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Abstract
Most existing person re-identification (re-id) methods are unsuitable for real-world deployment due to two reasons: Unscal-
ability to large population size, and Inadaptability over time. In this work, we present a unified solution to address both
problems. Specifically, we propose to construct an identity regression space (IRS) based on embedding different training per-
son identities (classes) and formulate re-id as a regression problem solved by identity regression in the IRS. The IRS approach
is characterised by a closed-form solution with high learning efficiency and an inherent incremental learning capability with
human-in-the-loop. Extensive experiments on four benchmarking datasets (VIPeR, CUHK01, CUHK03 and Market-1501)
show that the IRSmodel not only outperforms state-of-the-art re-id methods, but also is more scalable to large re-id population
size by rapidly updating model and actively selecting informative samples with reduced human labelling effort.

Keywords Person re-identification · Feature embedding space · Regression · Incremental learning · Active learning

1 Introduction

Person re-identification (re-id) aims to match identity classes
of person images captured under non-overlapping camera
views (Gong et al. 2014). It is inherently challenging due
to significant cross-view appearance changes (Fig. 1a) and
high visual similarity among different people (Fig. 1b).
Most existing re-id methods focus on designing identity
discriminative features and matching models for reducing
intra-person appearance disparity whilst increasing inter-
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person appearance individuality. This is often formulated
as a supervised learning problem through classification
(Koestinger et al. 2012; Liao et al. 2015), pairwise verifi-
cation (Li et al. 2014; Shi et al. 2016), triplet ranking (Zheng
et al. 2013; Wang et al. 2016d), or a combination thereof
(Wang et al. 2016a). While achieving ever-increasing re-id
performance on benchmarking datasets (Zheng et al. 2016;
Karanam et al. 2016), these methods are restricted in scal-
ing up to real-world deployments due to two fundamental
limitations:

(I) Small Sample Size The labelled training population is
often small (e.g. hundreds of persons eachwith a few images)
and much smaller (e.g. < 1

10 ) than typical feature dimen-
sions. This is because collecting cross-view matched image
pairs from different locations is not only tedious but also dif-
ficult. The lack of training samples is known as the small
sample size (SSS) problem (Chen et al. 2000), which may
cause singular intra-class and poor inter-class scatter matri-
ces.Given thatmetric learning re-idmethods aim tominimise
the within-class (intra-person) variance whilst maximising
the inter-class (inter-person) variance, the SSS problem is
therefore likely to make the solutions suboptimal.

(II) Inadaptability Existing re-id methods often adopt off-
line batch-wise model learning with the need for sufficiently
large sized training data collected via a time consuming
manual labelling process. This first-labelling-then-training
scheme is not scalable to real-world applications that require
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Fig. 1 Illustration of person re-identification challenges. a Significant
person appearance change across camera views.bHigh visual similarity
among different people

deployments at many previously unseen surveillance loca-
tions with little or no labelled data in advance. Also,
real-world label collection is more incremental, i.e. addi-
tional label data are sequentially available for model update
over time. It is hence desirable for a re-id model to grow
and adapt continuously to progressively available up-to-date
labelled data. Existing re-id methods can only afford model
re-training from scratch, causing both high computational
cost and response latency to a user. They are thus unsuitable
for human-in-the-loop model adaptation.

In this work, we solve the two issues by formulating per-
son re-id as a regression problem (Hoerl and Kennard 1970).
Unlike existing methods designed to learn collectively from
all the training identities a generic feature embedding space
optimised for classification, verification or ranking, we pro-
pose to construct an individually semantic feature embedding
space for identity regression optimised on each training iden-
tity, referred to as an identity regression space (IRS) defined
by all training identity classes. Each dimension of IRS cor-
responds to a specific training person class, i.e. all training
images of the same identity class are represented by a sin-
gle unit vector lying in one unique dimension (axis). Our
modelling objective is therefore to train a regression model
that maps (embeds) the original image feature space to this
identity regression space.

We formulate a re-id incremental learning frameworkwith
three fundamental advantages: First, it allows quicker re-id
system deployment after learning from only a small amount
of labelled data. Second, the learned re-id model facilitates
the subsequent labelling tasks by providing human a rank-
ing order of unlabelled samples with the labelling targets
(i.e. true matches) in top ranks at high likelihoods. This
reduces manual search time and effort as compared to the
conventional exhaustive eye-balling of unstructured person
images. Third, the re-id model progressively improves from

new labelled data to further facilitate future labelling. This
interactive effect is cumulative in a loop: More frequently
the model updates, more benefit we obtain in both reducing
labelling effort and increasing model deployment readiness.

Our contributions are threefolds: (1) We propose the
concept of an identity regression space (IRS) by formulat-
ing re-id as a regression problem for tackling the inherent
small sample size (SSS) challenge. This is in contrast to
existing methods relying on classification, verification, or
ranking learning spaces which are subject to the SSS prob-
lem. The IRS model is featured by an efficient closed-form
feature embedding solution without the need for solving an
expensive eigen-system and alternative optimisation. (2) We
introduce an incremental learning algorithm for efficient on-
line IRS model update. This facilitates rapidly updating a
IRS re-id model from piecewise new data only, for pro-
gressively accommodating update-to-date labelled data and
viewing condition dynamics, hence avoiding less efficient
model re-training from scratch. (3) We develop an active
learning algorithm for more cost-effective IRS model update
with human-in-the-loop, an under-studied aspect in exist-
ing re-id methods. Extensive experiments on four popular
datasets VIPeR (Gray et al. 2007), CUHK01 (Li et al. 2012),
CUHK03 (Li et al. 2014) and Market-1501 (Zheng et al.
2015) show the superiority and advantages of the proposed
IRS model over a wide range of state-of-the-art person re-id
models.

2 RelatedWork

Person Re-ID Existing person re-id studies focus on two
main areas: feature representation and matching model. In
the literature, a number of hand-crafted image descriptors
have been designed for achieving general non-learning based
view-invariant re-id features (Farenzena et al. 2010; Zhao
et al. 2013; Wang et al. 2014a; Ma et al. 2012; Yang et al.
2014; Matsukawa et al. 2016). However, these represen-
tations alone are often insufficient to accurately capture
complex appearance variations across cameras. A common
solution is supervised learning of a discriminative feature
embedding, subject to classification, pairwise or triplet learn-
ing constraints (Liao andLi 2015;Wang et al. 2014b, 2016a).

Our work belongs to the supervised learning based
approach but with a few unique advantages. First, our IRS is
designed with each dimension having discriminative seman-
tics, rather than learning to optimise. We uniquely train
a regression mapping from the raw feature space to the
interpretable IRS with a close-formed optimisation solution
(Hoerl and Kennard 1970; Hastie et al. 2005) more efficient
than solving eigen-problems (Liao et al. 2015; Zhang et al.
2016a) and iterative optimisation (Zheng et al. 2013; Liao
and Li 2015). The IRS addresses the SSS problem in a simi-
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lar spirit of the NFST re-id model (Chen et al. 2000; Yu and
Yang 2001; Zhang et al. 2016a) by projecting same-identity
images into a single point. Importantly, our model uniquely
confirms to a well-designed embedding space rather than
relying on intra-person scatter matrix which may render the
solution less discriminative. Second, we further propose an
incremental learning algorithm for sequential model update
at new scene and/or dynamic deployments without model re-
training from scratch.Finally, we investigate active sampling
for more cost-effective re-id model update.

Subspace Learning The IRS is a discriminative subspace
learning method, similar to distance metric learning (Yang
and Jin 2006), Fisher discriminant analysis (FDA) (Fisher
1936; Fukunaga 2013), and cross-modal feature matching
(Hardoon et al. 2007; Sharma et al. 2012; Kang et al. 2015).
Representative metric learning re-id methods include PRDC
(Zheng et al. 2013), KISSME (Koestinger et al. 2012),
XQDA(Liao et al. 2015),MLAPG(Liao andLi 2015), LADF
(Li et al. 2013), and so forth. PRDC maximises the likeli-
hood ofmatched pairswith smaller distances than unmatched
ones. KISSME measures the probability similarity of intra-
class and inter-class feature differences under the Gaussian
distribution assumption. sharing the spirit of Bayesian face
model (Moghaddam et al. 2000). KISSMEandBayesian face
are inefficient given high-dimensional features. XQDA over-
comes this limitation by uniting dimension reduction and
metric learning. MLAPG tackles the efficiency weakness in
learning Mahalanobis function. While achieving significant
performance gains, these methods focus only on one-time
batch-wise model learning while ignore incremental learn-
ing capability. Our model is designed to fill this gap.

Incremental Learning Incremental learning (IL) concerns
model training fromdata streams (Poggio andCauwenberghs
2001). Often, IL requires extra immediate on-line model
update for making the model ready to accept new data at any
time. IL has been explored in many different vision tasks,
e.g. image classification (Lin et al. 2011; Ristin et al. 2014).
The closest works w.r.t. our model are three re-id methods
(Liu et al. 2013; Wang et al. 2016c; Martinel et al. 2016).

Specifically, Liu et al. (2013) consider to optimise an error-
prone post-rank search for refining quickly the ranking lists.
this method is inherently restricted and unscalable due to
the need for human feedback on all probe images indepen-
dently. Wang et al. (2016c) solves this limitation by learning
incrementally a unified generalisable re-id model from all
available human feedback. Martinel et al. (2016) similarly
consider incremental model update in deployment for main-
taining re-id performance over time. Compared to these IL
re-id methods, the IRS is uniquely characterised with more
efficient optimisation (i.e. a closed-form solution) with the
capability of low response latency. This is made possible by

casting re-id model learning as a regression problem in the
concept of well-design identity embedding space, in con-
trast to classification (Liu et al. 2013), verification (Martinel
et al. 2016), or ranking (Prosser et al. 2010; Wang et al.
2016c) learning problem. Given that all these methods adopt
their respective human verification designs and incremen-
tal learning strategies under distinct evaluation settings, it is
impossible to conduct quantitative evaluation among them.

ActiveLearningActive learning (AL) is a strategy for reduc-
ing human labelling effort by selecting most informative
samples for annotation (Settles 2012; Kang et al. 2004).
Despite extensive AL studies on generic object classification
(Osugi et al. 2005; Cebron and Berthold 2009; Hospedales
et al. 2012; Ebert et al. 2012; Loy et al. 2012; Käding et al.
2015;Wang et al. 2016e), there exist little re-id attempts with
only two works to our knowledge: active person identifica-
tion (Das et al. 2015) and temporal re-id adaptation (Martinel
et al. 2016).

Specifically, Das et al. (2015) learn a multi-class classifier
on known identity classes for recognising training classes,
therefore not a re-idmodel.Moreover, thismodel cannot sup-
port efficient incremental learning as Martinel et al. (2016)
and IRS, due to expensive re-training from scratch and hence
less suitable for AL with human in the loop. Martinel et al.
(2016) explore alsoAL for incremental re-idmodel update. In
comparison, ourALalgorithm ismore extensive and compre-
hensive (exploitation and exploration vs. exploitation alone)
with better learning efficiency (no need for iterative optimi-
sation and graph based data clustering). IRS is thus more
suitable for human-in-the-loop driven incremental learning.

