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Abstract— While clustering is wusually an unsupervised
operation, there are circumstances where we have access to prior
belief that pairs of samples should (or should not) be assigned
with the same cluster. Constrained clustering aims to exploit this
prior belief as constraint (or weak supervision) to influence the
cluster formation so as to obtain a data structure more closely
resembling human perception. Two important issues remain
open: 1) how to exploit sparse constraints effectively and 2) how
to handle ill-conditioned/noisy constraints generated by imperfect
oracles. In this paper, we present a novel pairwise similarity
measure framework to address the above issues. Specifically,
in contrast to existing constrained clustering approaches that
blindly rely on all features for constraint propagation, our
approach searches for neighborhoods driven by discriminative
feature selection for more effective constraint diffusion. Crucially,
we formulate a novel approach to handling the noisy constraint
problem, which has been unrealistically ignored in the con-
strained clustering literature. Extensive comparative results show
that our method is superior to the state-of-the-art constrained
clustering approaches and can generally benefit existing pairwise
similarity-based data clustering algorithms, such as spectral
clustering and affinity propagation.

Index Terms— Affinity propagation, constrained -clustering,
constraint propagation, feature selection, imperfect oracles,
noisy constraints, similarity/distance measure, spectral cluster-
ing (SPClust).

I. INTRODUCTION

AIRWISE similarity-based clustering algorithms, such as

spectral clustering (SPClust) [1]-[4], or affinity prop-
agation [5], search for coherent data clusters based on
(dis)similarity relationship between data samples. In this
paper, we consider the problem of pairwise similarity-
based constrained clustering given constraints derived from
human/oracles. The constraint is often available in a small
quantity, and expressed in the form of pairwise link, namely,
must-link—a pair of samples must be in the same clus-
ter, and cannot-link—a pair of samples belong to different
clusters. The objective is to exploit this small amount of
supervision effectively to help revealing the semantic data
partitions/groups that capture consistent concepts as perceived
by human.

Constrained clustering has been extensively studied in the
past and it remains an active research area [6]-[8]. Though
great strides have been made in this field, two important and
nontrivial questions remain open as detailed below.
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A. Sparse Constraint Propagation

While constraints can be readily transformed into pairwise
similarity measures, e.g., assign 1 to the similarity between
two must-linked samples, and O to that between two cannot-
linked samples [9], samples labeled with link preference are
typically insufficient since exhaustive pairwise labeling is labo-
rious. As a result, a limited number of constraints are usually
employed together with data features to positively affect the
similarity measures over unconstrained sample pairs so that
the yielded similarities are closer to the intrinsic semantic
structures. Such a similarity distortion/adaptation process is
often known as constraint propagation [7], [8].

Effective constraint propagation relies on robust identi-
fication of unlabelled nearest neighbors (NNs) around the
labeled samples in the feature space. Often, the NN search
is susceptible to noisy or ambiguous features, especially
so on image and video datasets. Trusting all the avail-
able features blindly for NN search (as what most existing
constrained clustering approaches [6]-[8] did) is likely to
result in suboptimal constraint diffusion. It is challenging
to determine how to propagate their influence effectively to
neighboring unlabelled points. In particular, it is nontrivial
to reliably identify the neighboring unlabelled points for
propagation.

B. Noisy Constraints From Imperfect Oracles

Human annotators (oracles) may provide invalid/mistaken
constraints. For instance, a portion of the must-links are
actually cannot-links and vice versa. For example, annotations
or constraints obtained from online crowdsourcing services,
e.g., Amazon Mechanical Turk [10], are very likely to contain
errors or noises due to data ambiguity, unintentional
human mistakes, or even intentional errors by malicious
workers [10], [11]. Learning such constraints blindly may
result in sub-optimal cluster formation. Most existing methods
make an unrealistic assumption that constraints are acquired
from perfect oracles and thus they are noise-free. It is
nontrivial to quantify and determine which constraints are
noisy prior to clustering.

To address the above issues, we formulate a novel COn-
straint Propagation Random Forest (COP-RF), capable of not
only effectively propagating sparse pairwise constraints, but
also dealing with noisy constraints produced by imperfect
oracles. The COP-RF is flexible in that it generates an affinity
matrix that encodes the constraint information for existing
SPClust methods [1]-[4], or other pairwise similarity-based
clustering algorithms for constrained clustering.

More precisely, the proposed model allows effective sparse
constraint propagation through using the NN samples that are
found in discriminative feature subspaces, rather than those
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(a) Ground Truth (b) Spectral Clustering (c) Our Approach

Fig. 1. (a) Ground-truth cluster formation, with invalid pairwise constraints
highlighted in light red; must- and cannot-links are represented by solid and
dashed lines, respectively. (b) Clustering result obtained using unsupervised
clustering. (c) Clustering result obtained using our method.

that found considering the whole feature space, which can
be suboptimal due to noisy and ambiguous features. This is
made possible by introducing a new objective/split function
into COP-RF, which searches for discriminative features that
induce the best data subspaces while simultaneously consid-
ering the model parameters that best satisfy the constraints
imposed. To identify and filter noisy constraints generated
from imperfect oracles, we introduce a novel constraint incon-
sistency quantification algorithm based on the outlier detection
mechanism of random forest. Fig. 1 shows an example to illus-
trate how a COP-RF is capable of discovering data partitions
close to the ground truth clusters despite that it is provided
only with sparse and noisy constraints.

The sparse and noisy constraint issues are inextricably
linked but no existing constrained clustering methods, to our
knowledge, address them in a unified framework. This is the
very first study that addresses them jointly. In particular, our
work makes the following contributions.

1) We formulate a novel discriminative-feature driven
approach for effective sparse constraint propagation.
Existing methods fundamentally ignore the role of
feature selection in this problem.

2) We propose a new method to cope with potentially
noisy constraints based on constraint inconsistency
measures, a problem that is largely unaddressed by
existing constrained clustering algorithms.

