponding author. 
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n the gallery set for modelling the overall contextual correlation 

etween the query set and the gallery set. As a result, the returned 

anking list usually contains more false matches from the gallery 

hat are visually similar to the probe but semantically incorrect in 

erson label (identity). Recent research in re-ranking based re-id 

12–15] shows that given a specific gallery set, a probe image and 

ts true matches in the gallery would generate similar ranking lists 

here the semantically relevant images are ranked at the top. Im- 

ortantly, exploiting such ranking context information helps to im- 

rove the re-id performance by retrieving more correct matches 

n higher ranking orders. However, these re-ranking methods all 

dopt a post-processing (post-rank) strategy, which is independent 

f model training without jointly optimising the re-id feature and 

he ranking context information for better compatibility. 

In this work, we investigate the ranking context information 

or learning more discriminative feature representations in person 

e-id. Specifically, for a given probe image from the query set, 

he top-ranked candidates from the gallery set resemble similar 

iew variations as the probe image, so the correlations among 

hese candidates reflect the ranking context information between 

he probe and the gallery. Leveraging such contextual information 

elps to generate a more discriminative representation for person 

https://doi.org/10.1016/j.patcog.2021.108239
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.108239&domain=pdf
mailto:guile.wu@qmul.ac.uk
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Fig. 1. An overview of the proposed two-stream architecture for learning a hybrid ranking representation for person re-id. The external stream (top block) is designed to 

learn the external ranking information from the ranking list, whilst the internal stream (bottom block) is formed to extract the internal part-level fine-grained information. 

These two streams formulate a hybrid ranking ensemble in a unified architecture. 

m

r

b

s

i

w

o

v

e

f

(

b

t

m

c

a

s

r

a

m

t

i

o

”

t

I

2

[

w

b

atching. This would benefit both supervised and unsupervised 

e-id, due to no need for extra labelling – the ranking list can 

e automatically generated by matching a probe with the gallery 

et. Although the ranking list may inevitably be contaminated by 

ncorrect candidates from the gallery (a.k.a. false positive matches ), 

e observe that this is partly due to the over coarse description 

f each person’s appearance as a whole. This problem can be alle- 

iated by further utilising structured fine-grained features, which 

ncode finer details of body parts to provide richer information, 

or minimising false gallery positive matches. 

To this end, we propose a two-stream RANkingG Ensemble 

RANGEv2) approach (see Fig. 1 ) for person re-id by learning a hy- 

rid ranking representation. In the external stream 

1 , we jointly op- 

imise the re-id appearance feature and the ranking context infor- 

ation to generate the external ranking representation. This asso- 

iates the probe and the gallery for retrieving more true matches 

mong the top ranks in the returned ranking list. In the internal 

tream 

2 , we leverage part-based features to generate the internal 

anking representation, which captures finer details of body parts 

nd provides extra information for minimising false gallery positive 

atches. Formulating these two streams into an integrated archi- 

ecture enables to learn a hybrid ranking representation to max- 

mise their respective advantages in a cohort for improving the 

verall model performance. The contributions of this work are: 

(I) We propose the idea of jointly learning the ranking context 

information and the appearance feature to extract a more 

discriminative feature representation for person re-id. To our 

best knowledge, this is the first attempt to jointly optimise 

the two types of information in an online trainable fashion. 

(II) We design a novel two-stream architecture to learn a hy- 

brid ranking representation for more effective person re-id. 

Assembling the external and internal streams helps to max- 

imise their respective advantages in a cohort and improves 

the model performance. 

(III) We introduce an aggregation module to optimise the cu- 

mulation of the ranking context information as the external 

ranking representation. 
1 As the top-ranked gallery images are not part of a probe, we refer to it as the 

external” information. 
2 As the structured parts are partitioned from a probe, we refer to it as the ”in- 

ernal” information. 

2

t

t

o

2 
(IV) Our method achieves superior performance compared with 

the state-of-the-art alternative methods on four large-scale 

person re-id benchmarks. We also verify that the pro- 

posed idea benefits both supervised and unsupervised cross- 

domain person re-id. 

A preliminary version of this work has been published in [16] . 

n this work, we present several key improvements as follows: 

(I) We reformulate the proposed idea by designing a new two- 

stream architecture. Each stream is online trainable and 

their ensemble maximises their respective advantages for 

improving the model performance. 

(II) In the external stream, we introduce a probe-gallery sam- 

pling strategy to facilitate the online ranking context learn- 

ing. And we further propose an aggregation module to bet- 

ter aggregate the ranking context information as the exter- 

nal ranking representation. As such, image-level classifica- 

tion losses and ranking-list-level classification losses can be 

jointly optimised. 

(III) We improve the internal ranking stream by replacing a se- 

quential model with a stronger part-based model for learn- 

ing internal correlations. We further refine the optimisation 

objective to obtain more discriminative fine-grained fea- 

tures. 

(IV) We conduct more comprehensive experimental evaluations. 

We demonstrate that our RANGEv2 achieves significantly su- 

perior performance than the preliminary model RANGE [16] . 

For example, in supervised person re-id, RANGEv2 gains an 

mAP improvement of nearly 10% on CUHK03/MSMT-17 and 

around 5% on Market-1501/DukeMTMC-ReID. 

. Related work 

In recent years, person re-id has been extensively studied 

4,6,10,17] . In this section, we discuss two groups of mostly related 

orks, i.e. ranking context information based re-id and body part 

ased re-id. 