Ridge Regression Ridge regression (Hoerl and Kennard
1970; Hastie et al. 2005) is one of the most-studied learning
algorithms. It has an efficient closed-form solution. with exit-
ing optimised algorithms (Paige and Saunders 1982) readily
applicable to large sized data.We ground the IRS re-idmodel
on ridge regression for inheriting the learning efficiency and
scalability advantages, Existing attempts for identity verifi-
cation problems by class-label regression include (Liao et al.
2014; Sharma et al. 2012; Kang et al. 2015). Liao et al.
(2014) adopted a linear regression based discriminant anal-
ysis method for re-id. Sharma et al. (2012) and Kang et al.
(2015) proposed locality regularised class-label regression
methods for recognition and retrieval.

Beyond these existing works, we systematically explore
different label codingmethods, non-linear regression kerneli-
sation, model efficiency enhancement and labelling effort
minimisation in an under-studied incremental re-id learn-
ing setting. Moreover, we bridge ridge regression and FDA
(Fisher 1936; Fukunaga 2013) in feature embedding space
design for more discriminatively encoding identity sensitive
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information. While the relationship between FDA and lin-
ear regression has been studied for binary-class (Duda et al.
2012) andmulti-class (Hastie et al. 2005; Park andPark 2005)
classification, this is the first study that formulates the two
jointly in a single framework for person re-id.

Data Scarcity There are other generic approaches to solv-
ing the SSS challenge. Two common schemes are domain
transfer (Layne et al. 2013; Ma et al. 2013; Peng et al. 2016;
Geng et al. 2016; Li et al. 2017) and data augmentation (syn-
thesis) (McLaughlin et al. 2015; Zheng et al. 2017). The
former relies on auxiliary data (e.g. ImageNet or other re-id
datasets) while the latter generates additional training data
both for enriching the discriminative information accessible
to model training. Conceptually, they are complementary to
the proposed IRS with the focus on learning a more dis-
criminative embedding space on the given training data from
either scratch or pre-trained models. As shown in our eval-
uation, these approaches can be jointly deployed for further
improving model generalisation (Table 9).

3 Identity Regression

3.1 Problem Definition

We consider the image-based person re-identification prob-
lem (Gong et al. 2014). The key is to overcome the uncon-
strained person appearance variations caused by significant
discrepancy in camera viewing condition and human pose
(Fig. 1). To this end, we aim to formulate a feature embed-
dingmodel for effectively and efficiently discovering identity
discriminative information of cross-view person images.

Formally, we assume a labelled training dataset X =
[x1, . . . , xi , . . . , xn] ∈ R

d×n where xi ∈ R
d×1 denotes

the d-dimensional feature vector of image xi , with the cor-
responding identity label vector l = [l1, . . . , li , . . . , ln] ∈
Z
1×n , where li ∈ {1, . . . , c} represents the identity label of

image xi among a total of c identities. So, these n training
images describe c different persons captured under multiple
camera views. We omit the camera label here for brevity.
The model learning objective is to obtain a discrimina-
tive feature embedding P ∈ R

d×m , i.e. in the embedding
space, the distance between intra-person images is small
whilst that of inter-person images is large regardless of
their source camera views. In most existing works, the
above criterion of compressing intra-person distributions and
expanding inter-person distributions is encoded as classifica-
tion/verification/ranking losses and then a feature embedding
is learned by optimising the corresponding objective for-
mulation. However, due to the SSS problem, the learned
embedding space is often suboptimal and less discrimina-

tive. Also, there is often no clear interpretation on the learned
embedding space.

Our method is significantly different: Prior to the model
training, we first explicitly define an ideal feature embedding
space, and then train a regression from the raw feature space
to the defined embedding space. The learned regression func-
tion is our discriminative feature embedding. Specifically,
we define a set of “ideal” target vectors in the embedding
space, denoted by Y = [ y�

1 , . . . , y�
n ]� ∈ R

n×m , and explic-
itly assign them to each of the training sample xi , with
yi ∈ R

1×m referring to xi ’s target point in the feature embed-
ding space, i ∈ {1, 2, . . . , n} and m referring to the feature
embedding space dimension. In model training, we aim to
obtain an optimal feature embedding P that transforms the
image feature x into its mapping ywith labelled training data
X . During model deployment, given a test probe image x̃ p

and a set of test gallery images {x̃gi }, we first transform them
into the embedding spacewith the learned feature embedding
P , denoted as ỹp and { ỹgi } respectively. Then, we compute
the pairwise matching distances between ỹp and { ỹgi } by the
Euclidean distance metric. Based on matching distances, we
rank all gallery images in ascendant order. Ideally, the true
match of the probe person is supposed to appear among top
ranks.

3.2 Identity Regression Space

To learn anoptimal regression function as feature embedding,
one key question in our framework is how to design the target
“ideal” embedding space, in other words, how to set Y . We
consider two principles in designing distribution patterns of
training samples in the embedding space:

1. Compactness This principle concerns image samples
belonging to the same person class. Even though each
person’s intra-class distributions may be different in the
raw feature space, we argue that in an optimal embedding
space for re-id, the variance of all intra-class distributions
should be suppressed. Specifically, for every training
person, regardless of the corresponding sample size, all
samples should be collapsed to a single point so that
the embedding space becomes maximally discriminative
with respect to person identity.

2. Separateness This principle concerns image samples
belonging to the different person classes. Intuitively, the
points of different person identities should be maximally
separated in the embedding space. With a more intuitive
geometry explanation, these points should be located on
the vertices of a regular simplex with equal-length edges,
so that the embedding space treats equally any training
person with a well-separated symmetric structure.

Formally, we assign a unit-length vector on each dimen-
sion axis in the feature embedding space to every training
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Fig. 2 Illustration of feature embedding spaces obtained by three training class coding methods. Note, ni in (b) refers to the training image number
of person i extracted from any cameras

person identity, i.e. we set yi = [yi,1, . . . , yi,m] for the i th
training person (Fig. 2a) as:

yi, j =
{
1, if li = j;
0, if li �= j .

with j ∈ [1, 2, . . . ,m], (1)

where li is the identity label of image xi .We name thisway of
setting Y as OneHot Feature Coding. The embedding space
defined by Eq. (1) has a few interesting properties:

1. Each dimension in the embedding space corresponds to
one specific training person’s identity.

2. Training persons are evenly distributed in the embedding
space and the distances between any two training persons
are identical.

3. Geometrically, the points of all training person identities
together form a standard simplex.

Because each dimension of this embedding space can be now
interpreted by one specific training identity, we call such an
embedding space an identity regression space. Having the
identity regression space defined by Eq. (1), we propose to
exploit themultivariate ridge regression algorithm (Hoerl and
Kennard 1970; Zhang et al. 2010).

In particular, by treating Y as the regression output and P
as the to-be-learned parameter, we search for a discriminative
projection by minimising the mean squared error as:

P∗ = argmin
P

1

2
‖X�P − Y‖2F + λ‖P‖2F , (2)

where ‖ · ‖F is the Frobenius norm, λ controls the regular-
isation strength. Critically, this formulation has an efficient
closed-form solution:

P∗ = (
XX� + λI

)†XY , (3)

where (·)† denotes the Moore–Penrose inverse, and I the
identity matrix. Since our model learning is by regression
towards a training identity space, we call this method the
“identity regression space” (IRS) model (Fig. 3). The IRS

re-id feature learning requirement leads naturally to exploit-
ing the ridge regression method for learning the mapping
between image features and this semantic identity space. The
novelty of this approach is not in Eq. (2) itself, but the IRS
learning concept in the re-id context. Note that, we do not
select deep models (Xiao et al. 2016) in our IRS implemen-
tation due to their intrinsic weakness for model incremental
learning. Nevertheless, in our experiments we also evalu-
ated IRS with a deep learning model (Sect. 5.1, IV and V).
Technically, OneHot based IRS feature coding and embed-
ding differs fundamentally from deep learning classification
models due to twomodelling differences: (1)Whilst the latter
adopts one-hot class label vectors, the underlying optimised
deep features (e.g. the feature layer outputs) are not of one-hot
style, i.e. not an IRS embedding. (2) A single softmax predic-
tion may correspond to multiple different logit (i.e. feature)
inputs. Specifically, even if two logit inputs are different, as
long as the corresponding element is relatively larger than
others, both their softmax outputs will be close to the same
one-hot vector. In other words, for deep classification mod-
els the underlying feature representations of each class are
not unique. Therefore, deep classification model are trained
under a weaker learning constraint than the IRS whose fea-
ture embedding is trained strictly with only one ground-truth
feature vector per class. The regression algorithm selection
is independent of the generic IRS concept.

Remark Unlike Fisher discriminant analysis (Fisher 1936),
the proposed IRS has no need for the intra-class and between-
class scatter matrices. This renders our model more suitable
for addressing the small sample size (SSS) problem since
the intra-class scatter matrix of sparse training data will
become singular, which results in computational difficulty
(Fukunaga 2013). To solve this SSS problem, one straight-
forward approach is performing dimensionality reduction
(e.g. principal component analysis) before model learning
(Pedagadi et al. 2013). This however may cause the loss
of discriminative power. An alternative method is directly
rectifying the intra-class scatter by adding a non-singular
regularisation matrix (Mika et al. 1999; Xiong et al. 2014;
Liao et al. 2015). Nonetheless, both approaches as above
suffer from the degenerate eigenvalue problem (i.e. several
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Fig. 3 Illustration of our Identity Regression Space (IRS) person re-
id model. During model training, by regression we learn an identity
discriminative feature embedding from (a) the image feature space to
(b) the proposed identity regression space defined by (c) all training
person classes (indicated by circles).During deployment,we can exploit
the learned feature embedding to re-identify d novel testing person
identities (indicated by triangles) in IRS

eigenvectors share the same eigenvalue), which makes the
solution sub-optimal with degraded discrimination (Zheng
et al. 2005). As a more principled solution, the null Foley–
Sammon transform (NFST) modifies the Fisher discrimina-
tive criterion—Finding null projecting directions on which
the intra-class distance is zero whilst the between-class
distance is positive—so that more discriminant projections
corresponding to the infinitely large Fisher criterion can be
obtained (Chen et al. 2000; Guo et al. 2006). The NFST
has also been recently employed to solve the SSS problem
in re-id (Zhang et al. 2016a). While reaching the largest
Fisher objective score via exploiting the null space of intra-
class scatter matrix by NFST, the between-class scatter is not
maximised and therefore still an incomplete Fisher discrimi-
native analysis. It is easy to see that the proposed IRS model
shares the spirit of NFST in terms of projecting same-class
images into a single point in order to achieve the extreme
class compactness and most discriminative feature embed-
ding. However, unlike the NFST’s positive between-class
scatter constraint—a weaker optimisation constraint likely
resulting in lower discriminative power, the model proposed
here optimises instead the between-class separateness by
enforcing the orthogonality between any two different per-
son classes in the target feature space to maximise the class
discrimination and separation in a stronger manner. In terms
of model optimisation, we resort to the more efficient ridge
regression paradigm rather than the Fisher criterion. Over-
all, we consider that our IRS conceptually extends the NFST
by inheriting its local compact classes merit whilst address-
ing its global class distribution modelling weakness in a
more efficient optimisation framework. In our evaluations,
we compare our IRS model with the NFST and show the
advantages from this new formulation in terms of bothmodel
efficiency and discriminative power.