We evaluate the effectiveness of the proposed approach
by combining it with SPClust [1]. We demonstrate that the
SPClust + COP-RF is superior when compared with the
state-of-the-art constrained SPClust algorithms [8], [9] in
exploiting sparse constraints generated by imperfect oracles.
In addition to SPClust, we show the possibility of using
the proposed approach to benefit affinity propagation [5] for
effective constrained clustering.

II. RELATED WORK

A number of studies suggest that human similarity
judgements are nonmetric [12]-[14]. Incorporating nonmetric
pairwise similarity judgements into clustering has been an
important research problem. There are generally two para-
digms to exploit such judgements as constraints. The first
paradigm is distance metric learning [15]-[19], which learns a
distance metric that respects the constraints, and runs ordinary
clustering algorithms, such as k-means, with distortion defined
using the learned metric. The second paradigm is constrained
clustering, which adapts existing clustering methods, such as
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k-means [6], [20] and SPClust methods [21], [22] to satisfy
the given pairwise constraints. In this paper, we focus on
constrained clustering approach. We now detail related work
to this method.

A. Sparse Constraint Propagation

Studies that perform constrained SPClust in general follow
a procedure that first manipulates the data affinity matrix
with constraints and then performs SPClust. For instance,
Kamvar et al. [9] trivially adjust the elements in an affinity
matrix with 1 and O to respect must-link and cannot-link
constraints, respectively. No constraint propagation is
considered in this method.

The problem of sparse constraint propagation is considered
in [7], [8], [23], and [24]. Lu and Carreira-Perpindn [7]
propose to perform propagation with a Gaussian process.
This method is limited to the two-class problem, although a
heuristic approach for multiclass problems is also discussed.
Li et al [24] formulate the propagation problem as a
semidefinite programming (SDP) optimization problem. The
method is not limited to the two-class problem, but solving
the SDP problem involves an extremely large computational
cost. In [23], the constraint propagation is also formulated
as a constrained optimization problem, but only must-link
constraints can be employed. In contrast to the above methods,
the proposed approach is capable of performing effective
constrained clustering using both available must-links and
cannot-links, while it is not limited to two-class problems.

The state-of-the-art results are achieved by Lu and Ip [8].
They address the propagation problem through manifold
diffusion [25]. The locality-preserving character in learning
a manifold with dominant eigenvectors makes the solution
less susceptible to noise to a certain extent, but the manifold
construction still considers the full feature space, which may
be corrupted by noisy features. We will show in Section IV
that the manifold-based method is not as effective as the
proposed discriminative-feature-driven constraint propagation.
Importantly, the method proposed in [8], as well as those in
[7]1, [23], [24], do not have a mechanism to handle noisy
constraints.

B. Handling Imperfect Oracles

Few constrained clustering studies consider imperfect
oracles whereas most assume perfect constraints available.
Coleman et al. [26] propose a constrained clustering algorithm
capable of dealing with inconsistent constraints. This model
is restricted only to the two-class problem due to the adoption
of 2-correlation clustering idea. On the other hand, some
strategies to measure constraint inconsistency and incoherence
are discussed in [27] and [28]. Nevertheless, no concrete
method is proposed to exploit such metrics for improved
constrained clustering. Beyond constrained clustering, the
problem of imperfect oracles has been explored in active
learning [29]-[32] and online crowdsourcing [10], [33]. Our
work differs significantly from these studies as we are
interested in identifying noisy or inconsistent pairwise
constraints rather than inaccurate class labels.
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In comparison with our earlier version of this paper [34],
in this paper, we provide more comprehensive explanations
and justifications of the proposed approach, a new approach
to filtering noisy constraints, along with more extensive
comparative experiments.

III. CONSTRAINED CLUSTERING WITH
IMPERFECT ORACLES

A. Problem Formulation

Given a set of samples denoted by X = {x;},i =1,..., N,
with N denoting the total number of samples, and
X; = (xi,1,...,X;,q) € F, d the feature dimensionality of the
feature space F C RY the goal of unsupervised clustering is
to assign each sample x; with a cluster label ¢;. In constrained
clustering, additional pairwise constraints are available to
influence the cluster formation. There are two typical types
of pairwise constraints

Must-link : M = {(x;,X;) | ¢; =cj}
Cannot-link : C = {(x;,X;) | ¢; # ¢j}. )

We denote the full constraint set as P = M U C. The
pairwise constraints may arise from pairwise similarity as
perceived by a human annotator (oracle), temporal continuity,
or prior knowledge of the sample class label. Acquiring
pairwise constraints from a human annotator is expensive.
In addition, owing to data ambiguity and human unintentional
mistakes, the pairwise constraints are likely to be incorrect and
inconsistent with the underlying data distribution.

We propose a model that can flexibly generate
constraint-aware affinity matrices, which can be directly
employed as input by existing pairwise similarity-based
clustering algorithms, e.g., SPClust [3] or affinity
propagation [5] for constrained clustering (Fig. 4). Before
detailing our proposed model, we briefly describe the
conventional random forests.

B. Conventional Random Forests

1) Classification Forests: A general form of random forests
is the classification forests. A classification forest [35] is an
ensemble of T, binary decision trees 7(x): F — RX,
with RX = [0, 11X denoting the space of class probability
distribution over the label space £ = {I,..., K}. During
testing, each decision tree yields a posterior distribution
p:(1|x*) for a given unseen sample x* € F, and the output
probability of forest is obtained via averaging

1 Telass

pUlIx*) = > pilix). )
t

Tcass

The final class label [ is obtained as [ = argmax;c» p(/|x*).
2) Tree Training: Decision trees are learned independently
of each other, each with a random training set X' C X,
i.e., bagging [35]. Growing a decision tree involves a recursive
node splitting procedure until some stopping criterion is sat-
isfied, e.g., the number of training samples arriving at a node
is equal to or smaller than a predefined node-size ¢, and leaf
nodes are then formed, and their class probability distributions

Tree training set X'

Partition L\ Node training set S -

The optimal split function | 7 W‘ »
e ot o 4 /P
6 = {‘91 7‘92}
* i . < {
oor-(y ] R AN
1 otherwise. | [IIIJIIIIAL  LALLAAARRARAARRL
Fig. 2. Illustrative example of the training process of a decision tree.

are estimated with the labels of the arrival samples as well.
Obviously, smaller ¢ leads to deeper trees.