.1. Ranking context information based person re-id 

Given a probe image, the returned ranking list obtained from 

he gallery set usually encompasses rich ranking context informa- 

ion which is useful for improving the re-id performance. Previ- 

us re-id methods typically adopt a post-processing (post-rank) 
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trategy to mine such contextual information [12,13,18,19] . In [12] , 

hong et al. assume that k-reciprocal nearest neighbours indicate 

he similarity between a probe and a gallery image, so they pro- 

ose to encode the k-reciprocal features using the Jaccard distance 

or re-ranking matches in the ranking list. In [13] , Sarfraz et al. ex- 

loit the idea of the expanded cross neighbourhood distance be- 

ween images for refining the initial ranking list to retrieve more 

rue matches at the top. In [20] , Liu et al. propose an adaptive it-

rative re-ranking approach based on the k-reciprocal features and 

se a deep feature fusion method to exploit diverse information in 

he learned features for matching. Although these methods have 

hown effectiveness for improving the performance by re-ranking 

he initial ranking list, they heavily rely on the pre-trained fea- 

ure extractor and the accuracy of the initial ranking list. The pro- 

osed RANGEv2 model shares the same merit as these methods 

n exploiting the ranking information for re-id, but the key nov- 

lty is that our method can jointly optimise the appearance feature 

nd the ranking context information in an online trainable man- 

er, instead of applying independent post-rank. Besides, some re- 

ent studies explore the ranking context information to embed the 

e-id evaluation measures into the optimisation of a distance met- 

ic [18] or to select the most discriminative video fragments for 

e-id matching [19] . In contrast, the proposed RANGEv2 focuses on 

earning a more discriminative feature representation for person 

e-id neither optimising an evaluation metric nor selecting video 

rames. 

.2. Body part based person re-id 

Part-level features are capable of effectively exploiting the fine- 

rained information of local body regions for person matching. In 

ecent years, body part based re-id models [1,2,8,9] have shown 

romising performance on challenging re-id benchmarks. In [1] , Li 

t al. propose to refine local parts with the aid of attribute de- 

ection and extract discriminative part-based features. In [2] , Luo 

t al. propose to align the pedestrian images using the shortest 

ath between two sets of horizontal part features. In [9] , Sun 

t al. use the uniform partition strategy to generate body parts 

o learn fine-grained features in a strong baseline model. In our 

ork, we adopt the horizontal uniform partition strategy [9] to 

earn body part fine-grained information. Instead of computing the 

art-based feature of a person image as previous methods, we in- 

tead jointly optimise all the local part branches with a global 

art branch in the internal ranking stream, and concatenate these 

eatures to form the complementary internal ranking representa- 

ion. This formulation not only mitigates the harm of false positive 

atches in the external ranking stream, but also maximises the 

espective advantages in a cohort and achieves better performance 

hen ensembling these two streams together in a unified frame- 

ork. 

. Methodology 

.1. Approach overview 

In this work, we focus on learning a hybrid ranking representa- 

ion for more effective person re-id. The overview of our RANGEv2 

odel is depicted in Fig. 1 . The design of RANGEv2 is in a two-

tream architecture, where each stream is online trainable as de- 

ailed below. 

Specifically, (I) in the external stream, we construct each train- 

ng mini-batch with T randomly selected person identity and uni- 

ormly sample S images of each identity, so there are T ×S images 

n each mini-batch. Given a probe image x o , the remaining im- 

ges in the mini-batch are defined as the gallery samples { x j � = o } T ×S 
j=1 

.

3 
hen, we use a feature extractor F A ( e.g. ResNet-50 [21] ) to com-

ute an appearance feature vector v a of each image: 

 v a j } T ×S 
j=1 

= F A ({ x j } T ×S 
j=1 

) (1) 

here { x j } is the jth image and { v a 
j 
} is the corresponding appear-

nce feature. 

Next, we use a generic distance metric ( e.g. Euclidean distance 

(·) ) to measure the similarity between v a o and { v a 
j � = o } T ×S 

j=1 
. We se-

ect the top- k ranked candidates from the gallery { v a 
j � = o } T ×S 

j=1 
to con-

truct a ranking list and employ an external ranking information 

earner F E to encode the ranking context information in the rank- 

ng list: 

 v e t } k t=1 = F E ({ v ar 
t } k t=1 ) (2) 

here { v ar 
t } is the tth appearance feature in the ranking list, and

 v e t } is the tth encoded external ranking feature outputted by F E .

n this work, we use the BiLSTM [22] model as the external ranking 

ontext information learner F E . 

At last, we use an aggregation module F M 

to aggregate { v e t } k t=1 
nd generate the external ranking representation f ext : 

f ext = F M 

({ v e t } k t=1 ) (3) 

Meanwhile, (II) in the internal stream, there are T ×S images 

n each mini-batch. Given each training image x o , we employ the 

esNet-50 to extract the global appearance feature v g and use hor- 

zontal partition to generate m part-level features { v p 
j 
} m 

j=1 
. We con- 

atenate all the local part-level features and the global image-level 

eature to form the fine-grained internal ranking representation 

f int : 

f int = F I ({ v p j 
} m 

j=1 , v 
g ) (4) 

here F I denotes the vector concatenation operation. At last, we 

se D (·) to measure the pairwise similarity of f ext in the external 

anking space and that of f int in the internal ranking space, and 

ggregate these two types of scores for re-id at test time: 

 s = αD( f int ) + (1 − α) D( f ext ) (5) 

here D s is the final pairwise score for re-id matching, α is a fu- 

ion weight for balancing the internal and external ranking repre- 

entations. When α = 0 , only the external ranking stream is used, 

hile α = 1 , only the internal ranking stream is used. 