Alternative Feature Coding Apart from the OneHot fea-
ture coding (Eq. 1), other designs of the embedding space
can also be readily incorporated into our IRS model. We
consider two alternative feature coding methods. The first
approach respects the Fisher discriminant analysis (FDA)
(Fisher 1936; Fukunaga 2013) criterion, named FDA Fea-
ture Coding, which is adopted in the preliminary version of
this work (Wang et al. 2016b). Formally, the FDA criterion
can be encoded into our IRS model by setting target identity
regression space as (Fig. 2b):

yi j =
{

1√
ni

, if li = j;
0, if li �= j .

with j ∈ [1, 2, . . . ,m]. (4)

where ni and li refers to the total image number and identity
label of training person i . A detailed derivation is provided
in “Appendix”. As opposite to Eq. (1) which treats each per-
son identity equally (e.g. assigning them with unit-length
vectors in the embedding space), this FDA coding scheme
assigns variable-length vectors with the length determined
by ni . As shown in (Fig. 2b), with the FDA criterion, the
resulting training identity simplex in the embedding space
is no longer regular. This may bring benefits for typical
classification problems bymaking size-sensitive use of avail-
able training data for modelling individual classes as well
as possible, but not necessarily for re-id. Particularly, mod-
elling training classes in such a biased way may instead hurt
the overall performance since the re-id model is differently
required to generalise the knowledge from training person
classes to previously unseen testing ones other than within
the training ones as in conventional classification.

The second alternative is Random Feature Coding. That
is, we allocate for each training identity a m-dimensional
randomvectorwith every element following a uniform distri-
bution over the range of [0, 1] (Fig. 2c). Random coding has
shown encouraging effect in shape retrieval (Zhu et al. 2016)
and face recognition (Zhang et al. 2013). In this way, indi-
vidual dimensions are no longer identity-specific and training
identity regression space are shared largely irregularly. We
will evaluate the effectiveness of these three feature coding
methods in Sect. 5.1.

3.3 Kernelisation

Given complex variations in viewing condition across cam-
eras, the optimal subspace may not be obtainable by linear
projections. Therefore, we further kernelise the IRS model
(Eq. 3) by projecting the data from the original visual fea-
ture space into a reproducing kernel Hilbert spaceH with an
implicit feature mapping function φ(·). The inner-product of
two data points in H can be computed by a kernel function:
hk(xi , x j ) = 〈

φ(xi ), φ(x j )
〉
. By hk (we utilised the typical
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RBF or Gaussian kernel in our implementation), we obtain
a kernel representation K ∈ R

n×n , based on which a corre-
sponding non-linear projection solution can be induced as:

Q∗ = (
K K� + λK

)†KY . (5)

Once test samples are transformed into the kernel space with
hk , we can similarly apply the learned projection Q∗ as the
linear case. We use the kernel version throughout all exper-
iments due to its capability of modelling the non-linearity
which is critical for open space re-id in images with complex
person appearance variations across camera views.

4 Incremental Identity Regression

In Sect. 3, we presented the proposed IRS person re-idmodel.
Similar to the majority of conventional re-id methods, we
assume a batch-wise model learning setting: First collect-
ing all labelled training data and then learning the feature
embedding model (Fig. 4a). In real-world scenario, how-
ever, data annotation is likely to arrive in sequence rather
than at one time particularly when deployed to new arbi-
trary scenes. In such case, a practical system requires the
incremental learning capability for cumulatively learning and
updating the re-id model over deployment process (Fig. 4b-
(1)). On the other hand, incremental learning is essential for
temporal model adaptation, e.g. handling the dynamics in
the deployment context (Martinel et al. 2016). A simple and
straightforward scheme is to re-train the model from scratch
using the entire training dataset whenever any newly labelled
samples become available. Obviously, this is neither compu-
tational friendly nor scalable particularly for resource/budget
restricted deployment.

To overcome this limitation, we introduce an incremental
learning algorithm, named IRSinc, for enabling fast model
updatewithout the need for re-training from scratch. Suppose
at time t , we have the feature matrix X t ∈ R

d×nt of nt
previously labelled images of ct person identities, along with

Y t ∈ R
nt×m their indicator matrix defined by Eq. (1). We

also have the feature matrix X ′ ∈ R
d×n′

of n′ newly labelled
images of c′ new person classes, with Y ′ ∈ R

n′×(ct + c′) the
corresponding indicator matrix similarly defined by Eq. (1).
After merging the new data, the updated feature and identity
embedding matrix can be represented as:

X t + 1 = [X t , X ′], Y t + 1 =
[Y t ⊕ 0

Y ′
]
, (6)

where (·)⊕0 denotes the matrix augmentation operation, i.e.
padding an appropriate number of zero columns on the right.
By defining

T t = X tX�
t , (7)

and applying Eq. (6), we have

T t + 1 = T t + X ′X ′�. (8)

For initialisation, i.e. when t = 0, we set T0 = X0X�
0 + λI .

Also, we can express the projection P t ∈ R
d×m (Eq. 3) of

our IRS model at time t as

P t = T†
t X tY t . (9)

Our aim is to obtain the feature embedding P t + 1, which
requires to compute T†

t + 1. This can be achieved by apply-
ing the Sherman–Morrison–Woodbury formula (Woodbury
1950) to Eq. (8) as:

T†
t + 1 = T†

t − T†
t X

′(I + X ′�T†
t X

′)†X ′�T†
t . (10)

Equations (3) and (6) together give us:

P t + 1 = T†
t + 1X t + 1Y t + 1

= (T†
t + 1X tY t ) ⊕ 0 + T†

t + 1X
′Y ′. (11)

Further with Eqs. (10) and (9), we can update P as:

(a) 

Off-line 
annotation 

Batch-wise 
model learning 

Camera A 

Re-id 
model 

Deployment: A static model,  
No further model update 

Camera B Camera A 

Re-id 
model 

On-line 
annotation 

(2) Active learning 

(1) Incremental 
model learning 

Deployment: An up-to-date model, 
Fast effective model update over time 

(b) Camera B 

Fig. 4 Illustration of different person re-id model learning settings. a
Batch-wise person re-id model learning: a re-id model is first learned
on an exhaustively labelled training set, and then fixed for deploy-
ment without model update. b Incremental person re-id model learning:

Training samples are collected sequentially on-the-fly with either ran-
dom or active unlabelled data selection, and the re-id model keeps
up-to-date by efficient incremental learning from the newly labelled
data over time
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P t + 1 =
(
P t − T†

t X
′(I + X ′�T†

t X
′)†X ′�P t

)
⊕ 0

+ T†
t + 1X

′Y ′. (12)

Note, the model update (Eqs. 10, 12) only involves newly
coming data samples. Hence, our method does not require to
store the training data once used for model update. As only
cheap computational cost is involved in such linear opera-
tions, the proposed algorithmwell suits for on-line responsive
re-id model learning and updating in deployment at large
scales in reality.

Implementation Consideration The IRSinc model supports
incremental learning given either a single new sample (n′ =
1) or a small chunk of new samples (n′ � 2). If the data
chunk size n′ 
 d (where d is the feature dimension), it
is faster to perform n′ separate updates on each new sample
instead of by a whole chunk. The reason is that, in such a way
the Moore–Penrose matrix inverse in Eqs. (10) and (12) can
be reduced to n′ separate scaler inverse operations, which is
much cheaper in numerical computation.

4.1 Active Learning for Cost-Effective Incremental
Update

The incremental learning process described above is pas-
sive, i.e. a human annotator is supposed to label randomly
chosen data without considering the potential value of each
selected sample in improving the re-idmodel. Therefore, data
annotation by this random way is likely to contain redundant
information with partial labelling effort wasted. To resolve
this problem, we explore the active learning idea (Settles
2012) for obtaining more cost-effective incremental re-id
model update (Fig. 4b-(2)).

Active IRSinc Overview. In practice, we often have access
to a large number of unlabelled images P̃ and G̃ captured by
disjoint cameras. Assume at time step t ∈ {1, . . . , τ } with τ

defining the pre-determined human labelling budget, we have
the up-to-date IRSinc modelmt (corresponding to the feature
embedding P t ), alongwith P̃t and G̃t denoting the remaining
unlabelled data. To maximise labelling profit, we propose an
active labelling algorithm for IRSinc with the main steps as
follows:

1. An image x p
t ∈ P̃t of a new training identity lt is actively

selected by model mt , according to its potential useful-
ness and importancemeasured by certain active sampling
criteria (see details below).

2. A ranking list of unlabelled images G̃t against the selected
x p
t is then generated by mt based matching distances.

3. For the selected x p
t , a human annotator is then asked to

manually identify the cross-view true matching image

xgt ∈ G̃t in the ranking list, and then generate a new
annotation (x p

t , xgt ).
4. The IRSinc re-id model is updated to mt + 1 (i.e. P t + 1)

from the newdata annotation (x p
t , xgt )byour incremental

learning algorithm (Eqs. 10, 12).

Among these steps above, the key lies in how to select a
good image x p

t . To this end, we derive a “Joint Exploration–
Exploitation” (JointE2) active sampling algorithm com-
posed of three criteria as follows (Fig. 5).

(I) Appearance Diversity Exploration Intuitively, the
appearance diversity of training people is a critical factor
for the generalisation capability of a re-id model. Thus, the
preferred next image to annotate should lie in the most unex-
plored region of the population P̃t . Specifically, at time t , the
distance between any two samples (x1, x2) by the current
re-id model is computed as:

d(x1, x2|mt ) = (x1 − x2)�P t P�
t (x1 − x2). (13)

Given the unlabelled P̃t and labelled Pt part of the set P̃
(P̃t

⋃Pt = P̃), we can measure the diversity degree of an
unlabelled sample x p

i ∈ P̃t by its distance against thewithin-
view nearest neighbour in Pt (Fig. 5a):

ε1(x
p
i ) = min d(x p

i , x p
j |mt ),

s.t. x p
i ∈ P̃t , x p

j ∈ Pt .
(14)

Equation (14) defines the distance of anunlabelled sample x p
i

from the labelled set, i.e. the distance between x p
i and its near-

est labelled sample. This is not an optimisation operation. It
is a nearest sample search by “min” operation. By maximis-
ing the nearest distances, more diverse person appearance
can be covered and learned for more rapidly increasing the
knowledge of the IRSinc model, avoiding repeatedly learning
visually similar training samples.