The training of each internal (or split) node s is a process
of optimizing a binary split function defined as

0, if xy, < 3)

1, otherwise

h(x, #) = [

this split function is parameterized by two parameters:
1) a feature dimension xy,, with ¥1 € {1,...,d} and
2) a feature threshold ¥, € R. We denote the parameter set
of the split function as # = {1, ¥,}. All arrival samples of
a split node will be channeled to either the left or right child
node according to the output of (3).

The optimal split parameter #* is chosen via

?* = argmax AZg|ass 4)
(€]

i1 My (IS[—1
where © = {1?1}1.:"1y S1=1) represents a parameter set over myy

randomly selected features, with S the sample set arriving
at the node s. The cardinality of a set is given by | - |.
Particularly, multiple candidate data splittings are attempted
on myy random feature-dimensions during the above node
optimization process. Typically, a greedy search strategy is
exploited to identify #*. The information gain AZgss is
formulated as

_ I IR

ST s
where s, [, r refer to a split node and the left and right
child nodes, respectively. The sets of data routed into / and r
are denoted by L and R, and § = L U R denotes the
sample set residing at s. The Z can be computed as either
the entropy or Gini impurity [36]. In this paper, we utilize
the Gini impurity due to its simplicity and efficiency. The
Gini impurity is computed as G = Zi#j pipj, with
pi and p; being the proportion of samples belonging to
the ith and jth categories, respectively. Fig. 2 provides
an illustration of the training procedure of a decision
tree.

3) Clustering Forests: In contrast to classification forests,
clustering forests [37]-[40] require no ground truth label
information during the training phase. A clustering forest
consists of T¢ug binary decision trees. The leaf nodes in
each tree define a spatial partitioning of the training data.
Interestingly, the training of a clustering forest can be per-
formed using the classification forest optimization approach
by adopting the pseudo two-class algorithm [35], [41], [42].

AIC]B.SS = Is (5)
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Fig. 3.  Illustration of performing clustering with a random forest over

a toy dataset. (a) Original toy data samples are labeled as class 1, while
(b) red pseudopoints + are labeled as class 2. (c) Forest performs a two-class
classification on the augmented space. (d) Resulting data partitions on the
original data.

(a) Features of data {X:} Pairwise constraints {M,C}
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(d)
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Fig. 4. Overview of the proposed constrained clustering approach. (a) The
inputs into a constrained clustering model: features of data and pairwise
constraints. (b) The proposed COP-RF model. (c) Performing data clustering
on the derived similarity graph. (d) The obtained cluster formation.

Specifically, we add N pseudosamples X = {xi,..., X4}
[Fig. 3(b)] into the original data space X [Fig. 3(a)], with
Xx; ~ Dist(x;) sampled from certain distribution Dist(x;).
In the proposed model, we adopt the empirical marginal
distributions of the feature variables owing to its favorable
performance [42]. With this data augmentation strategy, the
clustering problem becomes a canonical classification problem
that can be solved by the classification forest training method
as discussed above. The key idea behind this algorithm is
to partition the augmented data space into dense and sparse
regions [41, Fig. 3(c) and (d)].
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C. Our Model: Constraint Propagation Random Forest

To address the issues of sparse and noisy constraints, we for-
mulate a COP-RF, a novel variant of clustering forest (Fig. 4).
We consider using a random forest, particularly a clustering
forest [35], [40], [41], [43] as the basis to derive our new
model for two main reasons.

1) It has been shown that random forest has a close
connection with adaptive k-NN methods, as a forest
model adapts neighborhood shape according to the local
importance of different input variables [44]. This moti-
vates us to exploit the adaptive neighborhood shape' for
effective constraint propagation.

2) The forest model also offers an implicit feature
selection mechanism that allows more accurate
constraint propagation in the provided feature space
by exploiting identified discriminative features during
model training.

The proposed COP-RF differs significantly from the conven-
tional random forests in that the COP-RF is formulated with
a new split function, which considers not only the bottom-up
data feature information gain maximization, but also the joint
satisfaction of top-down pairwise constraints. In what follows,
we first detail the training of COP-RF followed by how
COP-RF performs constraint propagation through discrimina-
tive feature subspaces.

1) Training of COP-RF: The training of a COP-RF involves
independently growing an ensemble of 7, constraint-aware
COP-trees. To train a COP-tree, we iteratively optimize the
split function (3) by finding the optimal ®* including both
the best feature dimension and cut-point to partition the
node training samples S, similar to an ordinary decision
tree (Section III-B). The difference is that the term best or opti-
mal is no longer defined only as to maximizing the bottom-up
feature information gain, but also simultaneously satisfying the
imposed top-down pairwise constraints. More precisely, at the
tth COP-tree, its training set X’ only encompasses a subset of
the full constraint set P

P ={MucC'}cP (6)

where M and C are defined in (1). Instead of directly using the
information gain in (5), we optimize each internal node s in a
COP-tree via enforcing additional conditions on the candidate
data splittings

V(xi,Xj) € M = X;,X; € L (orx;,X; € R),
A(x;,x;) € C' = x; € L & X; € R (or opposite),
where x;,x;j € S, and P’ = M' UC' )

where L and R are data subsets at left child and right
child (5). Owing to the conditions in (7), COP-RF differs
significantly from the conventional information gain
function [35], [41], [43] as the maximization of (5) is
now bounded by the constraint set P’. Specifically, the
optimization routine automatically selects discriminative
features and their optimal cut-point via feature-information-
based gain maximization, while at the same time fulfilling the

IThe neighbors of a data x in forest interpretation are the points that fall
into the same child node.
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guiding conditions imposed by pairwise constraints, leading
to semantically adapted data partitions.

