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Abstract

Recognising detailed clothing characteristics (fine-
grained attributes) in unconstrained images of people in-
the-wild is a challenging task for computer vision, espe-
cially when there is only limited training data from the wild
whilst most data available for model learning are captured
in well-controlled environments using fashion models (well
lit, no background clutter, frontal view, high-resolution). In
this work, we develop a deep learning framework capable of
model transfer learning from well-controlled shop clothing
images collected from web retailers to in-the-wild images
from the street. Specifically, we formulate a novel Multi-
Task Curriculum Transfer (MTCT) deep learning method
to explore multiple sources of different types of web an-
notations with multi-labelled fine-grained attributes. Our
multi-task loss function is designed to extract more discrim-
inative representations in training by jointly learning all
attributes, and our curriculum strategy exploits the staged
easy-to-hard transfer learning motivated by cognitive stud-
ies. We demonstrate the advantages of the MTCT model
over the state-of-the-art methods on the X-Domain bench-
mark, a large scale clothing attribute dataset. Moreover, we
show that the MTCT model has a notable advantage over
contemporary models when the training data size is small.

1. Introduction

Automatic recognition of clothing attributes in images
from the wild, e.g. street views, has many applications from
retail shopping to internet search and visual surveillance
[23, 16]. However, clothing attribute recognition in-the-
wild is challenging due to poor lighting, cluttered scenes,
unknown viewpoint, and lacking image details (Figure 1
(b)). Deep learning exploits a large collection of imagery
data from diverse sources, and has been shown to be very
effective for image classification tasks [50, 48, 32, 3]. How-
ever, training a deep model requires extensive labelled in-
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Figure 1. Clothing images of (a) professional models in shops and
their corresponding instances (b) in-the-wild from the streets, with
significant changes in appearance and background clutter.

formation on the imagery data mostly generated by exhaus-
tive manual annotation. For clothing attribute, the available
labelled image data size is small and the number of fine-
grained attribute categories is also limited [16, 54, 36].

To overcome the lack of manually labelled training data,
web data mining provides a solution [12, 8, 27], from which
a large number of web images with their meta-data can be
collected without exhaustive manual labelling. For cloth-
ing, there is potentially a rich source of web images and
their meta-text provided by online shops, where these meta-
text contain fine-grained clothing attributes [8, 27, 40] (Fig-
ure 3). A notable characteristics of these online shopping
clothing images is that they are well-posed by models cap-
tured against clean background in good lighting. A key
challenge is how to transfer models trained using these
clean shop images to recognise attributes in images cap-
tured in-the-wild from the streets, known as the domain
drift problem [51, 41], where clean shop photos are con-
sidered as the source data from a source domain whilst un-
constrained images from the wild are the target data from a
target domain.



This work proposes a novel deep learning approach to
modelling clothing attributes given a large sized source data
and very small sized target data for model training. The
model solves the challenging problem of transfer learning
between the source and target domains when both source
and target training data are weakly labelled at the image
level. Our contributions are three-fold: (1) We formulate a
novel Multi-Task Curriculum Transfer (MTCT) deep learn-
ing approach to modelling clothing attributes. (2) In con-
trast to existing methods [8, 27, 40], which are limited in
exploiting cross-domain data, the proposed MTCT deep at-
tribute model is characterised by a multi-task joint learn-
ing deep network architecture for capturing the underlying
correlations between different attributes with shared fea-
ture representations. (3) We implement a novel curriculum
transfer deep learning strategy that aims to explore knowl-
edge about attributes for solving more effectively the highly
non-convex optimisation problem in model learning. This
curriculum transfer learning strategy is motivated by cog-
nitive studies [13, 43, 33, 5], with a multi-staged learning
principle focusing on a simple task first before increasing
the learning difficulty level, reminiscent to the human learn-
ing strategy. To our knowledge, this is the first attempt of
formulating a curriculum learning strategy for deep learning
of attributes, although there was an early study on language
modelling [5]. This is in strong contrast to the current pop-
ular end-to-end learning strategy deployed in deep learn-
ing [28, 50]. Our extensive comparative evaluation using
the X-Domain benchmark dataset [8] against three state-of-
the-art deep learning models for clothing attribute recog-
nition, including FashionNet [40], DARN [27] and DDAN
[8], demonstrates a clear advantage of the proposed MTCT
deep attribute model. Moreover, we show that MTCT also
has a notable advantage over the state-of-the-arts when the
target domain training data size becomes small.