(II) Matching Discrepancy ExplorationAwell learned re-
id model is supposed to find the true match of a given image
with a small cross-view matching distance. In this perspec-
tive, our second criterion particularly prefers the samples
with largematching distances in the embedding space, i.e. the
re-id modelmt remains largely unclear on what are the likely
corresponding cross-view appearances of these “unfamil-
iar” people. Numerically, we compute the matching distance
between an unlabelled sample x p

i ∈ P̃t and the cross-view
true match (assumed as cross-view nearest neighbour) in G̃
(Fig. 5b):

ε2(x
p
i ) = min d(x p

i , xgj |mt ),

s.t. x p
i ∈ P̃t , xgj ∈ G̃. (15)
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Fig. 5 Illustration of the proposed active exploration and exploitation selection criteria for more cost-effective incremental re-id model learning. a
Appearance diversity. b Matching discrepancy. c Ranking uncertainty

That is, the unlabelled images with greater ε2(x
p
i ) are pre-

ferred to be selected.

(III) RankingUncertainty ExploitationUncertainty-based
exploitative sampling schemes have beenwidely investigated
for classification problems (Joshi et al. 2009; Settles and
Craven 2008; Ebert et al. 2012). The essential idea is to query
the least certain sample for human to annotate. Tailored for
re-id taskswith this idea, given the similar appearance among
different identities, a weak re-id model may probably gen-
erate similar ranking scores for those visually ambiguous
gallery identities with respect to a given probe. Naturally,
it should be useful and informative to manually label such
“challenging” samples for enhancing a person re-id model’s
discrimination power particularly with regard to such per-
son appearance (Fig. 5c). To obtain such person images, we
define amatchingdistance basedprobability distributionover
all samples xgj ∈ G̃ for a given cross-view image x p

i ∈ P̃:

pmt (x
g
j |x p

i ) = 1

Zt
i
e−d(x p

i ,xgj |mt ), (16)

where

Zt
i =

∑
k

e−d(x p
i ,xgk |mt ), xgk ∈ G̃.

The quantity pmt (x
g
j |x p

i ) gives a high entropy when most
ranking scores are adjacent to each other, indicating great
information to mine from the perspective of information the-
ory (Akaike 1998). In other words, the model has only a low
confidence on its generated ranking list considering that only
a very few number of cross-camera samples are likely to be
true matches rather than many of them. Consequently, our
third criterion is designed as:

ε3(x
p
i ) = −

∑
j

pmt

(
xgj |x p

i

)
log pmt

(
xgj |x p

i

)
,

s.t. x p
i ∈ P̃t , xgj ∈ G̃. (17)

which aims to select out those associated with high model
ranking ambiguity.

Algorithm 1: Active IRSinc

Data:
(1) Unlabelled image set P̃ and G̃ from disjoint cameras;
(2) Regularisation strength λ;
(3) Labelling budget τ .

Result:
(1) Discriminative feature embedding matrix P ;

Initialisation:
(1) Randomly label a small seed set X0,Y0;
(2) Set T†

0 = (X0X�
0 + λI)†;

(3) Set P0 = T†
0X0Y0 (Eq. 3).

Active Labelling:
for t = 0 : τ − 1 do

(1) Select an unlabelled sample x p
t ∈ P̃t (Eq. 18);

(2) Rank the images in G̃t against the selection x p
t ;

(3) Human annotator verifies the true match in G̃t ;
(4) Generate a new annotation (I p

t , Ig
t );

(5) Update T†
t + 1 (Eq. 10);

(6) Update P t + 1 (Eq. 12).
end
return P = Pτ ;

Joint Exploration–Exploitation Similar to the model in
(Cebron and Berthold 2009; Ebert et al. 2012), we combine
both exploitation and exploration based criteria into our final
active selection standard, formally as:

ε
(
x p
i

) = ε1
(
x p
i

) + ε2
(
x p
i

) + ε3
(
x p
i

)
. (18)

To eliminate scale discrepancy, we normalise ε1, ε2, ε3 to
the unit range [0, 1] respectively before fusing them. Specif-
ically, given ε1 scores of all unlabelled samples,we normalise
them by dividing the maximal value so that the highest ε1 is
1. The same operation is performed on ε2 and ε3.

In summary, with Eq. (18), all the unlabelled samples in P̃
can be sorted accordingly, and the one with highest ε(x p

i ) is
then selected for human annotation. An overview of our pro-
posed active learning based incremental model learning and
updating is presented in Algorithm 1.Wewill show the effect
of our proposed active labelling method in our evaluations
(Sect. 5.2).
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Table 1 Statistics of person
re-id datasets

Dataset Cameras Persons Labelled BBox Detected BBox

VIPeR 2 632 1264 0

CUHK01 2 971 1942 0

CUHK03 6 1467 14,097 14,097

Market-1501 6 1501 0 32,668

BBox bounding box

Fig. 6 Example person images from four person re-id datasets. Two images of each individual columns present the same person. a VIPeR(Gray
et al. 2007). b CUHK01 (Li et al. 2012). c CUHK03 (Li et al. 2014) and dMarket-1501 (Zheng et al. 2015)

4.2 Kernelisation

We kernelise similarly the incremental IRS algorithm as in
Sect. 3.3. Specifically, we first obtain the kernel representa-
tion of new training data and then conduct model incremental
learning in the Hilbert space. We utilise the kernelised model
with its non-linear modelling power in all incremental re-id
model learning experiments including active sampling with
human-in-the-loop.

5 Experiments

DatasetsFormodel evaluation, four person re-id benchmarks
were used: VIPeR (Gray et al. 2007), CUHK01 (Li et al.
2012), CUHK03 (Li et al. 2014), and Market-1501 (Zheng
et al. 2015), as summarised in Table 1. We show in Fig. 6
some examples of person images from these datasets. Note
that the datasets were collected with different data sampling
protocols: (a) VIPeR has one image per person per view;
(b) CUHK01 contains two images per person per view; (c)
CUHK03 consists of a maximum of five images per per-
son per view, and also provides both manually labelled and
auto-detected image bounding boxes with the latter posing
more challenging re-id test due to unknown misalignment
of the detected bounding boxes; (d) Market-1501 has vari-
able numbers of images per person per view. These four
datasets present a good selection of re-id test scenarios with
different population sizes under realistic viewing conditions

exposed to large variations in human pose and strong simi-
larities among different people.

Features To capture the detailed information of person
appearance, we adopted three state-of-the-art feature repre-
sentations with variable dimensionalities from 104 to 102:
(1) Local Maximal Occurrence (LOMO) feature (Liao et al.
2015): The LOMO feature is based on a HSV colour his-
togram and Scale Invariant Local Ternary Pattern (Liao et al.
2010). For alleviating the negative effects caused by camera
view discrepancy, the Retinex algorithm (Land and McCann
1971) is applied to pre-process person images. The fea-
ture dimension of LOMO is rather high at 26,960, therefore
expensive to compute.
(2) Weighted Histograms of Overlapping Stripes (WHOS)
feature (Lisanti et al. 2014, 2015): The WHOS feature con-
tains HS/RGB histograms and HOG (Wang et al. 2009)
of image grids, with a centre support kernel as weight-
ing to approximately segmented person foreground from
background clutters. We implemented this feature model as
described by Lisanti et al. (2014). The feature dimension of
WHOS is moderate at 5138.
(3)Convolutional Neural Network (CNN) feature (Xiao et al.
2016): Unlike hand-crafted LOMO and WHOS features,
deep CNN person features are learned from image data.
Specifically, we adopted the DGD CNN (Xiao et al. 2016)
and used the FC7 output as re-id features. The DGD feature
has a rather low dimension of 256, thus efficient to extract.
FollowingXiao et al. (2016), we trained theDGDby combin-
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ing labelled and detected person bounding box images (a total
26,246 images) with the original authors released codes. We
then deployed the trainedDGD to extract deep features of the
test image data for CUHK03 (the same domain). OnMarket-
1501, the CUHK03 trained DGD was further fine-tuned on
the 12,936 Market-1501 training images for domain adapta-
tion. On VIPeR and CUHK01, the CUHK03 trained DGD
was directly deployed without any fine-tuning as there are
insufficient training images to make effective model adapta-
tion, with only 632 and 1940 training images for VIPeR and
CUHK01 respectively.

Model Training Settings In evaluations, we considered
extensively comparative experiments under two person re-
id model training settings: (I) Batch-wise model training: In
this setting, we followed the conventional supervised re-id
scheme commonly utilised in most existing methods, that
is, first collecting all training data and then learning a re-id
model before deployment. (II) Incremental model training:
In contrast to the batch-wise learning, we further evaluated
a more realistic data labelling scenario where more training
labels are further collected over timeaftermodel deployment.
The proposed IRSinc model was deployed for this incremen-
tal learning setting.

5.1 Batch-Wise Person Re-id Evaluation

Batch-Wise Re-id Evaluation Protocol To facilitate quan-
titative comparisons with existing re-id methods, we adopted
the standard supervised re-id setting to evaluate the proposed
IRS model. Specifically, on VIPeR, we split randomly the
whole population of the dataset (632 people) into two halves:
One for training (316) and another for testing (316). We
repeated 10 trials of random people splits and utilised the
averaged results. On CUHK01, we considered two bench-
marking training/test people split settings: (1) 485/486 split:
randomly selecting 485 identities for training and the other
486 for testing (Liao et al. 2015; Zhang et al. 2016a); (2)
871/100 split: randomly selecting 871 identities for training
and the other 100 for testing (Ahmed et al. 2015; Shi et al.
2016). As CUHK01 is a multi-shot (e.g. multiple images
per person per camera view) dataset, we computed the final
matching distance between two people by averaging corre-
sponding cross-view image pairs. Again, we reported the
results averaged over 10 random trials for either people split.
OnCUHK03, following Li et al. (2014) we repeated 20 times
of random 1260/100 people splits for model training/test and
reported the averaged accuracies under the single-shot evalu-
ation setting (Zhang et al. 2016a). OnMarket-1501, we used
the standard training/test (750/751) people split provided by
Zheng et al. (2015). On all datasets, we exploited the cumu-
lative matching characteristic (CMC) to measure the re-id
accuracy performance. OnMarket-1501, we also considered

the recall measure of multiple truth matches by mean aver-
age precision (mAP), i.e. first computing the area under the
precision-recall curve for each probe, then calculating the
mean of average precision over all probes (Zheng et al. 2015).

In the followings, we evaluated: (i) Comparisons to state-
of-the-arts, (ii) Effects of embedding space design, (iii)
Effects of features, (iv) Deep learning regression, (v) Com-
plementary of transfer learning and IRS, (vi) Comparisons to
subspace/metric learning models, (vii) Regularisation sensi-
tivity, and (viii) Model complexity.