More concretely, a data split in COP-tree can be considered
as a candidate if and only if it respects all involved must-
links, i.e., the constrained two samples by some must-link
have to be grouped together. Moreover, candidate data splits
that fulfill more cannot-links are preferred. The difference
in treating must-links and cannot-links originates from their
distinct inherent properties.

1) Once a particular must-link is violated at some split
node, i.e., the two linked samples are separated apart,
there will be no chance to compensate for agreeing
again with this must-link in the subsequent process.
That means that all must-links have to be fulfilled
anytime.

2) While a cannot-link would be fulfilled forever once it is
respected one time. This property allows us to ignore a
cannot-link temporarily.

In particular, although the learning process prefers data splits
that fulfill more cannot-links, it does not need to forcefully
respect all cannot-links at the current split node. Algorithm 1
summarizes the split function optimization procedure in a
COP-tree.

2) Generating Affinity Matrix by COP-RF: Every individual
COP-tree within a COP-RF partitions the training samples at
its leaves £(x): R? — IL C N, where £ represents a leaf index
and L refers to the set of all leaves in a given tree. For a given
COP-tree, we can compute a tree-level N x N affinity matrix
A" with elements defined as Aj = exp st (%1.%)) where

. 0, if £(x;) =€(x;)

ix: x:) — > ! 7
dist (xi, xj) = [+oo, otherwise ®)
hence, we assign the maximum affinity (affinity = 1,
distance = 0) between points x; and x; if they fall into
the same leaf, and the minimum affinity (affinity = 0,

distance = +00) otherwise. A smooth affinity matrix can be
obtained through averaging all the tree-level affinity matrices

T
1 c
A=— > A" 9)
7 2

Equation (9) is adopted as the ensemble model of COP-RF due
to its advantage of suppressing the noisy tree predictions,
though other alternatives such as the product of tree-level
predictions are possible [45].

3) Discussion: Recall that the data partitions in COP-RF
are required to agree with the imposed pairwise constraints,
which are defined by splitting conditions in (7). From (8),
it is clear that the pairwise similarity matrix induced by
COP-RF is determined by the data partitions formed over
its leaves. Hence, the pairwise similarity matrix induced by
COP-REF indirectly encodes the pairwise constraints defined by
oracles. To summarize, we denote the constraint propagation in
COP-RF by the process chain below: pairwise constraints —
steering data partitions in COP-RF — distorting pairwise
similarity measures. As the data partitioning operation
in COP-RF is driven by the optimal split functions that are

Algorithm 1 Split Function Optimisation in a COP-Tree
Input: At a split node s of a COP-tree t:
- Training samples S arriving at a splitnode s;
- Pairwise constraints: P! = M' U (C/;
Output:
- The best feature cut-point @* and;
- The associated child node partition {L*, R*};
1 Optimisation:
2 Initialise L = R =@ and AZ = 0;
3 maxCLs = 0; /* the max number of respected
cannot-links */
4 for var <— 1 to myy do

5 | Select a feature xy, € {1, ..., d} randomly;

6 | for each possible cut-point of the feature x4 do
7 Split § into a candidate partition {L, R};

8 dec = validate({L, R}, {M',C"} , maxCLs);

9 if dec is true then

10 Compute information gain AT following (7);
11 if AZ> AZ then

12 Update 0%,

13 Update AZ = Af, L= I:, and R = R.
14 end

15 end

16 else

17 | Ignore the current splitting.

18 end

19 | end

20 end

21 if No valid splitting found then

22 | A leaf is formed.

23 end

24 function validate({L, R}, {M, C}, maxCLs)
25 {

26 /* Deal with must-links */

27 V(x;,Xj) €M,

28 if (x; € L and Xx; € R, or vice versa)
29 /* Deal with cannot-links */

30 Count the number x of respected cannot-links;
31 if (x < maxCLs) return false.

32 else maxCLs = «.

33 Otherwise, return true.

34}

return false.

defined on discovered discriminative features (3), the corre-
sponding constraint propagation process takes place naturally
in discriminative feature subspaces.

D. Coping With Imperfect Constraints

Most existing models [6], [8], [9] assume that all the
available pairwise constraints are correct. It is not always
so in reality, e.g., annotations from crowdsourcing are likely
to contain invalid constraints due to data ambiguity or
mistakes by human. The existence of fault constraints can
result in error propagation to neighboring unlabelled points.
To overcome this problem, we formulate a novel method
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to measure the quality of individual constraints by estimat-
ing their inconsistency with the underlying data distribu-
tion, so as to facilitate more reliable constraint propagation
in COP-RF.

Incorrect pairwise constraints are likely to conflict with
the intrinsic data distributions in the feature space. Motivated
by this intuition, we propose a novel approach to estimating
constraint inconsistency measure, as described below.

Specifically, we adopt the outlier detection mechanism
offered by classification random forest [35] to measure the
inconsistency of a given constraint. First, we establish a set
of samples with Z = {zi}yj1 with class labels ¥ = {yi}zl,
where |P| represents the total of constraints. Here, a sample

z is defined as
|Xi_‘xj|}
7 =
[%(Xi4-xj)

where (X;,X;) is a sample pair labelled with either
must-link or cannot-link. We assign z with class y = 0 if
the associated constraint is cannot-link, and y = 1 for must-
link. Equation (10) considers both the relative position and
the absolute locations of (x;,X;). This characteristic enables
the forest learning process to be position-sensitive and thus
achieve data-structure-adaptive transformation [46].

Subsequently, we train a classification random forest [
using Z and Y. The learned F can then used to measure
the inconsistency of each sample z;. A sample is deemed
inconsistent if it is unique against other samples with the same
class label. Formally, based on the affinity A on Z that can be
computed with (8) and (9) using [F, the inconsistency measure
¢ of z; is defined as

(10)

$(zy) = pi—p
p

where

p = median([py, ...
1

2ezi (A, 2)))?

where Z comprises all samples with the same class label as
z; in Z. By (11), we assign a high inconsistency score to z; if
it has low similarity to samples with the same class label, and
a low inconsistency score otherwise. Finally, the inconsistency
measure of each constraint (x;, X;) € P is obtained by simply
taking the ¢ of the corresponding z. An overview of the
proposed constraint inconsistency quantification is depicted
in Algorithm 2.