2. Related Work
Attributes. Visual attributes have been widely exploited
in computer vision, e.g. zero-shot learning [35, 19], face
analysis [34], pedestrian description [10, 20], person re-
identification [36], visual search [31, 49, 16]. These stud-
ies typically pre-define a small set of attributes and re-
quire expensive manual labelling of training data. Differ-
ent datasets often do not have consistent labelling, limit-
ing their scalability. Driven by the desire for large quan-
tities of cheaply labelled images, there are studies to ex-
plore web data sources for collecting large scale imagery
data that come with “free” corresponding meta-text anno-
tations [9, 12, 44]. However, this poses a new problem in
that the meta-data labels of these web data are less accu-
rate nor consistent when compared with human manually
labelled attributes. Studies on clothing modelling have been
focused extensively on clothing segmentation against typi-

cally clean background [7, 30, 39, 56]. There have also been
efforts on shop-clothing image categorisation and retrieval
using traditional hand-crafted features (e.g. SIFT, HOG)
[6, 7, 7, 18, 55], and more recently deep learning based fea-
tures [27, 8, 29, 40]. Given the costs of labelling there-
fore a lack of large scale clothing attribute annotations from
different sources (domains), cross-domain clothing attribute
learning is a challenging problem and largely under-studied
[40, 27].

Deep Transfer Learning. Transfer learning for domain
adaptation is a well studied area [22, 24, 17, 47]. More
recently, deep learning models are shown to be more robust
than conventional models against domain changes, mainly
due to the high modelling capacity and the availability of
large scale labelled training data. However, the domain
drift problem remains unsolved i.e. the performance of deep
models still degrades in a new domain [25]. A common ap-
proach to deep transfer learning is fine-tuning, using target
domain data, the higher layers (FC layers) of a pre-trained
deep model from the source data [21, 46]. This assumes
the availability of a large number of target training data,
which is mostly not the case. A number of deep trans-
fer learning models have been proposed for generic image
categorisation [25, 26, 11, 52, 41], and more recently for
fine-grained clothing attribute learning [8, 27, 40]. Specif-
ically, Chen et al. [8] proposed a Deep Domain Adapta-
tion Network (DDAN) with two branches by assigning one
branch to a specific domain and then introducing two cross-
branch connected layers that can enforce a feature distance
between cross-domain images according to their attribute
relations. A further extension of the DDAN model was also
proposed by Huang et al. [27], which consists of a Dual
Attribute-aware Ranking Network (DARN) to additionally
accommodate image-level cross-domain correspondence as
well as hierarchical structural knowledge of attributes in
each network branch. More recently, Liu et al. [40] in-
troduced a FashionNet to model simultaneously both local
attribute-level and holistic image-level clothing representa-
tions with a strong requirement on manually labelled cloth-
ing landmarks, making it less scalable than both DDAN
and DARN networks. Our new MTCT (Multi-Task Cur-
riculum Transfer) network shares some common character-
istics with DDAN and DARN but also with a few impor-
tant differences and advantages: Unlike DDAN, that only
considers attribute labels, our method additionally models
image-level cross-domain image pair relations for more ef-
fective domain adaptation. This is similar to DARN. How-
ever, whilst our domain transfer learning exploits multi-
task/attribute feature learning, DARN only utilises shared
common fully-connected feature representations for all at-
tributes (Figure 2(c)). In contrast to the FashionNet, our
MTCT net exploits cross-domain attribute learning without
the need for extensive clothing landmarks, more scalable to



wider applications. Moreover, our MTCT network explores
uniquely the curriculum transfer learning strategy for more
effective deep model learning. Our extensive comparative
evaluation validates the advantages of MTCT over DDAN
[8], DARN [27], and the FashionNet [40].

3. Multi-Task Curriculum Transfer Network
3.1. Problem Definition

To construct a deep model capable of recognising fine-
grained clothing attributes on images in-the-wild (target do-
main), we collect clothing images and their meta-label as
attributes {zi}nattr

i=1 (e.g. clothing category, collar style) au-
tomatically from a range of online shopping web-sites, with
a total of nattr different attribute categories, each category
zi having its respective value range Zi. Intrinsically, this
is a multi-label recognition problem since the nattr attribute
categories co-exist in every clothing image and may be as-
signed to different values.