(I) Comparisons to the State-of-The-Arts We first eval-
uated the proposed IRS model by extensive comparisons
to the existing state-of-the-art re-id models under the stan-
dard supervised person re-id setting. We considered a wide
range of existing re-id methods, including both hand-crafted
and deep learning models. In the following experiments, we
deployed the OneHot Feature Coding (Eq. 1 in Sect. 3.2)
for the identity regression space embedding of our IRS
model unless stated otherwise. We considered both single-
and multi-feature based person re-id performance, and also
compared re-id performances of different models on auto-
detected person boxes when available in CUHK03 and
Market-1501.

Evaluation on VIPeR Table 2 shows a comprehensive com-
parison on re-id performance between our IRS model (and
its variations) and existing models using the VIPeR bench-
mark (Gray et al. 2007). It is evident that our IRS model with
a non-deep feature LOMO, IRS (LOMO), is better than all
existing methods1 except the deep model MCP (Cheng et al.
2016), with Rank-1 45.1 versus 47.8% respectively. Interest-
ingly, using our CUHK03 trained CNN deep feature without
fine-tuning on VIPeR, i.e. IRS (CNN), does not offer extra
advantage (Rank-1 33.1%), due to the significant domain
drift betweenVIPeR andCUHK03. This becomesmore clear
when compared with the CUHK01 tests below. Moreover,
given a score-level fusion on the matching of three different
features, IRS (WHOS+LOMO+CNN), the IRS can bene-
fit from further boosting on its re-id performance, obtaining
the best Rank-1 rate at 54.6%. These results demonstrate the
effectiveness of the proposed IRS model in learning iden-
tity discriminative feature embedding because of our unique
approach on identity regression to learning a re-id feature
embedding space, in contrast to existing established ideas on
classification, verification or ranking based supervised learn-
ing of a re-id model.

1 The HER model presented in our preliminary work (Wang et al.
2016b) is the same as IRS (LOMO) with FDA coding (Eq. 4), i.e. HER
= IRS-FDA (LOMO). On the other hand, IRS (LOMO) in Tables 2,
3, 4 and 5 is IRS-OneHot (LOMO). The effects of choosing different
coding is evaluated later (Table 6).
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Table 2 Re-id performance comparison on the VIPeR benchmark

Dataset VIPeR

Rank (%) R1 R5 R10 R20

LADF (Li et al. 2013) 29.3 61.0 76.0 88.1

MFA (Yan et al. 2007) 32.2 66.0 79.7 90.6

kLFDA (Xiong et al. 2014) 38.6 69.2 80.4 89.2

XQDA (Liao et al. 2015) 40.0 68.1 80.5 91.1

MLAPG (Liao and Li 2015) 40.7 69.9 82.3 92.4

NFST (Zhang et al. 2016a) 42.3 71.5 82.9 92.1

LSSCDL (Zhang et al. 2016b) 42.7 – 84.3 91.9

TMA (Martinel et al. 2016) 43.8 – 83.8 91.5

HER (Wang et al. 2016b) 45.1 74.6 85.1 93.3

DML (Yi et al. 2014) 28.2 59.3 73.5 86.4

DCNN+ (Ahmed et al. 2015) 34.8 63.6 75.6 84.5

SICI (Wang et al. 2016a) 35.8 – – –

DGD (Xiao et al. 2016) 38.6 – –

Gated S-CNN (Varior et al. 2016a) 37.8 66.9 77.4 –

MCP (Cheng et al. 2016) 47.8 74.7 84.8 91.1

IRS (WHOS) 44.5 75.0 86.3 93.6

IRS (LOMO) 45.1 74.6 85.1 93.3

IRS (CNN) 33.1 59.9 71.5 82.2

MLFa (Zhao et al. 2014) 43.4 73.0 84.9 93.7

MEa (Paisitkriangkrai et al. 2015) 45.9 77.5 88.9 95.8

CVDCAa (Chen et al. 2016c) 47.8 76.3 86.3 94.0

FFN-Neta (Wu et al. 2016) 51.1 81.0 91.4 96.9

NFSTa (Zhang et al. 2016a) 51.2 82.1 90.5 95.9

HERa (Wang et al. 2016b) 53.0 79.8 89.6 95.5

GOGa (Matsukawa et al. 2016) 49.7 – 88.7 94.5

SCSPa (Chen et al. 2016a) 53.5 82.6 91.5 96.7

IRS (WHOS+LOMO+CNN)a 54.6 81.5 90.3 95.7

Best results for single-feature and multi-feature are given in bold
aMultiple features fusion

Evaluation on CUHK01 Table 3 shows a comprehensive
comparison of the IRS model with existing competitive re-id
models on theCUHK01 benchmark (Li et al. 2012). It is clear
that the proposed IRS model achieves the best re-id accu-
racy under both training/test split protocols. Note that, HER
(Wang et al. 2016b) is IRS-FDA (LOMO). Specifically, for
the 486/485 split, our IRS (CNN) method surpassed the deep
learningDGDmodel (Xiao et al. 2016), the secondbest in this
comparison, by Rank-1 2.0% (68.6−66.6). For the 871/100
split, IRS (CNN) yields a greater performance boost over
DGD with improvement on Rank-1 at 12.6% (84.4−71.8).
It is also worth pointing out that the DGDmodel was trained
using data from other 6 more datasets and further care-
fully fine-tuned on CUHK01. In contrast, our IRS (CNN)
model was only trained on CUHK03 without fine-tuning
on CUHK01, and the CNN architecture we adopted closely
resembles to that of DGD. By fusing multiple features,

the performance margin of IRS (WHOS+LOMO+CNN)
over the existing models is further enlarged under both
splits, achieving Rank-1 11.7% (80.8−69.1) boost over
NFST (Zhang et al. 2016a) and Rank-1 16.6% (88.4−71.8)
boost over SICI (Wang et al. 2016a), respectively. Compared
to VIPeR, the overall re-id performance advantage of the IRS
model on CUHK01 is greater over existing models. This
is due to not only identity prototype regression based fea-
ture embedding, but also less domain drift from CUHK03
to CUHK01, given that the CNN feature used by IRS was
trained on CUHK03.

Evaluation on CUHK03 The person re-id performance
of different methods as compared to the IRS model on
CUHK03 (Li et al. 2014) is reported in Table 4. We
tested on both the manually labelled and automatically
detected bounding boxes. Similar to VIPeR and CUHK01,
our IRS model surpassed clearly all compared methods
in either single- or multi-feature setting given manually
labelledboundingboxes. Importantly, this advantage remains
when more challenging detected bounding boxes were
used, whilst other strong models such as NFST and GOG
suffered more significant performance degradation. This
shows both the robustness of our IRS model against mis-
alignment and its greater scalability to real-world deploy-
ments.

Evaluation on Market-1501 We evaluated the re-id perfor-
mance of existing models against the proposed IRS model
on the Market-1501 benchmark (Zheng et al. 2015). The
bounding boxes of all person images of this dataset were
generated by an automatic pedestrian detector. Hence, this
dataset presents a more realistic challenge to re-id mod-
els than conventional re-id datasets with manually labelled
bounding boxes. Table 5 shows the clear superiority of
our IRS model over all competitors. In particular, our IRS
model achieved Rank-1 73.9% for single-query and Rank-1
81.4% for multi-query, significantly better than the strongest
alternative method, the deep Gated S-CNN model (Var-
ior et al. 2016a), by 8.1% (73.9−65.8) (single-query) and
5.4% (81.4−76.0) (multi-query). Similar advantages hold
when compared using the mAP metric.

In summary, these comparative evaluations on the per-
formance of batch-wise re-id model learning show that
the IRS model outperforms comprehensively a wide range
of existing re-id methods including both hand-crafted and
deep learning based models. This validates the effective-
ness and advantages of learning a re-id discriminative feature
embedding using the proposed approach on identity regres-
sion.

(II) Effects of Embedding Space Design To give more
insight on why and how the IRS model works, we evaluated
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Table 3 Re-id performance
comparison on the CUHK01
benchmark

Dataset CUHK01 (486/485 split)

Rank (%) R1 R5 R10 R20

kLFDA (Xiong et al. 2014) 54.6 80.5 86.9 92.0

XQDA (Liao et al. 2015) 63.2 83.9 90.0 94.2

MLAPG (Liao and Li 2015) 64.2 85.4 90.8 94.9

NFST (Zhang et al. 2016a) 65.0 85.0 89.9 94.4

HER (Wang et al. 2016b) 68.3 86.7 92.6 96.2

DCNN+ (Ahmed et al. 2015) 47.5 71.6 80.3 87.5

MCP (Cheng et al. 2016) 53.7 84.3 91.0 93.3

DGD (Xiao et al. 2016) 66.6 – – –

IRS (WHOS) 48.8 73.4 81.1 88.3

IRS (LOMO) 68.3 86.7 92.6 96.2

IRS (CNN) 68.6 89.3 93.9 97.2

MEa (Paisitkriangkrai et al. 2015) 53.4 76.4 84.4 90.5

FFN-Neta (Wu et al. 2016) 55.5 78.4 83.7 92.6

GOGa (Matsukawa et al. 2016) 67.3 86.9 91.8 95.9

NFSTa (Zhang et al. 2016a) 69.1 86.9 91.8 95.4

HERa (Wang et al. 2016b) 71.2 90.0 94.4 97.3

IRS (WHOS+LOMO+CNN)a 80.8 94.6 96.9 98.7

Dataset CUHK01 (871/100 split)

FPNN (Li et al. 2014) 27.9 59.6 73.5 87.3

DCNN+ (Ahmed et al. 2015) 65.0 – – –

JRL (Chen et al. 2016b) 70.9 92.3 96.9 98.7

EDM (Shi et al. 2016) 69.4 – – –

SICI (Wang et al. 2016a) 71.8 – – –

IRS (WHOS) 77.0 92.8 96.5 99.2

IRS (LOMO) 80.3 94.2 96.9 99.5

IRS (CNN) 84.4 98.2 99.8 100

IRS (WHOS+LOMO+CNN)a 88.4 98.8 99.6 100

Best results for single-feature and multi-feature are given in bold
aMultiple features fusion

the effects of embedding space design in our IRS model. To
this end, we compared the three codingmethods as described
in Sect. 3.2: OneHot Feature Coding in the proposed Iden-
tity Regression Space, FDA Feature Coding by Wang et al.
(2016b), and Random Feature Coding by Zhu et al. (2016).
In this experiment, we used the LOMO feature on all four
datasets, the 485/486 people split on CUHK01, and the man-
ually labelled bounding boxes on CUHK03. For random
coding, we performed 10 times and used the averaged results
to compare with the OneHot Feature Coding and the FDA
FeatureCoding. The results are presented in Table 6.We have
the following observations:

(i) The embedding space choice plays a clear role in IRS
re-id model learning and a more “semantic” aligned
(both OneHot and FDA) coding has the advantage for
learning a more discriminative IRS re-id model. One
plausible reason is that the random coding may increase

the model learning difficulty resulting in an inferior
feature embedding, especially given the small sample
size nature of re-id model learning. Instead, by explic-
itly assigning identity class “semantics” (prototypes) to
individual dimensions of the embedding space, the fea-
ture embedding learning is made more selective and
easier to optimise.