To remove potentially noisy constraints, we rank all the
pairwise constraints based on their inconsistency score in an
ascending order. Given the rank list, we keep the top % of the
constraints for COP-RF training. In our study, we set f = 50
obtained by cross-validation.

s Pz

pi = (1n

E. Constrained Clustering

After computing the affinity matrix by COP-RF (9), it can
be fed into any pairwise similarity-based clustering methods,
such as SPClust [1]-[4], and affinity propagation [5]. Since
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Algorithm 2 Quantifying Constraint Inconsistency

Input: Pairwise constraints: (X;,X;) € P ={MUC };
Output: Inconsistency scores of individual constraints
(xi,xj) € P;

1 Quantifying process:

2 Generate a new sample set Z = {zi}yjl1 with class labels
Y = {yi}l.zll from constraints P (10);

3 Train a classification forest F with Z and Y,

4 Compute an inconsistency score ¢ for each z or
constraint (11).

the affinity matrix A is constraint-aware, these conventional
clustering models are automatically transformed to conduct
constrained clustering on data. For SPClust, we generate as
model input a k-NN graph from A, a typical local neighbor-
hood graph in the SPClust literature [3]. Following [5], we
perform affinity propagation directly on A. In Section IV, we
will show extensive experiments to demonstrate the effective-
ness of the proposed COP-RF in constrained clustering.

F. Model Complexity Analysis

COP-trees in a COP-RF model can be trained independently
in parallel, as in most of the random forest models. For the
worst case complexity analysis, here we consider a sequential
training mode, i.e., each tree is trained one after another with
a one-core CPU.

The learning complexity of a whole COP-RF can be
examined from its constituent parts. Specifically, it can be
decomposed into tree- and node-levels as: 1) the complexity
of learning a COP-RF is directly determined by individual
COP-tree training costs and 2) similarly, the training time of
a single COP-tree relies on the costs of learning individual
split nodes. Formally, given a COP-tree #, we denote the
set of all the internal nodes by Il; and the sample subset
used for training an internal node s € II, by S, and the
training complexity of s is then myy(|S| — 1)u when a
greedy search algorithm is adopted, with myy the number
of features attempted to partition S during training s, and
u the complexity of conducting one data splitting operation.
As shown in Algorithm 1, the cost of a single data partition
in a COP-tree includes two components: 1) the validation of
constraint satisfaction and 2) the computation of information
gain. Therefore, the overall computational cost of learning a
COP-RF can be estimated as

T, Te
Q=2 > muylSlu=muy Y > ISl

t sell; t sell;

12)

where T, is the number of trees in a COP-RFE. Note that the
value of > cr, |S1 depends on both the training sample size N
and the tree topological structure, so it is difficult to express in
an explicit form if possible. In Section IV-E, we will examine
the actual run time needed for training a COP-RF.
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TABLE I
DETAILS OF DATASETS

Dataset # Clusters | # Features | # Instances
Tonosphere (Iono.) 2 34 351
Iris 3 4 150
Segmentation (Seg. ) 7 19 210
Parkinsons (Park.) 2 22 195
Glass 6 10 214
ERCe 6 2672 600

IV. EVALUATIONS

A. Experimental Settings

1) Evaluation Metrics: We use the widely adopted adjusted
rand index (ARI) [47] as the evaluation metric. ARI measures
the agreement between the cluster results and the ground truth
in a pairwise fashion, with higher values indicating better
clustering quality in the range of [—1, 1]. Throughout all the
experiments, we report the ARI values averaged over 10 trials.
In each trial, we generate a random pairwise constraint set
from the ground truth cluster labels.

2) Implementation Details: The number of trees, T, in a
COP-RF is set to 1000. In general, we found that better results
can be achieved by adding more trees, in line with the obser-
vation in [45]. Each X' is obtained by performing N times
of random selection with replacement from the augmented
data space of 2 x N samples (Section III-B). The depth of
each COP-tree is governed by either constraint satisfaction,
i.e., a node will stop growing if during any attempted data
partitioning constraint validation fails (see Algorithm 1), or the
size of a node equals to 1 (i.e., ¢ = 1). We set myy (4) to Jd
with d the feature dimensionality of the input data and employ
a linear data separation [45] as the split function (3). More
complex split functions, e.g., quadratic functions or support
vector machine, can be adopted at a higher computational cost.
We set k =~ N/10 for the k-NN graph construction in the
constrained SPClust experiments.

B. Evaluation on Spectral Clustering

Datasets: To evaluate the effectiveness of our method in
coping with data of varying numbers of dimensions and
clusters, we select five diverse UC Irvine machine learning
repository (UCI) benchmark datasets [48], which have been
widely employed to evaluate clustering and classification tech-
niques. We also collect an intrinsically noisy video dataset
from a publicly available web-camera deployed in a univer-
sity’s educational resource center (ERCe). The video dataset
is challenging as it contains a wide range of physical events
characterized by large changes in the environmental setup,
participants, and crowdedness, as well as intricate activity
patterns. It also potentially contains a large amount of noise in
its high-dimensional feature space. The dataset consists of 600
video clips with six possible clusters of events, namely, student
orientation, cleaning, career fair, gun forum, group studying,
and scholarship competition (see Fig. 5 for example images).
The details of all datasets are summarized in Table 1.

Fig. 5. Example images from the ERCe video dataset. It contains six events
including (a) student orientation, (b) cleaning, (c) career fair, (d) group study,
(e) gun forum, and (f) scholarship competition.

Features: For the UCI datasets, we use the original
features provided. As for the ERCe video data, we segment
a long video into nonoverlapping clips (each consisting of
100 frames), from which a number of visual features are
then extracted, including color features (red—green—blue and
hue—saturation—value), local texture features [49], optical flow,
image features GISTification (GIST) [50], and person detec-
tions [51]. The resulting 2672-D feature vectors of video clips
may contain a large number of less informative dimensions;
we perform PCA on them and the first 30 PCA components
are used as the final representation. All raw features are scaled
to the range of [—1, 1].