Model deployment. At test time, in the external stream, we ex- 

ract the appearance features of each person image in the query 

nd the gallery, and then generate the external ranking represen- 

ation based on the original ranking lists; In the internal stream, 

e directly extract the internal ranking features of each image. The 

airwise similarities are measured using Eq. (5) . 

.2. External ranking representation 

Traditionally, given a probe x o , we can retrieve candidates from 

he gallery and obtain a ranking list. Existing re-id methods either 

gnore probe-gallery specific ranking lists [4,8,9] or employ offline 

e-ranking strategies [12,13] , but fail to optimise the ranking con- 

ext information from the gallery along with the deep appearance 

eature computation. To this end, we formulate an external ranking 

tream to encode the ranking context information more effectively 

or re-id. 

In a training mini-batch, we begin by extracting an appearance 

eature vector of each sample using Eq. (1) . And then, for x o , we se-

ect the top- k candidates from its corresponding gallery set ( i.e. all 

n-batch samples except x o ) as its ranking list { v ar 
t } k t=1 

, where k > S.

hus, ideally, we can have S − 1 true positive samples and k − S + 1

alse positive samples in each ranking list for a given probe image. 

s each ranking list contains both true and false positive matches, 
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he proposed model can well learn to encode the latent structured 

anking information of each task, which is closer to the re-id de- 

loyment where true and false positive matches are mixed in a 

anking list with the plausible variations latently included. We for- 

ulate { v ar 
t } k t=1 

as an input sequence to a BiLSTM model as: 

 

h t = F L f ( W 1 v ar 
t + W 2 h t−1 ) 

h 

′ 
t = F L f ( W 3 v ar 

t + W 4 h 

′ 
t+1 ) 

v e t = F L o ( W 5 h t + W 6 h 

′ 
t ) 

(6) 

here { W j } 6 j=1 
are the shared weights between each input unit, 

 L f 
is the hidden layer function, F L o is the output layer function, 

nd h t and h ′ t are the forward and backward hidden states, respec- 

ively. 

Remarks. The forward and backward hidden states effectively 

ncapsulate the ranking order information for a given probe, so the 

utputs can learn the correlations and the discriminative selections 

mong the input units (elements in the list). In our design, { v e t } k t=1 
ontain the output features from the last layer of the BiLSTM net- 

ork, so { v e t } k t=1 
are formulated as the latent external ranking en- 

emble feature vectors. 

To obtain the external ranking representation f ext , we discuss 

he choices for the aggregation module function F M 

. 

Average Pooling. Since { v e t } k t=1 
encode the correlations among 

amples of a ranking list, a natural choice for implementing F M 

is 

y average pooling: 

f ext = 

1 

k 

k ∑ 

t=1 

v e t (7) 

Neighbour Weighted Pooling. Average pooling considers each 

andidate in a ranking list as equally important, but since these 

andidates are neighbours of a probe in the gallery, we can reas- 

ign the weights based on the pairwise similarity between a probe 

nd its neighbours as: 

t = 

e −D(v a o , v ar 
t ) ∑ k 

l=1 e 
−D(v a o , v ar 

l 
) 

(8) 

f ext = 

k ∑ 

t=1 

βt v e t (9) 

here βt is the neighbour weight for the tth encoded external 

anking feature v e t . 

Attentive Weighted Pooling. While neighbour weighted pool- 

ng reassigns the weights based on the neighbour similarity, it 

s limited in learning the correlations among candidates. To this 

nd, we reassign the weights based on attention selection [17] . We 

se two fully connected layers to generate the 1-dimension scalar 

alue for each encoded feature vector and employ a softmax func- 

ion F S to generate the attentive weights for aggregation: 

= F S ( W 8 max (0 , ( W 7 { v e t } k t=1 + b 7 ) + b 8 )) (10)

f ext = γ { v e t } k t=1 (11) 

here W 7 and W 8 are weights of the fully connected layers, b 7 and 

 8 are corresponding biases, γ contains the attentive weight for 

he tth encoded external ranking feature v e t . The above variants of 

he aggregation module are evaluated in Section 4 . 

.3. Internal ranking representation 

While the external ranking stream can effectively learn the vari- 

tion and correlation between a probe image and the gallery set, 

 ranking list may be a mixture of true and false positive matches. 

his is likely to contaminate the external ranking ensemble repre- 

entation. As part-based appearance deep features [8] encode more 
4 
ffective fine-grained information, they are complementary to the 

xternal ranking representation and therefore can be used to min- 

mise false positive matches in the gallery. Therefore, we further 

evelop an internal ranking stream to learn the complementary 

art-based features and to jointly refine the ranking results. 

Specifically, given x o , we first use ResNet-50 to extract the 

lobal appearance feature v g . Among many strategies for obtain- 

ng the regional features (such as uniform partitioned parts [9] , 

aliency parts [3] , skeleton parts [23] and attention parts [17] ), we 

elect the horizontal partition, which is both simple and effective, 

o generate m parts { v p 
j 
} m 

j=1 
and use Eq. (4) to extract the part-

evel fine-grained internal ranking representation. Here, different 

rom existing methods, the extracted part-based representations 

re used as complementary features to mitigate the harm of false 

allery positive matches inevitable in the external ensembles. 