Suppose (1) we have a collection of nt target training
images {Iti}

nt
i=1 along with their attribute annotation vec-

tors {ati}
nt
i=1, and ati = [ati,1, . . . , a

t
i,j , . . . , a

t
i,nattr

] where
ati,j refers to the j-th attribute value of target image Iti ;
there are also ns source training images {Isi }

ns
i=1 with cor-

responding attribute vectors {asi}
ns
i=1; ns >> nt, that is,

the number of labelled source images is much greater than
that of labelled target images. Moreover, (2) we have ac-
cess to npw pair correspondences between target and source
clothing images, e.g. selfie images taken by shopping cus-
tomers with known pairing to the online images of the same
clothes (Figure 1). This cross-domain pair relation is useful
in bridging the large domain gap by transferring attribute
knowledge encoded in the source domain to the target do-
main with much less labelled data. It is worth noting that
these two types of supervised learning lie at different levels:
Most attributes are localised to image regions, even though
the location information is not provided in the annotation.
Cross-domain pair labels are at the holistic image-level. We
consider this not only a multi-label learning problem – joint
learning for mutually correlated attribute labels, but also
a multi-task transfer learning problem – inter-dependently
learning the best individual attribute prediction given both
local and holistic cross-domain annotations.

3.2. Network Architecture Design

Our MTCT deep model has two components: (I) multi-
task deep learning, (II) curriculum transfer deep learning.
(I) Multi-Task Deep Learning. Clothing attributes co-
occur selectively and to explore this inherent constraint for
more reliable attribute prediction, we wish to model multi-
attribute correlations by formulating a Multi-Task Network
(MTN). This implements the multi-task learning principle
[15, 1] in a deep model. Although sharing a similar spirit of

multi-task regression networks for face modelling [59, 57],
in this MTN model we learn a multi-task discriminative net-
work for clothing modelling. Compared to independent at-
tribute modelling, such multi-task learning also involves a
smaller number of to-be-learned model parameters and thus
with a lower model overfitting risk towards the given train-
ing data, beyond modelling mutual relations among differ-
ent types of attributes and their common representations.

Specifically, the MTN consists of five stacked Network-
In-Network (NIN) convolutional (conv) units [38] and nattr
parallel branches, with each branch representing a three lay-
ers of Fully-Connected (FC) sub-network for modelling one
of the nattr attributes respectively (Figure 2(a,d)). The neu-
ron number in the output-layer of i-th branch is |Zi|, i.e.
the number of corresponding all possible attribute values
ai. For model training, we utilise the Softmax loss func-
tion within any branch to model mutually exclusive rela-
tions among the attribute values for each attribute category
by firstly predicting the j-th attribute posterior probability
of image Ii over the ground truth ai,j :

p(yi,j = ai,j |xi,j) =
exp(W>

j xi,j)∑|Zj |
k=1 exp(W

>
k xi,j)

(1)

where xi,j refers to the feature vector for j-th attribute,
and Wk to the corresponding prediction function parameter,
then computing the overall loss on a batch of nbs images as
the average additive summation of attribute-level loss with
equal weight:

lsm = − 1

nbs

nbs∑
i=1

nattr∑
j=1

log
(
p(yi,j = ai,j |xi,j)

)
(2)

This design above allows to jointly learn both attribute-
generic (by all shared conv layers) and attribute-specific (by
individual FC layer branches) discriminative features. In
this context, each branch corresponds to a specific learning
task responsible for the assigned attribute modelling.

The proposed MTN is similar to the DARN model [27]
but with a crucial difference, that is, the attribute-specific
branch in DARN contains only the last FC3 layer which
serves as an attribute prediction function (Figure 2 (c)),
therefore no attribute-specific representation learning in
DARN and our experiments show this is less effective in
learning discriminative features as compared to the pro-
posed MTN, where FC1,2 layers are explicitly allocated for
this purpose in each branch. As all clothing attributes are
jointly modelled in DARN, we refer it as Joint Attribute
Convolutional Neural Network (JAN) in the experimental
evaluation reported in Section 4.