Baselines: For comparison, we present the results of the
baselines? as follows.

1) SPClust [1]: The conventional SPClust algorithm
without exploiting pairwise constraints.

2) Constraint Propagation k-Means (COP-Kmeans) [6]:
A popular constrained clustering method based on
k-means. The algorithm attempts to satisfy all pairwise
constraints during the iterative refinement of clusters.

3) Spectral Learning [9]: A constrained SPClust method
without constraint propagation. It extends SPClust by
trivially adjusting the elements in a data affinity matrix
with 1 and O to satisfy must-link and cannot-link con-
straints, respectively.

4) E?CP [8]: A state-of-the-art constrained SPClust
approach, in which constraint propagation is achieved
by manifold diffusion [25]. We use the original code
released by [8], with parameter setting as suggested by
the paper, i.e., we set the propagation trade-off parameter
as 0.8.

5) RF + E’CP: We modify exhaustive and efficient
constraint propagation (E*CP) [8], i.e., instead of
generating the data affinity matrix with Euclidean-
based measure, we use a conventional clustering forest
(equivalent to a COP-RF without constraints imposed
and noisy constraint filtering mechanism) to generate
the affinity matrix. The constraint propagation is then
performed using the original E 2CP-based manifold dif-

2We experimented the constrained clustering method in [26] which turns
out to produce the worst performance across all datasets, and thus ignored in
our comparison.
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Fig. 6.  Comparison of affinity matrices by different methods, given a
varying number (0.1~0.5%) of perfect pairwise constraints. (a) Ionosphere.
(b) Parkinson’s. (c) Glass.

fusion. This allows E2CP to enjoy a limited capability
of feature selection using a random forest model.

We carried out comparative experiments to: 1) evaluate
the effectiveness of different clustering methods in exploiting
sparse but perfect pairwise constraints (Section IV-B1) and
2) compare their clustering performances in the case of
having imperfect oracles to provide ill-conditioned pairwise
constraints (Section 1V-B2).

1) Evaluation of Sparse Constraint Propagation: In this
experiment, we assume perfect oracles and thus all the
pairwise constraints agree with the ground truth cluster labels.
First, we examined the data affinity matrix after employ-
ing the available constraints, which may reflect how effec-
tive a constrained clustering method is. Fig. 6 shows some
examples of affinity matrices produced by SL, E>CP,
RF + E2CP, and COP-RF, respectively. COP-Kmeans is
excluded since it is not a spectral method. It can be observed
that COP-RF produces affinity matrices with a more distinct
block structure in comparison with its competitors in the
most cases. Moreover, the block structure becomes clearer
when more pairwise constraints are considered. The results
demonstrate the superiority of the proposed approach in prop-
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Fig. 7. ARI comparison of clustering performance between different methods
given a varying number of perfect pairwise constraints. (a) Ionosphere.
(b) Iris. (c) Segmentation. (d) Parkinson’s. (e) Glass. (f) ERCe.

agating sparse pairwise constraints, leading to more compact
and separable clusters.

Fig. 7 reports the ARI curves of different methods along
with varying numbers of pairwise constraints (in the range
0.1~0.5% of total constraints N(N — 1)/2, where N is the
number of data samples). The overall performance of various
methods can be quantified by the area under the ARI curve
and the results are reported in Table II. It is evident from the
results (Fig. 7 and Table II) that on most datasets, the proposed
COP-RF outperforms other baselines, by as much as >400%
against COP-Kmeans and >40% against the state-of-the-art
E’CP in averaged area under the ARI curve. This is in
line with our previous observations on the affinity matrices
(Fig. 6). Unlike E2CP that relies on the conventional
Euclidean-based affinity matrix that considers all features
for constraint propagation, COP-RF propagate constraints via
discriminative subspaces (Section III-C), leading to its superior
clustering results.

We now examine and discuss the performance of other
baselines. The poorest results are given by COP-Kmeans on
majority datasets, beyond which some incomplete curves are
observed in Fig. 7 as the model fails to converge (early
termination without a solution) as more constraints are intro-
duced into the model. On the contrary, COP-RF is empirically
more stable than COP-Kmeans, as COP-RF casts the difficult
constraint optimization task into smaller sub-problems to be
addressed by individual trees. This characteristic is reflected
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TABLE II
COMPARING DIFFERENT METHODS BY THE AREA UNDER THE ARI CURVE.
PERFECT ORACLES ARE ASSUMED. HIGHER IS BETTER

Dataset SPClust [1] | COP-Kmeans [6] | SL [9] | E?CP [8] [ RF+E?CP [ COP-RF
Ionosphere 0.490 0.225 0.063 0.176 3.120 2.979
Iris 3.273 1.632 3.499 3.516 3.265 3.385
Segmentation 1.943 0.499 1.973 1.989 2.266 2.239
Parkinsons 0.677 0.114 0.811 0.787 1.082 1.403
Glass 1.121 0.394 1.162 1.210 1.602 2.015
ERCe 2.647 0.292 3.681 3.447 3.840 3.947
Average 1.692 0.526 1.865 1.854 2.529 2.661
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varying ratios (5~30%) of noisy constraints are provided. (a) COP-RF over
SPClust [1]. (b) COP-RF over COP-Kmeans [6]. (¢c) COP-RF over SL [9].
(d) COP-RF over E2CP [8]. (e) COP-RF over RF + E2CP.

in (6), where each tree in a COP-RF only needs to consider a
subset of constraints P! C P.

SPClust’s performance is surprisingly better than
COP-Kmeans although it does not utilize any pairwise
constraint. This may be because of: 1) the fact that in
comparison with the conventional k-means, SPClust is less
sensitive to noise as it partitions data in a low-dimensional
spectral domain [3] and 2) the limited ability of COP-Kmeans
in exploiting pairwise constraints. SL performs slightly better
than SPClust through switching the pairwise affinity value in
accordance with must-link and cannot-link constraints. Due
to the lack of constraint propagation, SL is less effective in
exploiting limited supervision information when compared
with propagation-based models.