.4. Optimisation objective 

To optimise each stream, we stack the classification layers for 

he appearance feature extractor, the external ranking stream, the 

nternal part branches, and the internal global branch (see Fig. 1 ), 

o compute their classification losses. In particular, each classifica- 

ion module consists of two fully connected layers and a softmax 

peration. The first layer is a bottleneck layer with BatchNorm, 

hile the second layer maps each feature vector to a probability 

ector. In the external ranking stream, the training objective is for- 

ulated as: 

 ext = L 

A 
soft max 

+ L 

E 
soft max 

= − 1 
T ×S 

∑ T ×S 
i =1 y i log 

exp ( W 

A 
c ( v a i ) ) ∑ N 

n =1 exp ( W 

A 
n ( v a i ) ) 

− 1 
T ×S 

∑ T ×S 
i =1 y i log 

exp ( W 

E 
c ( f ext ,i ) ) ∑ N 

n =1 exp ( W 

E 
n ( f ext ,i ) ) 

(12) 

here L 

A 
sof tmax 

is the per-image classification loss, and L 

E 
sof tmax 

is 

he ranking-list-level classification loss, L ext specifies the external 

anking ensemble loss, y i denotes the ground truth distribution, 

 

A 
c and W 

E 
c compute logits with the classification layers in the ex- 

ernal stream. In the internal ranking stream, the training objective 

s formulated as: 

 int = 

∑ m 

j=1 L 

I j 
soft max 

+ L 

G 
soft max 

= − 1 
T ×S 

∑ m 

j=1 

∑ T ×S 
i =1 y i log 

exp 
(
W 

I 
c 

(
v p 

j,i 

))
∑ N 

n =1 exp 
(
W 

I 
n 

(
v p 

j,i 

))
− 1 

T ×S 

∑ T ×S 
i =1 y i log 

exp ( W 

G 
c ( v 

g 
i ) ) ∑ N 

n =1 exp ( W 

G 
n ( v g i ) ) 

(13) 

here L 

I j 
sof tmax 

is the local part-level classification loss, L 

G 
sof tmax 

is 

he global image-level classification loss, L int denotes the internal 

anking representation learning loss, y i denotes the ground truth 

istribution, W 

I 
c and W 

G 
c compute logits with the classification lay- 

rs in the internal stream. The entire training process of our model 

s summarised in Algorithm 1 . 

. Experiment 

.1. Datasets and evaluation protocol 

Datasets. To evaluate the proposed method for person re- 

d, we used four large-scale benchmarks ( i.e. Market-1501 [24] , 

ukeMTMC-ReID [25] , CUHK03 [12,26] and MSMT17 [27] ). We 

dopted the standard split setting and evaluation protocol. The 

tatistics of these re-id benchmarks along with their split settings 

re shown in Table 1 and some examples from these benchmarks 

re shown in Fig. 2 . 

Specifically, Market-1501 is a large-scale re-id benchmark with 

501 person identities and 32,668 images captured from 6 non- 

verlapping camera views. We followed the standard split set- 

ing [24] for experiments, i.e. using 751 identities for training and 
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Algorithm 1 Hybrid Ranking Representation for Person Re-ID. 

Input: Training samples X ,Identity class labels Y . 

Output: Learned RANGEv2 model θ , includingthe appearance fea- 

ture extractor θA ,the external ranking information learner θ E ,and 

the internal stream model θ I . 

1: (I) External ranking stream 

2: Initialise: Construct a probe-gallery mini-batch with T ×S im- 

ages, 

3: for epoch=1 → Max-epoch do 

4: for t=1 → Batch-number do 

5: Forward to extract the appearance features v a (Eq. (1)); 

6: Compute the per-image classification loss L 

A 
sof tmax 

(Eq. 

(12)); 

7: Compute the pairwise similarity to generate ranking 

lists; 

8: Forward to learn the ranking context information (Eq. 

(6)); 

9: Extract the external ranking feature f ext (Eq. (7)–(11)); 

10: Compute the ranking context loss L 

E 
sof tmax 

(Eq. (12)); 

11: Update { θA , θE } with Eq. (12); 

12: end for 

13: end for 

14: (II) Internal ranking stream 

15: Initialise: Construct a mini-batch with T ×S images, 

16: for epoch=1 → Max-epoch do 

17: for t=1 → Batch-number do 

18: Forward to extract the internal feature f int (Eq. (4)); 

19: Compute the internal ranking loss L int (Eq. (13)); 

20: Update θ I with Eq. (13); 

21: end for 

22: end for 

23: return θ = { θA , θE , θ I } 

Table 1 

Data statistics of four person re-id benchmarks. 