Learning the MTN model requires a large amount of
training data1, whilst we usually only have very limited la-
belled target images. To overcome this problem, we want to

1Each MTN has 19 conv, 3 max-pooling and 27 (9×3) FC layers. The



Stage-2: Curriculum Transfer (CT)

Triplet

t-STE loss

Positive Source MTN

Target MTN

CROSS-DOMAINS 

… … …

… … …

Negative Source MTN

… … …

Stage-1: Multi-Task (MT)

SOURCE DOMAIN

… …

FC1_1 FC2_1 FC3_1

FC1_9

…

FC2_9 FC3_9

NIN1 NIN3NIN2 NIN4 NIN5

Category
Softmax

Loss

Color
Softmax

Loss

FC1_8 FC2_8 FC3_8

Shape
Softmax

Loss

MTN1024 1024
𝑁"##$_&

𝑁"##$_'

𝑁"##$_(

FC1 FC2

FC3_1

FC3_9

CrossEntropy
Loss

CrossEntropy
Loss

CrossEntropy
Loss

…

FC layers in DARN

FC3_8

4096 4096

𝑁"##$_&

𝑁"##$_(

MTN configurations 
Layer Name Parameters

NIN1 Conv1 7x7-96-2
Conv1_1 1x1-96-1
Conv1_2 1x1-96-1

Maxpooling-3x3
NIN2 Conv2 5x5-256-2

Conv2_1 1x1-256-1
Conv2_2 1x1-256-1

Maxpooling-3x3
NIN3 Conv3 3x3-512-1

Conv3_1 1x1-512-1
Conv3_2 1x1-512-1

NIN4 Conv4 3x3-1024-1
Conv4_1 1x1-1024-1
Conv4_2 1x1-512-1
Conv4_3 1x1-384-1

NIN5 Conv5 3x3-512-2
Conv5_1 1x1-512-1
Conv5_2 1x1-512-1

Maxpooling-3x3
FC-1024 for any branch
FC-1024 for any branch

FC- 𝑁"##$_)for any branch
Softmax for any branch

(a)

(b) (c)

(d)

…

Figure 2. (a)-(b): The MTCT network design, (c): The FC layers of DARN [27], (d): MTN configuration details.

explore richer source domain labelling information through
cross-domain transfer learning.

(II) Curriculum Transfer Learning. To transfer source
annotation knowledge to sparsely labelled target domain,
we formulate a Curriculum Transfer (CT) learning strategy
for deep learning. This is motivated by cognitive studies
that suggest a better learning strategy adopted by human and
animals is to start with learning easier tasks before gradually
increasing the difficulties of the tasks, rather than to blindly
learn randomly organised tasks [13, 43, 33].

In our cross-domain clothing attribute learning context,
source and target domain data present naturally this easy-
hard knowledge distribution: Source images taken from
professional models are much easier to learn than target
images captured in-the-wild (Figure 1); Moreover, the dif-
ference in holistic (cross-domain pairing) and local annota-
tions (source domain attributes) exhibits distinct degrees of
learning complexity – attributes are localised thus specific
whilst pair correspondences are holistic therefore abstract,
with the latter has greater variations than the former.

Given these observations above, we propose a two-
stage curriculum transfer (CT) learning strategy tailored
for clothing attribute modelling: (1) Stage-1: Learning
with clean (easier) source images and their attribute labels
only; (2) Stage-2: Learning to capture harder cross-domain

MTCT model has in total 79.4 million parameters (57 million required
fine-tuning), In comparison, DARN [27] and FashionNet [40] have 73 mil-
lion and 135 million parameters respectively (all required fine-tuning).

knowledge by embedding cross-domain image pair infor-
mation, and simultaneously appending harder target images
into the model training process. As such, attribute labels of
non-paired source images can also be exploited in addition
to the cross-domain paired images. We instantiate this CT
strategy by formulating a MTN based deep architecture.

CT Learning Stage-1: Easy Model Learning and Transfer.
The main purpose of this first CT learning stage is to ex-
tract well-defined attribute features from large quantities of
easy-to-learn source images and then directly transfer to the
target domain. The intuition is that, the high non-convex
model optimisation problem we need to address can be
made not only simpler but also benefiting from better identi-
fied local minima for subsequent incremental learning if the
starting sub-tasks are restricted to less hard tasks [5]. This
principle is consistent with the notion of adaptive value of
starting in developmental psychology [13]. This direct fea-
ture transfer from source to target domain exploits the char-
acteristics of deep learning features being capable of captur-
ing hierarchical information and independent of the training
data, particularly from the lower layers [58, 28, 48, 46].