Better results are obtained by constraint propagation-
based E2CP. Nevertheless, the state-of-the-art E2CP is inferior

Fig. 9. ARI comparison of clustering performance between different methods,
given a fixed (15%) ratio of invalid constraints. (a) Ionosphere. (b) Iris.
(c) Segmentation. (d) Parkinson’s. (e) Glass. (f) ERCe.

to the proposed COP-RE, since its manifold construction still
considers the full feature space, which may be corrupted
by noisy features. We observe in some cases, such as the
challenging ERCe dataset, the performance of E>CP is worse
than that of the naive SL method that comes without constraint
propagation. This result suggests that propagation could be
harmful when the feature space is noisy. The variant modified
by us, i.e., RF + E2CP, employs a conventional clustering
forest [41], [43] to generate the data affinity matrix. This
allows E2CP to take advantage of a limited capability of
forest-based feature selection, and better results are obtained
compared with the pure E>CP. Nevertheless, RF + E2CPs
performance is generally poorer than COP-RFs (Table II). This
is because the feature selection of the ordinary forest model
is less effective than that of COP-RF, which jointly considers



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10
1 1
0.6 D
I~ =05
0.4 2 <
< i il:fll’us' X E{];PF:;: + -©- SPClust COP-Kmeans
0.2 S - %= E*cp — RF+E*CP
— % ~ M S S SL - COP-RF
0 & : 0
5 10 15 20 25 30 15 20 25 30
Percentage of invalid constraints (%) Percentage of invalid constraints (%)
(@ (b)
1
-©- SPClust COP-Kmeans -~ SPClust COP—Kmeans
% EXCp —+ RF+E*CP > E2cp —— RF+EXCP
SL -O- COP-RF SL -4~ COP-RF

15 20 25 30 5 100 15 20 2 30
Percentage of invalid constraints (%) Percentage of invalid constraints (%)
(© (@
K
-©- SPClust COP-Kmeans
¢ E’cp — RF+E’CP
SL -~ COP-RF

4
g 0.5, o spclust  —+ RF+F.\'

2 0.5 . 2cp
< %ﬁ M
———— 2 B

0 ] 0
5 10 15 20 25 30 5 100 15 20 25 30
Percentage of invalid constraints (%) Percentage of invalid constraints (%)

(e ®

Fig. 10.  ARI comparison of clustering performance between different
constraint propagation methods given varying ratios of invalid constraints.
(a) Ionosphere. (b) Iris. (c) Segmentation. (d) Parkinson’s. (e) Glass. (f) ERCe.

feature-based information gain maximization and constraint
satisfaction.

To further highlight the superiority of COP-RF, we show
in Fig. 8 the improvement of area under the ARI curve
achieved by COP-RF relative to other methods (dark bars).
Clearly, while COP-RF rarely performs noticeably worse than
the others, the potential improvement is large.

2) Evaluation of Propagating Noisy Constraints: In this
experiment, we assume imperfect oracles and thus pairwise
constraints are noisy. We conduct two sets of comparative
experiments.

1) We deliberately introduced a fixed ratio (15%) of
random invalid constraints into the perfect constraint
sets as used in the previous experiment (Section IV-B1).
This is to simulate the annotation behavior of imperfect
oracles for the comparison of our approach with existing
models.

2) Given a set of random constraints sized 0.3% of the
total constraints, we varied the quantity of random
noisy constraints, e.g., from 5% to 30%. This allows
us to further compare the robustness of different models
against mistaken pairwise constraints.

In both experiments, we repeat the same experimental
protocol, as discussed in Section IV-B1.

a) Fixed ratio of noisy constraints: In this evaluation,
we examined the performance of different models when 15%
of noisy constraints are included in the given constraint sets.
The performance comparison is reported in Fig. 9 and Table III
and the relative improvement in Fig. 8. It is observed from
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Fig. 11.  ARI relative improvement of COP-RF over baseline constraint
propagation models given varying ratios of noisy constraints in 0.3% out of
the full constraints. Higher is better. (a) Ionosphere. (b) Iris. (c) Segmentation.
(d) Parkinson’s. (e) Glass. (f) ERCe.

Table III that in spite of the imperfect oracle assumption,
COP-RF again achieves better results than other constrained
clustering models on most datasets as well as the best aver-
age clustering performance across datasets, e.g., a >300%
increase against COP-Kmeans and a >70% increase against
E2CP. Furthermore, Fig. 8 also shows that COP-RF maintains
encouraging performance given noisy constraints, in some
cases such as the challenging ERCe video dataset even larger
improvements are obtained over E2CP and other models,
compared with the perfect constraint case.

b) Varying ratios of noisy constraints: Noisy constraints
bring a negative impact on the clustering results, as shown in
the above experiment. We wish to investigate how constrained
clustering models would perform under different ratios of
noisy constraints. To this end, we evaluated the robustness
of compared models against different amounts of noisy
constraints involved in sets of 0.3% out of the full pairwise
constraints. Fig. 10 and Table IV show that COP-RF once
again outperforms the competitor models on most datasets.
As shown in Fig. 11, the performance improvement of
COP-RF over constraint propagation baselines maintains
over varying degrees of noisy constraints in most cases.
Specifically, COP-RFs average relative improvements over
E2CP and RF + E2CP across all datasets are 63% and 2%
given 5% noisy constraints, while 48% and 8% given 30%
noise, respectively.
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TABLE III
COMPARING DIFFERENT METHODS BY THE AREA UNDER THE ARI CURVE. A FIXED RATIO (15%)
OF INVALID PAIRWISE CONSTRAINTS IS INVOLVED. HIGHER IS BETTER