Benchmark Image ID Train Test 

MSMT17 126,441 4101 1041 3060 

Market-1501 32,668 1501 751 750 

DukeMTMC-ReID 36,411 1404 702 702 

CUHK03 (new protocol) 14,097 1467 767 700 

Fig. 2. Example person image pairs from four person re-id benchmarks. 
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he remaining 750 identities for testing. DukeMTMC-ReID is a 

ubset re-id benchmark of the DukeMTMC benchmark containing 

404 identities and 36,411 images capture by 8 cameras. Follow- 

ng [25] , we used 702 identities with 16,522 images for training 

nd 702 identities with 2228/17,661 images for query/gallery test- 

ng. CUHK03 contains 1467 identities with 14,097 images. It pro- 

ides both manually labelled and DPM-detected bounding boxes 

or experiments. The traditional protocol [26] uses 1376/100 identi- 

ies for training/testing, while the new protocol uses 767/700 iden- 

ities for training/testing. We used the new and more challenging 

rotocol with both labelled (CUHK03-L) and detected (CUHK03-D) 

atasets in our experiments. MSMT17 is a newly released large- 
5 
cale re-id benchmark with 126,441 images and 4101 identities. 

e used 1041 identities for training and 3060 identities for test- 

ng as [27] . 

Evaluation Metrics. For all experiments, we used the single 

uery evaluation. We adopted the Cumulative Matching Character- 

stic (CMC) and mean Average Precision (mAP) as the performance 

valuation metrics. 

.2. Implementation details 

We used ResNet-50 [21] pre-trained on ImageNet as the back- 

one CNN model. (I) For the external stream , we employed the 

ackbone model as the appearance feature extractor and used BiL- 

TM [22] as the ranking context information learner. We used the 

tochastic Gradient Descent (SGD) as the optimiser with the ini- 

ial learning rate at 0.005, which decayed by 0.1 every 40 train- 

ng epochs (initial learning rate for classification layers was set 

o 0.05). The model was trained for 100 epochs. We set T = 8 

nd S = 4 to construct the training probe-gallery batch, and set 

 = 5 , i.e. selected top-5 candidates in a ranking list. The number 

f forward-backward recurrent layers was set to 1 and the feature 

imension of hidden states was set to 256, so the external ranking 

eature representation was 512-D. By default, we reported the re- 

ults using the attentive weighted pooling, while the experiments 

or comparing different aggregation module variants are provided 

n Section 4.7 . (II) For the internal stream , we partitioned the out- 

utted feature map from the backbone model into m = 6 parts, so 

here were m local part branches and one global branch in this 

tream. We set the same optimiser learning rate as the external 

tream and trained the model for 60 epochs. The output feature 

imension of each branch was 2048-D, leading to a 14336-D inter- 

al ranking feature representation. We set α = 0 . 25 as the fusion 

eight. 

.3. Model component evaluation and analysis 

To comprehensively evaluate the effectiveness of each com- 

onent of the proposed method, we conducted the experiments 

n all the four benchmarks. From Table 2 , we can see that both 

he external and internal streams can improve the performance 

f the backbone model ( i.e. ResNet-50) separately, and their com- 

ination ( i.e. the full RANGEv2 model) achieves the best accura- 

ies in most cases. Specifically, on Market-1501, DukeMTMC-ReID 

nd MSMT17, the external stream performs better than the inter- 

al stream, which indicates that the ranking context information 

s relatively more effective. However, on CUHK03-D and CUHK03- 

, an opposite phenomenon is observed. This suggests somewhat 

ata-dependent advantages of the proposed two designs. Com- 

ared with the preliminary method (RANGE [16] ), RANGEv2 gains 

early 10% improvements on MSMT17, CUHK03-L and CUHK03-D, 

nd around 5% improvements on Market-1051 and DukeMTMC- 

eID in the mAP score. Such great gains are attributed to the on- 

ine optimisation of each ingredient stream, in addition to their im- 

roved designs. 

.4. Supervised learning re-id evaluation 

Comparison with the State-of-the-Art Methods. In Table 3 , 

e compared RANGEv2 with recently proposed re-id methods 

ith state-of-the-art performance. As shown in Table 3 , RANGEv2 

chieves superior performance over the state-of-the-art alter- 

atives [ 4,7,28,29 ]. Specifically, on Market-1501, RANGEv2 and 

DGL [4] achieve the best performance. In terms of mAP, RANGEv2 

anks the first (86.8%) with a 0.8% margin over the state-of-the- 

rt. In terms of rank-1 accuracy, RANGEv2 achieves the second- 

est result (94.7%) approaching to the best result (94.8%) obtained 
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Table 2 

Component effectiveness evaluation. 

Component Market Duke CUHK03-D CUHK03-L MSMT17 

mAP R1 mAP R1 mAP R1 mAP R1 mAP R1 

RANGE [16] 81.9 91.0 69.7 81.3 57.0 52.9 56.2 53.0 41.0 68.7 

Backbone 73.5 90.4 60.4 77.9 40.8 41.8 43.0 43.2 35.4 66.8 

External 86.1 92.1 76.2 81.6 55.4 49.4 58.3 52.4 54.4 72.4 

Internal 78.9 92.8 71.7 85.6 61.5 65.7 64.1 66.9 44.0 71.0 

RANGEv2 86.8 94.7 78.2 87.0 64.6 61.6 67.4 64.3 51.3 76.4 

Table 3 

Comparison with the state-of-the-art methods on Market-1501, DukeMTMC-ReID, MSMT17 and CUHK03.The best re- 

sults are shown in RED BOLD , while second-best in BLUE BOLD . 
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y JDGL. On DukeMTMC-ReID, RANGEv2 performs the best in both 

ank-1 accuracy and mAP. It clearly improves the state-of-the-art 

y 1.8% (78.2%-76.4%) on mAP and 0.4% (87.0%-86.6%) on rank-1 ac- 

uracy. On MSMT17, JDGL achieves the best performance (52.3% on 

AP and 77.2% on rank-1 accuracy) while RANGEv2 achieves the 

econd-best results (51.3% and 76.4% in terms of mAP and rank-1 

ccuracy, respectively). On CUHK03 (labelled), RANGEv2 achieves 

7.4% on mAP and 64.3% on rank-1 accuracy, significantly out- 

erforming the state-of-the-art. On CUHK03 (detected), RANGEv2 

anks the first in terms of mAP (64.6%) by improving the state-of- 

he-art by 5.0%, and achieves a competitive rank-1 accuracy (61.6%). 