(ii) Both the OneHot and FDA Feature Coding methods
yield the same re-id accuracy on both VIPeR and
CUHK01.This is because on either dataset each training
identity has the same number of images (2 for VIPeR
and 4 for CUHK01), under which the FDA Coding (Eq.
4) is equivalent to the OneHot Feature Coding (Eq. 1).

(iii) Given the different image samples available per train-
ing person identity on CUHK03 andMarket-1501, FDA
Coding is slightly inferior to OneHot Feature Coding.
This is interesting given the robust performance of FDA
on conventional classification problems. Our explana-
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Table 4 Re-id performance comparison on the CUHK03 benchmark

Dataset CUHK03 (Manually)

Rank (%) R1 R5 R10 R20

kLFDA (Xiong et al. 2014) 45.8 77.1 86.8 93.1

XQDA (Liao et al. 2015) 52.2 82.2 92.1 96.3

MLAPG (Liao and Li 2015) 58.0 87.1 94.7 98.0

NFST (Zhang et al. 2016a) 58.9 85.6 92.5 96.3

HER (Wang et al. 2016b) 60.8 87.0 95.2 97.7

DCNN+ (Ahmed et al. 2015) 54.7 86.5 93.9 98.1

EDM (Shi et al. 2016) 61.3 – – –

DGD (Xiao et al. 2016) 75.3 – –

IRS (WHOS) 59.6 87.2 92.8 96.9

IRS (LOMO) 61.6 87.0 94.6 98.0

IRS (CNN) 81.5 95.7 97.1 98.0

MEa (Paisitkriangkrai et al. 2015) 62.1 89.1 94.3 97.8

NFSTa (Zhang et al. 2016a) 62.6 90.1 94.8 98.1

HERa (Wang et al. 2016b) 65.2 92.2 96.8 99.1

GOGa (Matsukawa et al. 2016) 67.3 91.0 96.0 –

IRS (WHOS+LOMO+CNN)a 81.9 96.5 98.2 98.9

Dataset CUHK03 (Detected)

KISSME (Koestinger et al. 2012) 11.7 33.3 48.0 –

XQDA (Liao et al. 2015) 46.3 78.9 83.5 93.2

MLAPG (Liao and Li 2015) 51.2 83.6 92.1 96.9

L1-Lap (Kodirov et al. 2016) 30.4 – – –

NFST (Zhang et al. 2016a) 53.7 83.1 93.0 94.8

DCNN+ (Ahmed et al. 2015) 44.9 76.0 83.5 93.2

EDM (Shi et al. 2016) 52.0 – – –

SICI (Wang et al. 2016a) 52.1 84.9 92.4 –

S-LSTM (Varior et al. 2016b) 57.3 80.1 88.3 –

Gated S-CNN (Varior et al. 2016a) 68.1 88.1 94.6 –

IRS (WHOS) 50.6 82.1 90.4 96.1

IRS (LOMO) 53.4 83.1 91.2 96.4

IRS (CNN) 80.3 96.3 98.6 99.0

NFSTa (Zhang et al. 2016a) 54.7 84.8 94.8 95.2

GOGa (Matsukawa et al. 2016) 65.5 88.4 93.7 –

IRS (WHOS+LOMO+CNN)a 83.3 96.2 97.9 98.6

Best results for single-feature and multi-feature are given in bold
aMultiple features fusion

tion is rather straightforward if one considers the unique
characteristics of the re-id problem where the training
and test classes are completely non-overlapping. That
is, the test classes have no training image samples. In
essence, the re-id problem is conceptually similar to the
problem of zero-shot learning (ZSL), in contrast to the
conventional classification problems where test classes
are sufficiently represented by the training data, i.e.
totally overlapping. More specifically, learning by the
FDA criterion optimises a model to the training identity
classes given sufficient samples per class but it does not

workwellwith small sample sizes, andmore critically, it
does not necessarily optimise the model for previously
unseen test identity classes. This is because if the train-
ing identity population is relatively small, as in most
re-id datasets, an unseen test person may not be similar
to any of training people. That is, the distributions of
the training and test population may differ significantly.
Without any prior knowledge, a good representation of
an unseen test class is some unique combination of all
training persons uniformly without preference. There-
fore, a feature embedding optimised uniformly without
bias/weighting by the training class data sampling dis-
tribution is more likely to better cope with more diverse
and unseen test classes, by better preserving class diver-
sity in the trainingdata especially given the small sample
size challenge in re-id training data. This can be seen
from the regularised properties of the OneHot Feature
Coding in Sect. 3.

(III) Effect of Features We evaluated three different fea-
tures (WHOS, LOMO, and CNN) individually and also their
combinations used in our IRS model with the OneHot Fea-
ture Coding in Table 7. When a single type of feature is
used, it is found that CNN feature is the best except on
VIPeR, and LOMO is more discriminative than WHOS in
most cases. The advantage of CNN feature over hand-crafted
LOMO and WHOS is significant given larger training data
in CUHK03 and Market-1501, yielding a gain of 19.9%
(CUHK03 (Manual)), 26.9% (CUHK03 (Detected)), and
15.0% (Market-1501) over LOMO in Rank-1. Without fine-
tuning a CUHK03 trained model on the target domains,
CNN feature still performs the best on CUHK01 due to the
high similarity in view conditions between CUHK01 and
CUHK03. CNN feature performs less well on VIPeR due to
higher discrepancy in view conditions between VIPeR and
CUHK03, i.e. the domain shift problem (Ma et al. 2013; Pan
and Yang 2010).

We further evaluated multi-feature based performance by
score-level fusion. It is evident thatmost combinations lead to
improved re-id accuracy, and fusing all three features often
generate the best results. This confirms the previous find-
ings that different appearance information can be encoded
by distinct features and their fusion enhances re-id matching
(Paisitkriangkrai et al. 2015; Zhang et al. 2016a; Matsukawa
et al. 2016; Chen et al. 2016a).

(IV) Deep Learning Regression Apart from the ridge
regression (RR) algorithm (Hoerl and Kennard 1970; Zhang
et al. 2010), the IRS concept can be also realised in deep
learning, i.e. deep learning regression (DLR). We call this
IRS implementation as IRS (DLR). For this experiment,
we adopted the DGD CNN model (Xiao et al. 2016) and
the CUHK03 (Manual) dataset. In training IRS (DLR), we
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Table 5 Re-id performance
comparison on the Market-1501
benchmark

Dataset Market-1501

Query per person Single-query Multi-query

Metric (%) R1 mAP R1 mAP

KISSME (Koestinger et al. 2012) 40.5 19.0 – –

MFA (Yan et al. 2007) 45.7 18.2 – –

kLFDA (Xiong et al. 2014) 51.4 24.4 52.7 27.4

XQDA (Liao et al. 2015) 43.8 22.2 54.1 28.4

SCSP (Chen et al. 2016a) 51.9 26.3 – –

NFST (Zhang et al. 2016a) 55.4 29.9 68.0 41.9

TMA (Martinel et al. 2016) 47.9 22.3 – –

SSDAL (Su et al. 2016) 39.4 19.6 49.0 25.8

S-LSTM (Varior et al. 2016b) – – 61.6 35.3

Gated S-CNN (Varior et al. 2016a) 65.8 39.5 76.0 48.4

IRS (WHOS) 55.2 27.5 60.3 33.5

IRS (LOMO) 57.7 29.0 68.0 37.8

IRS (CNN) 72.7 48.1 80.2 58.5

SCSPa (Chen et al. 2016a) 51.9 26.4 – –

NFSTa (Zhang et al. 2016a) 61.0 35.7 71.6 46.0

IRS (WHOS+LOMO+CNN)a 73.9 49.4 81.4 59.9

Best results for single-feature and multi-feature are given in bold
aMultiple features fusion

first trained the DGD to convergence with the softmax cross-
entropy loss. Then, we added n(= 1, 2, 3) new 512-dim FC
layers (including ReLU activation) with random parameter
initialisation on top of DGD. Finally, we frozen all original
DGD layers and optimised the new layers only by L2 loss.

In this test, we compared with the DGD (1) CNN Fea-
tures and (2) Softmax predictions (considered as some sort
of IRS features although not strictly the same due to differ-
ent modelling designs). We observed in Table 8 that: (1) IRS
(DLR) outperforms both CNN Features and Softmax Pre-
diction. This indicates the benefit of IRS in a deep learning
context. (2) IRS (DLR) is relatively inferior to CNN+IRS
(RR), suggesting that a deep learning model is not necessar-
ily superior in regressing IRS when given limited training
data. Moreover, IRS (RR) is superior on model learning effi-
ciency, hence more suitable for incremental model update.

(V) Complementary of Transfer Learning and IRSTrans-
fer learning (TL) is another independent scheme for solving
the SSS problem. We tested the benefit of deep learning pre-
trained TL and IRS. We evaluated three methods based on
the DGD Xiao et al. (2016): (1) W/O TL: Trained the DGD
on VIPeR training data (632 images) only. (2) W TL: First
pre-trained the DGD on 26,246 CUHK03 images for knowl-
edge transfer learning, then fine-tuned on the VIPeR training
data. (3) TL+IRS (RR): First adopted the CUHK03 pre-
trained and VIPeR fine-tuned DGD to extract CNN features,
then deployed the ridge regression based IRS to train the
final re-id feature embedding model. All three models were

evaluated on the same VIPeR test data. Table 9 shows that:
(1) Pre-training based TL significantly improves re-id per-
formance. This demonstrates the benefit of TL in solving
the SSS problem. (2) IRS clearly further improves the re-id
accuracy. This verifies the additional benefits of IRS and the
complementary advantage of TL and IRS to a deep learning
model for solving the SSS challenge.

(VI) Comparisons to Subspace/Metric Learning Models
We performed comparative experiments on four subspace
and metric learning models including KISSME (Koestinger
et al. 2012), kLFDA (Xiong et al. 2014), XQDA (Liao et al.
2015), and NFST (Zhang et al. 2016a), using three differ-
ent types of features (WHOS, LOMO, CNN) and identical
training/test data. We utilised the same subspace dimension
for XQDA and our IRS, i.e. the number of training per-
son classes. We conducted this evaluation on VIReR and
CUHK03 (Manual). Table 10 shows that the proposed IRS
model consistently surpasses all the compared alternative
models. This again suggests the advantages of IRS in learning
discriminative re-id models.