The easy-stage (Stage-1) of our CT learning strategy
constructs a source and a target MTN model as follows: (1)
Following common practice [50], we pre-train all NIN lay-
ers of a source MTN using the training data of ImageNet-
1K [45] for obtaining a good parameter initialisation. (2)
We train the whole MTN on source images with their at-
tribute labels. (3) We create a target MTN by sharing all



parameters from the source MTN. In this way, the attribute
information is transferred from source to target domain.
CT Learning Stage-2: Hard Model Learning and Trans-
fer. We build on Stage-1 to transfer harder cross-domain
pair relational knowledge and perform incremental learn-
ing on harder target data. This is achieved by construct-
ing a three-stream MTN (3MTN) architecture consisting of
two identical copies of the source MTN network and the
target MTN obtained from Stage-1 (Figure 2(b)), taking as
input cross-domain image triplets in the form of “{Target
It, Positive Source Ips, Negative Source Ins}” where Tar-
get It and Positive Source Ips are of the same clothing (ob-
tained from the cross-domain pairing labelling), whereas
Target It and Negative Source Ins are of different clothing
items. We require that feature similarity value between Tar-
get and Positive Source is greater than that between Target
and Negative Source simultaneously. To this end, we con-
sider the learning-to-rank approach to model optimisation
and exploit the t-distribution Stochastic Triplet Embedding
(t-STE) loss function due to its strength in discovering un-
derlying data structure [53]:

lt-STE =
∑

{It,Ips,Ins}∈T

(3)

log
(1 +

‖ft(It)−fs(Ips)‖2
α )β

(1 +
‖ft(It)−fs(Ips)‖2

α )β + (1 + ‖ft(It)−fs(Ins)‖2
α )β

where α denotes the freedom degree of the Student kernel;
β = − (1+α)

2 ; ft(·) and fs(·) refer to the feature extraction
function for the target and source MTN respectively, that is,
the vectorised feature maps of the conv5 layer used as the
sample feature in each stream (Figure 2(b)).

Concurrently, we learn all FC layers of each attribute-
specific branch in the Target stream with the Softmax loss
for obtaining the final attribute recognition model (Figure
2(b)). In practice, we found that fine-tuning FC layers in
the source stream helps due to the mutual benefits between
the two domains. As a result, all layers are frozen except
conv5 of the Target MTN stream and all FC layers of both
streams during the CT Stage-2 learning.

Clothing Attribute Recognition: Our learning aim is to
obtain an optimised target MTN model for attribute recog-
nition in-the-wild. This is achieved during model train-
ing by learning a source MTN for extracting and transfer-
ring localised attribute information, followed by optimising
a 3MTN for transferring cross-domain pairing knowledge
and adapting the target MTN to data from the wild. Dur-
ing model deployment, we solely utilise the target MTN for
fine-grained clothing attribute recognition on unconstrained
images. In the next section, we shall demonstrate the effec-
tiveness of the proposed model when compared against the
state-of-the-arts.

4. Experiments
4.1. Dataset and Evaluation Protocol

We utilised the Cross-Domain (X-Domain) clothing at-
tribute dataset [8] for our comparative evaluations2. Specif-
ically, this X-Domain dataset contains two different image
source domains: (1) The shop domain, online stores such as
Amazon.com and TMall.com; (2) The street domain where
consumer images are available.

Specifically, there are 245, 467 shop images each associ-
ated with web meta-data including≤ 9 attribute/value pairs.
These nine fine-grained clothing attributes are: category,
button, colour, length, pattern, shape, collar, sleeve-length
(slv-len), sleeve-shape (slv-shp). There may be varying
numbers of optional values for different attributes, rang-
ing from 6 (slv-len) to 55 (colour) and a total of 178 dis-
tinct values over all attributes. Therefore, these clothing at-
tributes are rather fine-grained, possibly with subtle visual
appearance dissimilarity between different attribute values,
e.g. Woollen-Coat versus Cotton-Coat. Note that these at-
tribute data were webly annotated at the image-level and
thus weakly-supervised with no specified attribute location.

We also have 46, 769 street images from customer re-
views of a proportion of shop image webpages. Among
these 46, 769 in-the-wild images, there are 14, 186 cross-
domain pairing with the shop images. The remaining
231, 281 (245, 467 − 14, 186) shop images are non-paired.
In our evaluations, we consider the shop and street domains
as the source and target domains, respectively.
Evaluation Protocol. On our copy of the X-Domain
dataset, we performed the following data partition for cross-
domain attribute recognition evaluation. For the shop do-
main, we randomly selected 165, 467 images as training
data and the remaining 80, 000 as test images. For the street
domain, 36, 769 were randomly selected for training and
10, 000 for test.