Comparison with Re-Ranking Based Re-ID. One key idea of 

he proposed method is to exploit the ranking context information 

or more effective re-id. Traditional re-ranking methods exploit this 

nformation by only considering the top-ranked candidates in the 

allery and revising the scores of candidates to refine the ranking 

ist, i.e. taking a post-rank strategy. Different from existing alter- 

ative methods, our model is a joint learning approach for opti- 

ising the appearance features and the ranking context features 

oncurrently. As shown in Table 4 , compared with the state-of- 

he-art re-ranking methods, RANGEv2 achieves significantly better 

erformance. For example, on Market-1501, RANGEv2 improves the 

tate-of-the-art by 13.6% (86.8%-73.2%) on mAP and 12.3% (94.7%- 

2.4%) in the rank-1 accuracy, respectively. We attribute this mar- 

in to two reasons: (I) The online joint optimisation of the appear- 
6 
nce feature and the ranking context information representation, 

nd (II) the complementary external and internal ranking feature 

epresentations. Interestingly, compared with the state-of-the-art 

e-id methods which use the re-ranking strategies ( e.g. PSE + ECN, 

SE + K-reciprocal, PCB + ARR-DFF, AlignedReID++ + K-reciprocal, 

nd HAN + K-reciprocal), RANGEv2 still achieves the best mAP and 

ank-1 accuracy. This validates that the proposed external stream 

n RANGEv2 can more effectively learn the ranking context infor- 

ation. Critically, RANGEv2 is compatible with existing re-ranking 

ethods. As shown in the last row in Table 4 , K-reciprocal can 

ork well together with RANGEv2 (adjust weights for each com- 

onent), which further improves the performance of RANGEv2 by 

.5% (91.3%-86.8%) in mAP and 0.4% (95.1%-94.7%) in rank-1 accu- 

acy on Market-1501, and by 6.0% (84.2%-78.2%) in mAP and 1.7% 

88.7%-87.0%) in rank-1 accuracy on DukeMTMC-ReID. The small 

ank-1 margin implies that RANGEv2 is effective for encoding the 

anking context information even without using re-ranking. 

Comparison with Body Part Based Re-ID. The proposed 

ethod is built on an observation that body part based inter- 

al ranking representations are complementary to the ranking- 

ist-based external ensemble representations. In RANGEv2, we 

dopt the uniform partition for design simplification. In com- 

arison, existing state-of-the-art methods use various partition 

trategies, including uniform partition [2,8,9,32] , skeleton parti- 

ion [23] , saliency detection [3] , attention parts [17,31] and at- 
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Table 4 

Comparison with the state-of-the-art re-ranking based re-id methods. 

Method Ref. Strategy Market Duke 

mAP R1 mAP R1 

K-NN [30] CVPR12 Offline 60.3 79.5 - - 

SCA [15] TIP16 Offline 68.9 79.8 - - 

DaF [14] BMVC17 Offline 72.4 82.3 - - 

ARR-DFF [20] arXiv18 Offline 73.2 82.4 63.7 68.3 

ECN [13] CVPR18 Offline 71.1 82.3 - - 

K-reciprocal [12] CVPR17 Offline 70.4 81.4 - - 

RANGEv2 Ours Online 86.8 94.7 78.2 87.0 

PSE + ECN [13] CVPR18 Offline 84.0 90.3 79.8 85.2 

PSE + K-reciprocal [13] CVPR18 Offline 83.5 90.2 78.9 84.4 

PCB + ARR-DFF [20] arXiv18 Offline 85.6 91.8 80.2 86.4 

AlignedReID + + K-reciprocal [2] PR19 offline 89.4 92.8 82.8 86.2 

HAN + K-reciprocal [17] IJCV19 offline 89.6 93.1 81.3 84.6 

Backbone + K-reciprocal Ours Offline 89.1 92.8 80.4 84.2 

RANGEv2 + K-reciprocal Ours Online + Offline 91.3 95.1 84.2 88.7 

Table 5 

Comparison with the state-of-the-art part-based re-id methods. 