Dataset SPClust [1] | COP-Kmeans [6] | SL [9] | E?CP [8] | RF+E?CP | COP-RF
Tonosphere 0.490 0.146 0.192 0.276 2.851 2.606
Iris 3.273 1.590 3.454 3.416 2.988 3.067
Segmentation 1.943 0.433 1.877 1.913 2.039 2.109
Parkinsons 0.677 0.067 0.786 0.780 0.910 1.102
Glass 1.121 0.679 1.114 1.159 1.244 1.734
ERCe 2.647 0.328 0.368 0.832 3.119 3.705
Average 1.692 0.540 1.299 1.396 2.192 2.387

TABLE IV

COMPARING DIFFERENT METHODS BY THE AREA UNDER THE ARI CURVE. VARYING RATIOS (5~30%)
OF INVALID PAIRWISE CONSTRAINTS ARE INVOLVED. HIGHER IS BETTER

Dataset SPClust [1] | COP-Kmeans [6] | SL [9] | E?CP [8] | RF+E?CP | COP-RF
Tonosphere 0.536 0.000 0.253 0.314 3.172 3.399
Iris 4.341 2.507 4.339 4.352 3.659 3.684
Segmentation 2.462 0.514 2.348 2.336 2.481 2.605
Parkinsons 0.979 0.108 0.957 0.948 0.975 1.338
Glass 1.421 0.343 1.380 1.477 1.558 2.020
ERCe 3.160 0.000 0.159 1.320 3.682 4.331
Average 2.150 0.579 1.573 1.791 2.588 2.896
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Fig. 12. Example face images from 10 different identities. Two distinct individuals are included in each row, each with 10 face images.
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Fig. 13.  Comparison of different methods on clustering face images with

affinity propagation.

C. Evaluation of Affinity Propagation

To demonstrate the generalization of our COP-RF model,
we show its effectiveness on affinity propagation, an exemplar-
location-based clustering algorithm [5]. Similarly, ARI is used
as performance evaluation metrics.

Dataset: We select the same face image set as [5], which is
extracted from the Olivetti database. Particularly, this dataset

3Average squared error (ASE) is adopted in [5] as evaluation metric. This
metric requires all comparative methods to produce affinity matrices based
on a particular type of similarity/distance function. In our experiments ASE
is not applicable since distinct affinity matrices are generated by different
comparative methods.

includes a total of 900 gray images with a resolution of 50 x 50
from 10 different persons, each with 90 images obtained by
the Gaussian smoothing and rotation/scaling transformation.
It is challenging to distinguish these faces (Fig. 12) due
to large variations in lighting, pose, expression, and facial
details (glasses/no glasses). The features of each image are
normalized pixel values with mean 0 and variance 0.1.

Baselines: Typically, negative squared Euclidean distance
is used to measure the data similarity. Here, we compare
COP-RF against the following.

1) Eucl: The Euclidean metric.

2) Eucl + Links: We encode the information of pair-
wise constraints into the Euclidean-metric-based affinity
matrix by making the similarity between cannot-linked
pairs minimal and the similarity between must-linked
pairs maximal, similar to [9].

3) Random Forest (RF): The conventional clustering ran-
dom forest [35] so that the pairwise similarity measures
can benefit from feature selection.

4) RF + Links: Analogous to Eucl4Links, but with the
affinity matrix generated by the clustering forest.

In this experiment, we use the perfect pairwise links

(0.1~0.5%) as constraints, similar to Section IV-B1. The
results are reported in Fig. 13. It is evident that the feature
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Fig. 14. Quantifying constraint inconsistency using the proposed algorithm
(Section III-D). High values suggest large probabilities of being invalid
constraints. (a) Ionosphere. (b) Glass.

selection-based similarity (i.e., RF) is favorable over the
Euclidean metric that considers the whole feature spaces.
This observation is consistent with the earlier findings
in Section IV-B. Manipulating affinity matrix naively using
sparse constraints helps little in performance, primarily due to
the lack of constraint propagation. The superiority of COP-RF
over all the baselines justifies the effectiveness of the proposed
constraint propagation model in exploiting constraints for
facilitating cluster formation. In addition, obviously larger per-
formance margins are acquired when one increases the amount
of pairwise constraints, further suggesting the effectiveness of
constraint propagation by the proposed COP-RF model.

D. Evaluation of Constraint Inconsistency Measure

The superior performance of COP-RF in handling imperfect
oracles can be better explained by examining more closely
the capability of our constraint inconsistency quantification
algorithm (11). Fig. 14 shows the inconsistency mea-
sures of individual pairwise constraints on Ionosphere and
Glass datasets. It is evident that the median inconsistency
scores induced by invalid/noisy constraints are much higher
than those by valid ones.

E. Computational Cost

In this section, we report the computational complexity of
our COP-RF model. Time is measured on a Linux machine
of Intel quad-core CPU at 3.30 GHz and 8.0 GB with
C++ implementation of COP-RF. Note that only one core is
utilized during the model training procedure. Time analysis is
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conducted on the ERCe dataset using the same experimental
setting as stated in Section IV-B. A total of 60 repetitions
were performed, each utilizing 0.3% out of the full constraints
with varying (5%~30%) amounts of invalid ones. On average,
training a COP-RF takes 213 s. Note that the above process
can be conducted in parallel in a cluster of machines to speed
up the model training.

V. CONCLUSION

We have presented a novel constrained clustering framework
to: 1) propagate sparse pairwise constraints effectively and
2) handle noisy constraints generated by imperfect oracles.
There has been little work that considers these two closely
related problems jointly. The proposed COP-RF model is
novel in that it propagates constraints more effectively via
discriminative feature subspaces. This is in contrast to existing
methods that perform propagation considering the whole
feature space, which may be corrupted by noisy features.
Effective propagation regardless of the constraint quality
could lead to poor clustering results. Our work addresses
this crucial issue by formulating a new algorithm to quantify
the inconsistency of constraints and effectively perform
selective constraint propagation. The model is flexible in that
it generates a constraint-aware affinity matrix that can be used
by the existing pairwise similarity-measure-based clustering
methods for readily performing constrained data clustering,
e.g., SPClust and affinity propagation. Experimental results
demonstrated the effectiveness and advantages of the
proposed approach over the state-of-the-art methods. Future
work includes the investigation of active constraint selection
with the proposed model.
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