For quantitative evaluation, we adopted both per-class
(i.e. per-attribute) and per-instance (i.e. per-image) based
metrics. For the former, we used Average Precision
(APcls) for each attribute class and mean Average Precision
(mAPcls) over all classes [8]. For the latter, we first com-
puted per-image attribute Precision and Recall, then aver-
aged both over all images to obtain mean Precision (mPins)
and Recall (mRins) [40].

4.2. Implementational Considerations

Clothing Detection. As input images are not accurately
cropped, clothing detection is necessary for reducing the
negative impact of background clutter. We performed
clothing detection by a customised Faster R-CNN model

2In our experiments, we collected 100% shop images of the X-Domain
dataset, but only 69% of the cross-domain pairing images were available
from the X-Domain URLs given by [8] due to commercial copyrights.



Table 1. Comparing state-of-the-art clothing attribute recognition methods.
Method Category Button Colour Length Pattern Shape Collar Slv-Len Slv-Shp mAPcls mPins mRins

DDAN [8] 12.56 24.13 20.72 35.91 61.67 47.14 31.17 80.63 73.96 43.10 45.41 52.20
DARN [27] 52.55 37.48 58.24 51.49 67.53 47.70 47.77 82.04 73.72 57.61 57.79 67.29

FashionNet [40] 55.85 39.52 60.33 53.08 68.65 49.79 52.17 83.79 75.34 59.84 59.97 69.74
MTCT 65.96 43.57 66.86 58.27 70.55 51.40 58.97 86.05 77.54 64.35 64.97 75.66

[42]. Specifically, we first trained our detector on PASCAL
VOC2007 training data [14] followed by fine-tuning on an
assembled clothing dataset consisting of 8, 000 street/shop
photos (with box annotation available) from [29] and 4, 000
fashion images (with boxes generated from available pixel-
level labels) from [37].

Parameter Settings. For training the MTCT, the momen-
tum was set at 0.9 and weight-decay at 0.0005, same as in
NIN [38] and AlexNet [32]. The batchsize was set at 256
limited by the GPU memory size. The learning rates were
set empirically, by the training loss change, at 0.001 for pre-
training on the ImageNet, and 0.0001 for fine-tuning on the
source/target clothing data. For training the other compared
models, we used the same parameter settings given by the
authors, otherwise same as for MTCT.

4.3. Evaluation Choices

We compared our MTCT deep attribute model with 3
state-of-the-art models and 4 different variants of our model
design: (1) Deep Domain Adaptation Network (DDAN)
[8]: A cross-domain attribute recognition model capable
of learning domain invariant features by particularly align-
ing middle level representations of two domains during the
training stage. (2) Dual Attribute-aware Ranking Network
(DARN) [27]: A domain adaptation deep model that is
trained and optimised with both attribute annotations and
cross-domain pair correspondences in an end-to-end learn-
ing manner. (3) FashionNet [40]: A very recent clothing
analysis model specially designed for multiple recognition
tasks such as attribute and landmark detection. We im-
plemented this model excluding landmark detection branch
since landmark labels are not available in this real-world X-
Domain dataset. We also compared MTCT against four dif-
ferent MTN based models to evaluate the role of the individ-
ual components in the MTCT model design. These are: (4)
No Adaptation (NoAdpt): We train a given network using
the labelled source data and directly deploy it for the target
test data. This simple scheme has shown power and supe-
riorities in many applications [48, 46, 28] due to the great
generality of deep features by benefiting from large scale di-
verse training data. (5) JAN (NoAdpt): we set DARN with-
out adaptation as baseline, i.e. training JAN in the source
domain and then directly testing it on the target domain. (6)
United Domains (UD): We train a given model on the union
of source and target training data. Compared with NoAdpt,
more data are exploited for model optimisation so that the
feature generality may be further improved. (7) Fine-Tune

based Transfer (FTT): We first train a given model on the
source training data, then fine-tune the fully-connected lay-
ers on the target data. This is the vanilla transfer learning
method commonly adopted in the literature [58]. Finally,
we have the (8) Multi-Task Curriculum Transfer (MTCT):
Our full model exploiting both multi-task and curriculum
transfer learning. For fair comparison, all methods have ac-
cess to the same training data, learned with their designed
optimisation algorithms, and evaluated on the same test set.