Method Ref. Strategy Market Duke 

mAP R1 mAP R1 

Spindle [23] CVPR17 skeleton - 76.9 - - 

AACN [31] CVPR18 attention 66.9 85.9 59.3 76.8 

CA3Net [32] ACMMM18 uniform 80.0 93.2 70.2 84.6 

PCB [9] ECCV18 uniform 77.4 92.3 66.1 81.8 

PCB + RPP [9] ECCV18 uniform 81.6 93.8 69.2 83.3 

PLNet [3] TIP19 saliency 69.3 88.2 - - 

AlignedReID + [2] PR19 uniform 79.1 91.8 69.7 82.1 

HAN [17] IJCV19 attention 76.7 91.6 64.1 80.6 

HPM [8] AAAI19 uniform 82.7 94.2 74.3 86.6 

APDR [1] PR20 attribute 80.1 93.1 69.7 84.3 

RANGEv2 Ours uniform 86.8 94.7 78.2 87.0 
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Table 6 

Evaluation on unsupervised cross-domain person re-id. ’ ∗ ’: The target domain 

is Market-1501 but the source domain involves multiple datasets instead of 

DukeMTMC-ReID. D2M : DukeMTMC (source) ⇒ Market (target). M2D : Market 

(source) ⇒ DukeMTMC (target). 
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ribute parts [1] . As shown in Table 5 , compared with the state-

f-the-art part-based re-id methods, RANGEv2 achieves signifi- 

antly better performance. In particular, on Market-1501, RANGEv2 

mproves the state-of-the-art by 4.1% (86.8%-82.7%) in mAP and 

.5% (94.7%-94.2%) in rank-1 accuracy, while on DukeMTMC-ReID, 

ANGEv2 improves the state-of-the-art by 3.9% (78.2%-74.3%) in 

AP and 0.4% (87.0%-86.6%) in rank-1 accuracy. These results 

emonstrate that the ranking-list-based features are complemen- 

ary to part-based fine-grained features, consequently the fused 

anking feature representations bring superior performance. 

.5. Unsupervised cross-domain re-id evaluation 

To further evaluate the effectiveness of our method, we con- 

ucted unsupervised cross-domain re-id experiments. Supervised 

e-id assumes the availability of person identity class labels in the 

arget domain, however, this supervision is not necessarily acces- 

ible in many real-world deployments. One effective solution is by 

nsupervised cross-domain knowledge transfer [33–36] . This task 

s more challenging because the model trained on the source do- 

ain is typically weak when directly transferred to the unseen tar- 

et domain, due to the potentially significant domain discrepancy. 

s a consequence, more false matches will be retrieved in the top 

anks. 

To demonstrate that the proposed RANGEv2 is effective in un- 

upervised re-id where more false matches are retrieved in the 

op ranks, we formulate a training pipeline as shown in Fig. 3 . 

pecifically, we first pretrain the proposed RANGEv2 in a source 

abelled domain. Then, in the target unlabelled domain, we use 

he pretrained model to extract the initial ranking feature repre- 

entations of N u unlabelled samples. Based on the fusion scores, 

e use adaptive clustering ( e.g. DBSCAN [37] ) to gather n u samples
7 
nto j u clusters, where j u � n u < N u . Subsequently, we reassign the 

seudo labels for the target unlabelled domain based on the clus- 

ers, with N u − n u isolated samples discarded. Next, we fine-tune 

he pretrained model to optimise the ranking feature representa- 

ions in the target domain using the triplet loss [38] , resulting in 

he final model for deployment. For simplification and computa- 

ion efficiency, we only use a single clustering and fine-tune pro- 

ess, rather than performing more expensive iterative clustering 

s [33] . 

As shown in Table 6 , RANGEv2 obtains significant improve- 

ents (around 10%) in mAP and rank-1 accuracy as compared 

ith the backbone model. This indicates that the proposed rank- 

ng feature representation remains effective for the more chal- 

enging unsupervised cross-domain person re-id. Moreover, com- 

ared with the state-of-the-art methods [ 35,39,40 ], when using 

ukeMTMC-ReID as the source domain and Market-1501 as the 

arget domain ( i.e. DukeMTMC-ReID ⇒ Market-1501), RANGEv2 

anks the first in mAP (33.5%) and the second in rank-1 (61.8%). 

or the Market-1501 ⇒ DukeMTMC-ReID case, RANGEv2 yields 

he best mAP (27.4%) and obtains a competitive rank-1 accuracy 

41.7%). 
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Fig. 3. Illustration of RANGEv2 for unsupervised cross-domain person re-id. 

Fig. 4. Qualitative person re-id examples. The first block presents the probe persons, followed by the ranking results of the backbone model (middle) and the proposed 

RANGEv2 model (right). The images with green / red bounding boxes are the true/false matches of the corresponding probe person. Candidates in the ranking lists produced 

by RANGEv2 are more accurate and have more consistency in appearance. (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

8 
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Fig. 5. Evaluation on aggregation module variants. 

Fig. 6. Evaluation on ranking list length. 
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.6. Qualitative retrieve evaluation 

To qualitatively evaluate the performance of RANGEv2, we vi- 

ualise several examples of the person re-id results in Fig. 4 . We 

ave two main observations as follows: 

(I) In each ranking list, with the backbone model, the retrieved 

esults are generated mostly by the appearance similarity between 

he probe and each gallery candidate independently, with some 

andidates in the top ranks visually very dissimilar to the others 

see the first and fourth rows). In contrast, the retrieved results 

f the proposed RANGEv2 not only accurately account for the ap- 

earance similarity of probe-gallery pairs, but also well encode the 

atent structured correlations among candidates in a ranking list. 

s a result, RANGEv2 can capture more true candidates on the top 

anks, with each candidate being more consistent to one another. 

hese results demonstrate that the hybrid ranking representation 

roduced by our RANGEv2 are able to reliably learn the ranking 

ontext information, therefore delivering better performance. 