(VII)RegularisationSensitivityWeanalysed the sensitivity
of the only free parameter λ in Eq. (3) which controls the
regularisation strength of our IRS model. This evaluation
was conducted with the LOMO feature in the multi-query
setting on Market-1501 (Zheng et al. 2015). Specifically, we
evaluated the Rank-1 and mAP performance with λ varying
from 0 to 1. Figure 7 shows that our IRS model has a large
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Table 7 Effects of feature choice in re-id performance using the IRS
model with OneHot Feature Coding

Dataset VIPeR

Rank (%) R1 R5 R10 R20

WHOS (Lisanti et al. 2015) 44.5 75.0 86.3 93.6

LOMO (Liao et al. 2015) 45.1 74.6 85.1 93.3

CNN (Xiao et al. 2016) 33.1 59.9 71.5 82.2

WHOS+LOMO 53.0 79.8 89.6 95.5

CNN+LOMO 49.9 77.5 86.9 93.8

WHOS+CNN 49.7 78.0 87.9 94.4

WHOS+LOMO+CNN 54.6 81.5 90.3 95.7

Dataset CUHK01 (486/485 split)

WHOS (Lisanti et al. 2015) 48.8 73.4 81.1 88.3

LOMO (Liao et al. 2015) 68.3 86.7 92.6 96.2

CNN (Xiao et al. 2016) 68.6 89.3 93.9 97.2

WHOS+LOMO 71.2 90.0 94.4 97.3

CNN+LOMO 79.8 93.6 96.3 98.2

WHOS+CNN 76.1 92.9 96.1 98.2

WHOS+LOMO+CNN 80.8 94.6 96.9 98.7

Dataset CUHK01 (871/100 split)

WHOS (Lisanti et al. 2015) 77.0 92.8 96.5 99.2

LOMO (Liao et al. 2015) 80.3 94.2 96.9 99.5

CNN (Xiao et al. 2016) 84.4 98.2 99.8 100

WHOS+LOMO 83.6 95.4 98.8 100

CNN+LOMO 88.0 98.3 99.5 100

WHOS+CNN 89.0 98.5 99.6 100

WHOS+LOMO+CNN 88.4 98.8 99.6 100

Dataset CUHK03 (Manually)

WHOS (Lisanti et al. 2015) 59.6 87.2 92.8 96.9

LOMO (Liao et al. 2015) 61.6 87.0 94.6 98.0

CNN (Xiao et al. 2016) 81.5 95.7 97.1 98.0

WHOS+LOMO 65.2 92.2 96.8 99.1

CNN+LOMO 82.6 96.0 97.5 98.6

WHOS+CNN 80.4 95.7 98.0 98.4

WHOS+LOMO+CNN 81.9 96.5 98.2 98.9

Dataset CUHK03 (Detected)

WHOS (Lisanti et al. 2015) 50.6 82.1 90.4 96.1

LOMO (Liao et al. 2015) 53.4 83.1 91.2 96.4

CNN (Xiao et al. 2016) 80.3 96.3 98.6 99.0

WHOS+LOMO 59.9 89.4 95.5 98.5

CNN+LOMO 82.4 95.7 97.4 98.4

WHOS+CNN 81.1 95.4 97.5 98.6

WHOS+LOMO+CNN 83.3 96.2 97.9 98.6
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Table 7 continued

Dataset Market-1501

Query Per Person Single-Query Multi-Query

Metric (%) R1 mAP R1 mAP

WHOS (Lisanti et al. 2015) 55.2 27.5 60.3 33.5

LOMO (Liao et al. 2015) 57.7 29.0 68.0 37.8

CNN (Xiao et al. 2016) 72.7 48.1 80.2 58.5

WHOS+LOMO 62.4 33.6 69.0 41.0

CNN+LOMO 73.0 48.5 80.9 59.1

WHOS+CNN 72.8 48.3 80.3 58.7

WHOS+LOMO+CNN 73.9 49.4 81.4 59.9

Best results for single-feature and multi-feature are given in bold

Table 8 Evaluation on deep learning regression (DLR) on CUHK03
(Manually)

Rank (%) R1 R5 R10 R20

CNN feature 73.7 91.5 95.0 97.2

Softmax prediction 73.3 91.0 93.9 96.4

IRS (DLR1-FC) 75.1 92.7 95.3 97.5

IRS (DLR2-FC) 76.6 93.1 95.9 98.1

IRS (DLR3-FC) 74.2 92.5 94.8 97.1

CNN+ IRS (RR) 81.5 95.7 97.1 98.0

Best results for single-feature and multi-feature are given in bold
Deep model: DGD (Xiao et al. 2016)
DLRn-FC: n ∈ {1, 2, 3} FC layers added in DLR
RR ridge regression

Table 9 Evaluation on the complementary effect of deep model pre-
training based transfer learning (TL) and IRS on VIPeR

Rank (%) R1 R5 R10 R20

W/O TLa 12.3 – – –

W TL 34.1 66.3 76.2 83.7

TL+ IRS (RR) 39.9 70.6 79.3 86.2

Best results for single-feature and multi-feature are given in bold
Deep model: DGD (Xiao et al. 2016)
aReported result in Xiao et al. (2016)

satisfactory range of λ and therefore not sensitive. We set
λ = 0.1 in all evaluations.

(VIII) Model Complexity In addition to model re-id accu-
racy, we also examined the model complexity and compu-
tational costs, in particular model training time. We carried
out this evaluation by comparing our IRS model with some
strong metric learning methods including kLFDA (Xiong
et al. 2014), XQDA (Liao et al. 2015), MLAPG (Liao and
Li 2015), and NFST (Zhang et al. 2016a). Given n train-
ing samples represented by d-dimensional feature vectors,
it requires 3

2dnm + 9
2m

3 (m = min(d, n)) floating point
addition and multiplications (Penrose 1955) to perform an

Table 10 Comparing subspace learning models with different features

Dataset–feature VIPeR–WHOS

Rank (%) R1 R5 R10 R20

KISSME (Koestinger et al. 2012) 28.7 57.2 72.6 86.1

kLFDA (Xiong et al. 2014) 40.1 68.5 81.2 91.7

XQDA (Liao et al. 2015) 35.1 63.9 74.9 86.0

NFST (Zhang et al. 2016a) 43.6 74.1 86.1 92.7

IRS 44.5 75.0 86.3 93.6

Dataset–feature VIPeR–LOMO

KISSME (Koestinger et al. 2012) 22.1 53.4 68.8 83.8

kLFDA (Xiong et al. 2014) 38.6 69.2 80.4 89.2

XQDA (Liao et al. 2015) 40.0 68.1 80.5 91.1

NFST (Zhang et al. 2016a) 42.3 71.5 82.9 92.1

IRS 45.1 74.6 85.1 93.3

Dataset–feature VIPeR–CNN

KISSME (Koestinger et al. 2012) 22.6 46.9 59.0 72.7

kLFDA (Xiong et al. 2014) 30.9 55.6 65.7 75.0

XQDA (Liao et al. 2015) 11.7 26.2 35.5 48.1

NFST (Zhang et al. 2016a) 31.2 56.0 67.2 78.4

IRS 33.1 59.9 71.5 82.2

Dataset–feature CUHK03(M)–WHOS

Rank (%) R1 R5 R10 R20

KISSME (Koestinger et al. 2012) 31.6 63.4 76.6 88.3

kLFDA (Xiong et al. 2014) 32.9 59.2 75.7 82.6

XQDA (Liao et al. 2015) 41.1 66.5 77.2 86.6

NFST (Zhang et al. 2016a) 34.4 59.7 68.2 77.6

IRS 59.6 87.2 92.8 96.9

Dataset–feature CUHK03(M)–LOMO

KISSME (Koestinger et al. 2012) 32.7 68.0 81.3 91.4

kLFDA (Xiong et al. 2014) 45.8 77.1 86.8 93.1

XQDA (Liao et al. 2015) 52.2 82.2 92.1 96.3

NFST (Zhang et al. 2016a) 58.9 85.6 92.5 96.3

IRS 61.6 87.0 94.6 98.0

Dataset–feature CUHK03(M)–CNN

KISSME (Koestinger et al. 2012) 73.8 94.0 96.2 98.0

kLFDA (Xiong et al. 2014) 76.0 92.3 96.0 98.0

XQDA (Liao et al. 2015) 70.8 92.0 96.2 97.9

NFST (Zhang et al. 2016a) 62.6 78.9 85.5 89.7

IRS 81.5 95.7 97.1 98.0

Best results for single-feature and multi-feature are given in bold

eigen-decomposition for solving either a generalised eigen-
problem (Xiong et al. 2014; Liao et al. 2015) or a null space
(Zhang et al. 2016a), whereas solving the linear system of the
IRSmodel (Eq. 3) takes 1

2dnm + 1
6m

3 (Cai et al. 2008). Deep
learning models (Ahmed et al. 2015; Xiao et al. 2016; Varior

123



International Journal of Computer Vision

0 0.1 0.3 0.5 0.7 0.9 1
30

40

50

60

70
R

1 
(%

)

0 0.1 0.3 0.5 0.7 0.9 1
10

20

30

40

m
A

P
 (

%
)

Fig. 7 Regularisation sensitivity on the Market-1501 dataset. The
multi-query setting was used

Table 11 Model complexity and training costs of person re-id models

Dataset VIPeR CUHK01 CUHK03 Market-1501

Training size 632 1940 12,197 12,936

MLAPG 50.9 746.6 4.0 × 104 –

kLFDA 5.0 45.9 2203.2 1465.8

XQDA 4.1 51.9 3416.0 3233.8

NFST 1.3 6.0 1135.1 801.8

IRS 1.2 4.2 248.8 266.3

Best results for single-feature and multi-feature are given in bold
Metric: Model training time (in s), smaller is better

et al. 2016a) are not explicitly evaluated since they are usually
much more demanding in computational overhead, requir-
ing much more training time (days or even weeks) and more
powerful hardware (GPU). In this evaluation, we adopted the
LOMO feature for all datasets and all the models compared,
the 485/486 people split on CUHK01, the manually labelled
person bounding boxes on CUHK03, and the single-query
setting on Market-1501.

For each model, we recorded and compared the aver-
age training time of 10 trials performed on a workstation
with 2.6 GHz CPU. Table 11 presents the training time of
different models (in s). On the smaller VIPeR dataset, our
IRS model training needed only 1.2 s, similar as NFST and
42.4 times faster thanMLAPG. On larger datasets CUHK01,
CUHK03 and Market-1501, all models took longer time to
train and training the IRS model remains the fastest with
speed-up over MLAPG enlarged to 177.8/160.8 times on
CUHK01/CUHK03, respectively.2 This demonstrates the
advantage of the proposed IRS model over existing com-
petitors for scaling up to large sized training data.

5.2 Incremental Person Re-id Evaluation

We further evaluated the performance of our IRSmodel using
the incremental learning IRSinc algorithm (Sect. 4). This set-

2 The MLAPG model failed to converge on Market-1501.

ting starts with a small number, e.g. 10 of labelled true match
training pairs, rather than assuming a large pre-collected
training set. Often, no large sized labelled data is available
in typical deployments at varying scenes in advance. More
labelled data will arrive one by one over time during deploy-
ment due to human-in-the-loop verification. In such a setting,
a re-id model can naturally evolve through deployment life-
cycle and efficiently adapt to each application test domain.
In this context, we consider two incremental re-id model
learning scenarios: (I) Passive incremental learning where
unlabelled person images are randomly selected for human to
verify; (II) Active incremental learning where person images
are actively determined by the proposed JointE2 active learn-
ing algorithm (Sect. 4.1).