4.4. Comparison to the State-Of-The-Art

We evaluated comparatively MTCT model performance
on clothing attribute recognition. The comparative results
with state-of-the-arts are presented in Table 1. It is evident
that the proposed MTCT achieves the best results under all
evaluation metrics, e.g. outperforming the best alternative
FashionNet by 4.51% in mAPcls. This suggests the supe-
riority of our method in extracting and transferring source
annotation information into the sparsely labelled and chal-
lenging target domain. More specifically, we can draw the
following observations. Firstly, DDAN is the worst per-
former among all competitors, mainly because this model
is less effective in mining rich non-paired source images,
e.g. optimised with cross-domain paired images whilst most
non-paired ones are not selected for model learning. By
jointly modelling data from both domains with additional
pair relations, DARN is able to extract and transfer more
source information. However, it also suffers from the same
problem above as DDAN. FashionNet surpasses DARN by
learning the union of both domains and exploiting a more
powerful basis architecture VGG16 [50] which is stronger
than both the AlexNet [32] used by DDAN and NIN [38]
used by DARN. Despite that, FashionNet is still inferior
to the NIN based MTCT model due to the former’s higher
model overfitting risk caused by much more parameters re-
quired learning (135 million of FashionNet vs. 57 million
of MTCT parameters required fine-tuning in model learn-
ing) and the ignorance of domain discrepancy in learning
strategy (end-to-end vs. curriculum staged learning).

4.5. Effects of Multi-Task and Transfer Learning

We evaluated the effectiveness of the multi-task and cur-
riculum transfer learning components in the MTCT model
(Table 2). By explicitly learning individual attribute repre-
sentations, the MTN(NoAdpt) without curriculum transfer
improves model generalisation over JAN(NoAdpt) (DARN
[27] without transfer learning). This demonstrates the bene-



Table 2. Evaluating the effects of multi-task and curriculum transfer learning in MTCT.
Method Category Button Colour Length Pattern Shape Collar Slv-Len Slv-Shp mAPcls mPins mRins

JAN(NoAdpt) [27] 34.08 35.87 43.08 44.21 63.76 43.40 40.50 78.13 71.08 50.46 50.39 58.40
MTN(NoAdpt) 35.77 33.77 44.13 44.76 65.26 45.75 40.85 79.76 72.40 51.38 51.82 60.00

MTN(UD) 54.10 40.65 57.88 51.35 67.80 49.79 49.09 83.61 74.60 58.76 60.16 70.00
MTN(FTT) 61.92 42.65 65.43 55.16 70.06 49.00 50.55 85.54 76.04 61.82 62.53 72.76

MTCT 65.96 43.57 66.86 58.27 70.55 51.40 58.97 86.05 77.54 64.35 64.97 75.66
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Figure 3. A qualitative evaluation of our proposed MTCT method on unconstrained consumer images.
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Figure 4. Failure cases: Incorrect attribute predictions (green) are
shown against the corresponding ground truth (red) underneath.

fit of multi-task learning. When additional 36, 769 labelled
target images (vs. 245, 467 source images) were utilised,
MTN(UD) improves further attribute recognition accuracy
over MTN(NoAdpt). This supports the general observation
that learning from target domain data is beneficial when
there is a large discrepancy between the source and tar-
get domains. Given a vanilla fine-tuning transfer learning
MTN(FTT), model performance is further boosted, which
confirms similar findings elsewhere [4, 2]. MTN(FTT) is a
special case of Curriculum Learning in that the initialisation
by source data is an easier learning task whilst fine-tuning
on target data is a harder task, but without learning cross-
domain pairing information.
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Figure 5. Model robustness vs. target training data size.

Our MTCT model is a fusion of DARN and vanilla trans-
fer learning MTN(FTT) with unique advantages over both:
(1) Similar to DARN, MTCT exploits cross-domain pairing
information in model optimisation but with a lot less pa-
rameters (57 million vs. 73 million of DARN); also differ-
ent from DARN in that MTCT adopts curriculum learning
rather than end-to-end, first learning from easier attribute la-
bels (source) then from harder pairing relations. (2) Similar
to FTT, MTCT is optimised in a staged process, first learn-
ing easier source data then harder target data, plus harder
still pairing data. Therefore, MTCT model explores two
curriculum learning criteria, one on training data selection
and another on supervision label difficulties. Qualitative
evaluation is shown in Figure 3, where success cases show-
ing the robustness of MTCT against cluttered background
and complex viewing conditions. Figure 4 shows some fail-
ure cases under extreme poses and very challenging back-
ground ambiguities.