(II) As shown in the first, second and fifth rows, the backbone 

odel is incapable of learning discriminative representations of 

he probe images, where it retrieves false top-1 results and more 

alse results in each ranking list. In comparison, RANGEv2 not only 

etrieves the true candidates in the first rank, but also retrieves 

ore true candidates in the ranking lists. This shows that the pro- 

osed ranking representation is more effective and discriminative 

or person re-id. 

.7. Parameter analysis 

Aggregation Module Variant Comparison. To evaluate the ef- 

ectiveness of different aggregation module variants in the external 

anking stream, we conduct the experiments for comparative eval- 

ation among average pooling, neighbour weighted pooling, atten- 

ive weighted pooling and no-LSTM. Here, the former three vari- 

nts refer to those we introduce in Section 3.2 , while no-LSTM 

eans directly pooling the appearance features without using the 

xternal ranking information learner and the aggregation module. 

s shown in Fig. 5 , no-LSTM performs slightly worse, suggesting 

he effectiveness of the external ranking information learner and 

he aggregation module. On Market-1501, the attentive variant per- 

orms significantly better than the other two aggregation designs, 

hile on DukeMTMC-ReID, three aggregation variants achieve very 

imilar performance. 

Ranking List Length Impact. We evaluate the impact of rank- 

ng list length k on the re-id performance. Here, the length k = 0 

eans only using the internal ranking stream. Fig. 6 shows that: 

I) As k extends from 0 to 20, the rank-1 accuracies improve until 

he peaks (94.7% on Market-1501 and 87.0% on DukeMTMC-ReID) 

t k = 5 followed by steady decreases. This indicates that (1) the 

anking context information can be effectively encoded into the 

anking representation to improve re-id performance, (2) but as 

ore false positive matches are included, the discrimination ca- 

ability of a best-matched candidate in a gallery can be contami- 

ated, resulting in the slight deterioration of the rank-1 accuracy. 

II) For the mAP performance, as k increases from 0 to 5, the rate 

ignificantly increases from 78.9% to 86.8% on Market-1501 and 

rom 71.7% to 78.2% on DukeMTMC-ReID. This demonstrates that 

he learning ranking context cue is an important strategy for find- 

ng more true positive matches on the top ranks. From k = 5 to 

 = 20 , mAP gradually reaches the peaks at k = 10 followed by

 steady decrease trend. This trend is reasonable and expected, 

ecause higher mAP suggests more true positive matches are re- 

rieved; Therefore, more candidates in a ranking list can improve 

he generalisation over true positive candidates in a gallery. How- 

ver, when setting a large length ( e.g. k = 20 ), there will be more
9 
alse positive matches in a ranking list, which intuitively leads to 

light performance deterioration. 

Fusion Weight Impact. To evaluate the fusion weight α, which 

s used to balance the internal and external ranking ensembles for 

e-id, we conduct experiments with α varies from 0 to 1. Here, 

= 0 means only the external ranking stream is used, while α = 1 

eans the opposite – only the internal ranking stream is used. 

e can see from Fig. 7 that: (I) The internal and external rank- 

ng streams perform differently in terms of mAP and rank-1 accu- 

acy. Specifically, in mAP, the external stream performs better than 

he internal counterpart, which indicates that the ranking context 

nformation is more important for retrieving more positive candi- 

ates in a gallery; In rank-1 accuracy, the internal stream performs 

etter, indicating that part-based fine-grained features are more 
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Fig. 7. Evaluation on fusion weight. 
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avourable to search a best-matched candidate in a gallery. (II) The 

usion of internal and external ranking representations achieves 

etter overall performance than using any one alone. When set- 

ing α = 0 . 25 , RANGEv2 achieves the best performance (in terms 

f mAP and rank-1 accuracy, 86.8% and 94.7% on Market-1501, and 

8.2% and 87.0% on DukeMTMC-ReID, respectively). These results 

emonstrate that the internal and external ranking representations 

re well complementary. 

. Conclusion and future work 

In this work, we proposed a novel idea of jointly learning 

he ranking context information and appearance feature repre- 

entation for person re-identification (re-id). It significantly dif- 

ers from existing re-id methods either ignoring the ranking con- 

ext information ( e.g. PCB [9] ) or applying post-rank strategies 

 e.g. K-reciprocal [12] ). To realise the proposed idea, we formu- 

ated a novel two-stream person re-id architecture (RANGEv2) for 

earning the hybrid external and internal ranking representations. 

ANGEv2 exploits the ranking contextual information with the 

xternal stream and extracts part-based fine-grained information 

ith the internal stream. Integrating them into a unified archi- 

ecture enables to maximise their respective advantages in a co- 

ort for improving the re-id performance. Extensive experiments 

n four large-scale re-id benchmarks have clearly shown the supe- 

iority of the proposed method over a wide range of state-of-the- 

rt supervised and unsupervised re-id methods. We also conducted 

 spectrum of detailed component analysis for giving the model 

ormulation insights. 

RANGEv2 also has some limitations to be solved in future work. 

irst, using a two-stream architecture, the number of parameters 

n RANGEv2 is approximately doubled. Distilling the knowledge in 

ANGEv2 into a smaller model is an effective solution. Second, 

ANGEv2 is not sufficiently effective for addressing domain dis- 

repancy problem in unsupervised person re-id. How to further 

efine the false matches due to the domain discrepancy with the 

id of additional information (such as attribute [1,5] and camera 

abels [35] ) is worth more investigation. Our future work will fo- 

us on addressing these limitations and developing our RANGEv2 

or real-world applications. 
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