Incremental Re-id Evaluation Protocol Due to the lack of
access to large sized training samples in batch, incrementally
learnedmodels are typically less powerful than batch learned
models (Poggio and Cauwenberghs 2001; Ristin et al. 2014).
Therefore, it is critical to evaluate how much performance
drop is introducedby the incremental learning (IL) algorithm,
IRSinc, as compared to the correspondingbatch-wise learning
(BL) and how much efficiency is gained by IL.

We started with 10 labelled identities, i.e. cross-camera
truth matches of 10 persons, and set the total labelling budget
to 200 persons. For simplicity, we selected four test cases
with 50, 100, 150, 200 labelled identities respectively and
evaluated their model accuracy and training cost. To compare
the accumulated learning time (ALT),3 i.e. the summed time
for training all the IRS models when the label number is
increased from50 to 200 one by one (in total 151 updates),we
interpolated estimations on training time between these four
measured test cases. A one-by-onemodel update is necessary
particularly when deploying a pre-trained sub-optimal re-id
model to a previously unseen camera network with weak
starting performance.

We adopted the LOMO visual feature on all datasets. We
utilised the 485/486 people split on CUHK01, the manually
labelled person images on CUHK03, the single-query setting
on Market-1501, and the same test data as the experiments
in Sect. 5.1. We conducted 10 folds of evaluations each with
a different set of random unlabelled identities and reported
the averaged results.

3 The BL model needs to be trained once only after all 200 person
classes are labelled when we consider the batch-wise model learning
setting (Sect. 5.1). However, here we consider instead the incremental
learning settingwith the aim to evaluate the proposed incremental learn-
ing algorithm in both training efficiency and effectiveness, as compared
to the batch learning counterpart when deployed for model incremen-
tal update. Given the batch-wise learning strategy, incremental model
update can only be achieved by re-training amodel from scratch. There-
fore, the accumulated learning time is a rational metric for efficiency
comparison in this context.
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(I) Passive Incremental Learning We compared the pro-
posed incremental learning (IL) based IRS (IRSinc) with the
batch-wise learning (BL) based IRS in Table 12 for model
training time and re-id Rank-1 performance. It is found
that IRS model training speed can increase by one order
of magnitude or more, with higher speed-up observed on
larger datasets and resulting in more model training effi-
ciency gain. Specifically, on VIPeR, BL took approximately
36.5 s to conduct the 151model updates by re-training, while
IL only required 3.28 s. When evaluated on Market-1501,
BL took over 5.5 h (1.9 × 104 s) to perform the sequen-
tial model updates, while IL was more than 20× faster, only
took 877.3 s. Importantly, this speed-up is at the cost of only
1−2% Rank-1 drop. This suggests an attractive trade-off for
the IRSinc algorithm between effectiveness and efficiency in
incremental model learning.

(II) Active Incremental Learning We further evaluated
the effect of the proposed JointE2 active learning algorithm
(Sect. 4.1) by random passive unlabelled image selection
(Random). Also, we compared with a state-of-the-art den-
sity based active sampling method (Ebert et al. 2012) which
prefers to query the densest region of unlabelled sample
space (Density). For both active sampling methods, we used
our IRSinc for re-id model training. We evaluated the four
test cases (50, 100, 150, 200 labelled identities) as shown in
Table 13.

It is evident from Table 13 that: (1) On all four datasets,
our JointE2 outperformed clearly both Random and Density
given varying numbers of labelled samples. For example,
when 50 identities were labelled, the proposed JointE2

algorithmbeatsRandom sampling inRank-1 by4.0% (23.4−
19.4), 9.1% (29.9−20.8), 3.0% (25.1−22.1), 9.0% (36.5−
27.5) on VIPeR, CUHK01, CUHK03 and Market-1501,
respectively. (2) Our JointE2 model obtained similar or
even better performance with less human labelling effort.
For example, on Market-1501, by labelling 150 identities,
JointE2 achieved Rank-1 rate of 54.8%, surpassed random
(54.3%) and density (53.9%) with a greater budget of 200
identities.

In summary, the results in Tables 12 and 13 show clearly
that the hybrid of our proposed IRSinc model and JointE2

active sampling method provides a highly scalable active
incremental re-id model training framework, with attractive
model learning capability and efficiency from less labelling
effort suited for real-world person re-id applications.

6 Conclusion

In this work, we developed a novel approach to explic-
itly designing a feature embedding space for supervised
batch-wise and incremental person re-identification model
optimisation. We solved the re-id model learning problem
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Table 13 Evaluation on the active incremental learning algorithm

Dataset VIPeR CUHK01 CUHK03 Market-1501

Label no. 50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200

Random 19.4 29.2 33.6 37.2 20.8 35.6 45.3 51.5 22.1 33.0 38.8 41.7 27.5 44.2 50.6 54.3

Density (Ebert et al. 2012) 18.4 26.8 33.5 37.5 23.3 37.0 44.5 50.0 23.7 34.8 40.2 42.7 32.3 46.2 51.5 53.9

JointE2 23.4 31.4 36.5 40.9 29.9 39.7 47.1 52.2 25.1 36.8 41.3 43.0 36.5 50.7 54.8 58.2

Best results for single-feature and multi-feature are given in bold
Metric: Rank-1 rate (%)

by introducing an identity regression method in an iden-
tity regression space (IRS) with an efficient closed-form
solution. Furthermore, we formulated an incremental learn-
ing algorithm IRSinc to explore sequential on-line labelling
and model updating. This enables the model to not only
update efficiently the re-id model once new data annota-
tions become available, but also allows probably early re-id
deployment and improves adaptively the re-id model to new
test domains with potential temporal dynamics. To better
leverage human annotation effort, we further derived a novel
active learning method JointE2 to selectively query the most
informative unlabelled data on-line. Extensive experiments
on four benchmarks show that our IRS method outperforms
existing state-of-the-art re-id methods in the conventional
batch-wise model learning setting. Moreover, the proposed
incremental learning algorithm increases significantly model
training speed, over 10 times faster than batch-wise model
learning, by only sacrificing marginal model re-id capabil-
ity with 1−2% Rank-1 drop. This labelling-while-deploying
strategy has the intrinsic potential of helping reduce the cost
of manual labelling in large scale deployments by structur-
ing semantically the unlabelled data so to expedite the true
match identification process. Additionally, our active learn-
ing method improves notably the human labelling quality
w.r.t. the thus-far model, particularly when limited bud-
get is accessible, providing over 3% Rank-1 improvement
than Random sampling given 50 identities labelling bud-
get. While person re-id has attracted increasing amount of
efforts especially in the deep learning paradigm,model learn-
ing scalability, model incremental adaptation, and labelling
effort minimisation in large scale deployments however are
significantly underestimated although very critical in real-
world applications.Bypresenting timely an effective solution
in this work, we hope that more investigations towards these
important problems will be made in the future studies. One
interesting future direction is to develop incremental deep
re-id learning algorithms.
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Appendix: Derivation of FDA Coding

In the following, we provide a detailed derivation of FDA
coding (Eq. 4) in our IRS method.

FDA Criterion Specifically, the FDA criterion aims to
minimise the intra-class (person) appearance variance and
maximise inter-class appearance variance. Formally, given
zero-centred training data X = {xi }ni=1, we generate three
scatter matrices defined as follows:

Sw = 1

n

c∑
j=1

∑
li= j

(xi − u j )(xi − u j )
�,

Sb = 1

n

c∑
j=1

n ju ju�
j ,

St = Sw + Sb = 1

n

n∑
i=1

xi x�
i ,

(19)

where Sw, Sb, and St denotewithin-class, between-class and
total scatter matrices respectively, u j the class-wise cen-
troids, and n j the sample size of the j th class (or person).
The objective function of FDA aims at maximising trace(Sb)
and minimising trace(Sw) simultaneously, where Sw can be
replaced by St since St = Sb + Sw. Hence, an optimal
transformation G∗ by FDA can be computed by solving the
following problem:

G∗ = argmax
G

trace
((
G�SbG

)(
G�StG

)†)
. (20)

Theorem 1 With Y defined as Eq. (4), the projection P∗
learned by Eq. (3) is equivalent to G∗, the optimal FDA
solution in Eq. (20).

Proof First, optimising the objective in Eq. (4) involves solv-
ing the following eigen-problem:
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S†t SbG = GΛ, (21)

where G ∈ R
d×q = [

g1, . . . , gq
]
contains q eigenvectors of

S†t Sb, and Λ = diag(α1, . . . , αq) with αi the corresponding
eigenvalue, and q = rank(Sb) ≤ c− 1. From the definitions
in Eqs. (4) and (19), St and Sb can be further expanded as:

St = XX�, Sb = XYY�X�. (22)

Here, the multiplier 1
n is omitted in both scatter matrices for

simplicity. Now, we can rewrite the left-hand side of Eq. (21)
as:

(XX� + λI)†XYY�X�G = GΛ. (23)

Note that, the pseudo-inverse S†t is calculated by (XX� +
λI)†. The reason is that in real-world problems such as person
re-id where training data is often less sufficient, St is likely
to be ill-conditioned, i.e. singular or close to singular, so that
its inverse cannot be accurately computed.

By our solution P in Eq. (3), we can further rewrite
Eq. (23):

PY�X�G = GΛ (24)

To connect the regression solution P and the FDAsolution
G, we define a c× cmatrix R = Y�X�P . According to the
general property of eigenvalues (Horn and Johnson 2012), R
and PY�X� share the same q non-zero eigenvalues. Also, if
V ∈ R

c×q contains the q eigenvectors of R, columns of the
matrix PV must be the eigenvectors of the matrix PY�X�.
Therefore, the relation between P and G is:

G = PV (25)

Finally, we show in the following Lemma that P and G
are equivalent in the aspect of re-id matching. �
Lemma 1 In the embedding provided by P and G, the
nearest neighbour algorithm produce same result. That is,
(xi − x j )

�P P�(xi − x j ) = (xi − x j )
�GG�(xi − x j ).

Proof The necessary and sufficient condition for Lemma 1
is P P� = GG�. As V ∈ R

c×q , there must exist a matrix
V 2 ∈ R

c×(c−q) such that V̂ = [V , V 2] is a c× c orthogonal
matrix. Suppose the diagonal matrix Γ contains the non-zero
eigenvalues of R, then the eigen decomposition R = VΓ V�
implies that V�

2 RV 2 = 0. �
Recall that R = Y�X�P , and P = (XX� + λI)†XY ,
then we obtain:

V�
2 Y

�X�(XX� + λI)†XYV 2 = 0 (26)

As (XX� + λI)† is positive definite, the above equation
implies that XYV 2 = 0, and hence PV 2 = (XX� +
λI)†XYV 2 = 0. Hence, we have:

P P� = PV̂ V̂
�
P�

= PVV�P� + PV 2V�
2 P�

= GG� + 0

(27)

As such, the proof to Lemma 1 and Theorem 1 is complete.
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