Table 3. Comparing curriculum vs. end-to-end transfer learning using the MTN network.
Method Category Button Colour Length Pattern Shape Collar Slv-Len Slv-Shp mAPcls mPins mRins

End-to-End 61.11 41.39 63.66 56.29 70.02 51.39 55.45 84.69 76.69 62.30 63.00 73.37
Curriculum 65.96 43.57 66.86 58.27 70.55 51.40 58.97 86.05 77.54 64.35 64.97 75.66

Table 4. Comparing different loss functions in the MTCT network.
Method Category Button Colour Length Pattern Shape Collar Slv-Len Slv-Shp mAPcls mPins mRins

triplet ranking [27] 63.57 42.01 63.80 56.16 69.37 50.58 57.03 85.24 75.60 62.60 63.45 73.83

t-STE [53] 65.96 43.57 66.86 58.27 70.55 51.40 58.97 86.05 77.54 64.35 64.97 75.66

4.6. Effects of Cross-Domain Training Data Size

We evaluated the robustness of different models against
target training data size variation. For this evaluation,
we reduced the number of target training images to
{75%, 50%, 10%} of the full training set and show respec-
tive results in Figure 5. It is evident that the proposed
MTCT outperforms all competitors over different sparse-
ness ratios. This demonstrates the advantages and scalabil-
ity of our approach over alternatives models. Specifically,
JAN(NoAdpt) utilises no target data so remains at just above
50% mAP at a constant (the green dot on the right hand
side above 0%). DDAN stays at a low 42− 45% with little
change, suggesting that transfer learning is difficult with-
out exploiting cross-domain pair relations. As expected, the
three models which have benefited from cross-domain pair-
ing information all degrade with fewer training data avail-
able. Importantly, the MTCT model surpasses significantly
other two models with 8.4% relative improvement over the
FashionNet, given only 3, 676 labelled target images.

4.7. Further Analysis

(1) Automatic Clothing Detection. We evaluated the per-
formance of our customised Faster R-CNN clothing de-
tector. For this evaluation, we manually labelled clothing
boxes on 400 images from X-Domain, including 200 shop
and 200 consumer images. We set the correct detection In-
tersection over Union (IoU) threshold to 0.6. Our detector
achieves 90.8% recall on shop images and 71.2% on in-the-
wild images. This provides a more realistic testing platform
for attribute recognition. Qualitative examples of cloth-
ing attribute detection and recognition, failure cases, and
cross-domain clothing matching by attributes (red boxes)
are shown in Figures 3, 4 and 6 respectively.

(2) Triplet Ranking vs. t-STE loss. Table 4 compares the
performance of t-STE loss [53] against the common triplet
ranking loss [27] in our MTCT network, showing that the
t-STE loss function yields mAP 1.75% performance advan-
tage over the commonly used triplet ranking loss.

(3) Curriculum vs. End-to-End Transfer Learning. We
evaluated the effectiveness of our CT method by comparing
it with the popular End-to-End counterpart, both using our
MTN architecture. This End-to-End baseline can be consid-
ered as an improved DARN model, i.e. replacing the JAN

Figure 6. Examples of attribute based automatic clothing detec-
tion and matching in-the-wild (bottom) given clean shop/model
samples (top), or vice versa. Each pair of images in each column
is of the same clothing item matched from different domains likely
on different people.

component of DARN with MTN. The results are shown in
Table 3. It is clear that the proposed curriculum transfer is
superior to end-to-end transfer learning, an improvement of
2.05% in mAPcls, suggesting that staged learning can better
regularise deep model optimisation towards more discrimi-
native local minima in the parameter space.

5. Conclusion
In this work, we formulated a Multi-Task Curriculum

Transfer (MTCT) deep learning method for modelling fine-
grained clothing attributes. We demonstrated its effective-
ness in attribute recognition given unconstrained images
taken from-the-wild (street views). This MTCT model
(with 79.4 million parameters) outperforms the state-of-the-
art FashionNet (with 135 million parameters) by 4.51% in
mAPcls on the X-Domain benchmark. The proposed MTCT
model is designed to optimise information transfer learn-
ing given large quantities of labelled information in a clean
source domain and small sized labelled data in a noisy tar-
get domain in-the-wild. Specifically, MTCT exploits both
a multi-task attribute learning deep network (MTN) and
a staged curriculum learning strategy to maximise model
learning. Moreover, we show the advantages of the MTCT
over alternative models given decreased sizes of labelled
target domain data, surpassing the FashionNet in perfor-
mance on the X-Domain benchmark by ∼8% when only
<4, 000 target training images are available.
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