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a b s t r a c t 

Existing logo detection methods usually consider a small number of logo classes, limited images per class 

and assume fine-gained object bounding box annotations. This limits their scalability to real-world dy- 

namic applications. In this work, we tackle these challenges by exploring a web data learning principle 

without the need for exhaustive manual labelling. Specifically, we propose a novel incremental learning 

approach, called Scalable Logo Self-co-Learning (SL 2 ), capable of automatically self-discovering informa- 

tive training images from noisy web data for progressively improving model capability in a cross-model 

co-learning manner. Moreover, we introduce a very large (2,190,757 images of 194 logo classes) logo 

dataset “WebLogo-2M” by designing an automatic data collection and processing method. Extensive com- 

parative evaluations demonstrate the superiority of SL 2 over the state-of-the-art strongly and weakly su- 

pervised detection models and contemporary web data learning approaches. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Automated logo detection from unconstrained “in-the-wild” im-

ges benefits a wide range of applications, document image logo

etrieval [1] and vehicle logo recognition in intelligent transporta-

ion [2] . This is inherently a challenging task due to the presence

f many logos in diverse context with uncontrolled illumination,

arying scales, occlusion, low-resolution, and background clutter

 Fig. 1 ). 

Existing logo detection methods typically consider a small num-

er of logo classes with the need for large scale labelled training

ata at the object instance level [3] . Whilst this controlled setting

llows for a straightforward adoption of the state-of-the-art object

etection models such as Faster R-CNN [4] and YOLO [5] , it is non-

calable to real-world logo detection applications when a much

arger number of logo classes are targeted. This is due to two rea-

ons: (1) Extremely high cost for constructing large scale dataset

ith exhaustive logo instance bounding box labelling [6] ; (2) Lack-

ng the incremental model learning ability to progressively update

nd expand the model to increasingly more training data without

ne-grained labelling. Existing models are mostly one-pass trained

ith limited generalisation to new classes. 

In this work, we consider the problem of scalable logo detec-

ion learning in a very large collection of unconstrained images
∗ Corresponding author. 
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ithout exhaustive fine-grained instance level labelling. Given that

he existing datasets mostly have small numbers of logo classes,

ne possible strategy is to learn from a small set of labelled train-

ng classes and then adopt the model to other novel (test) logo

lasses, that is, Zero-Shot Learning (ZSL) [16] . This class-to-class

odel transfer and generalisation in ZSL is achieved by knowledge

haring through an intermediate semantic representation for all

lasses, such as mid-level attributes [16] or a class name embed-

ing space [17] . However, they are limited as many logos do not

hare attributes or other forms of semantic representations due to

heir unique A lack of large scale logo datasets ( Table 1 ), in both

lass size and per-class image number severely limits the scala-

ility of current logo detection models. This study explores a web

ata learning principle for both large scale dataset construction

nd incremental logo detection model learning without exhaustive

anual annotation on increasing logo data. The aim is to scale up

he limited logo detection capacity to large dynamic real-world ap-

lications by exploiting the rich multimedia data from the Internet.

e call this setting scalable logo detection . 

The contributions of this work are three-fold: (1) We inves-

igate the scalable logo detection problem, characterised by mod-

lling a large quantity of logo classes without exhaustive bound-

ng box annotation. This is different from the existing methods

ypically considering only a small number of logo classes with

he need for manual labelling. This scalability problem is under-

tudied in the literature. (2) We propose a novel incremental learn-

ng approach to scalable logo detection by exploiting multi-class
etection with context enhancement. We call this method Scalable 

https://doi.org/10.1016/j.patcog.2019.107003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2019.107003&domain=pdf
mailto:hang.su@qmul.ac.uk
mailto:s.gong@qmul.ac.uk
mailto:eddy.zhuxt@gmail.com
https://doi.org/10.1016/j.patcog.2019.107003
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Fig. 1. Logo detection challenges: significant variations in scale, illumination, background, and occlusion. 

Table 1 

Statistics and characteristics of existing logo detection benchmarking datasets. 

Dataset Logo classes Images Supervision Noisy Construction Scalability Availability 

TopLogo-10 [7] 10 700 Object-Level ✗ Manually Weak � 

TennisLogo-20 [8] 20 2000 Object-Level ✗ Manually Weak ✗ 

FlickrLogos-27 [9] 27 810 Object-Level ✗ Manually Weak � 

FlickrLogos-32 [10] 32 2240 Object-Level ✗ Manually Weak � 

Logo32-270 [11] 32 8640 Object-Level ✗ Manually Weak ✗ 

BelgaLogos [12] 37 1321 Object-Level ✗ Manually Weak � 

LOGO-NET [13] 160 73,414 Object-Level ✗ Manually Weak ✗ 

Logo-In-The-Wild [14] 1196 9393 Object-Level ✗ Manually Weak � 

SportsLogo [8] 20 1978 Object-Level ✗ Manually Weak � 

MICC-Logos [15] 13 720 Object-Level ✗ Manually Weak ✗ 

WebLogo-2M (Ours) 194 2,190,757 Image-Level � Automatically Strong � 
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Logo Self-co-Learning (SL 2 ), since it automatically discovers poten-

tial positive logo images from noisy web data to progressively im-

prove the model discrimination and generalisation capability in a

self-learning and co-learning manner. (3) We introduce a large logo

dataset including 2,190,757 images from 194 logo classes, called

WebLogo-2M , created by automatically sampling web logo images

from the Twitter website. Importantly, our construction method al-

lows to further expand the dataset easily with new logo classes

and images, therefore offering a favourable solution for Extensive

experiments demonstrate the superiority of SL 2 over the state-

of-the-art strongly (Faster R-CNN [4] , SSD [18] , RetinaNet [19] ,

YOLOv2 [5] , and YOLOv3 [20] ) and weakly (WSL [21] , PCL [22] )

supervised detection models, and webly learning methods (WLOD

[23] ) on the WebLogo-2M dataset. 1 

The preliminary version of this has been reported in [24] . Com-

pared with the earlier study, there are several key differences in-

troduced: (i) This study presents a more advanced method by in-

troducing a joint co-training and self-learning concept into the

scalable logo detection model formulation. This enables mining

the complementary advantages of two different detection mod-

els, making self-learning significantly more effective. (ii) We con-

duct more comprehensive evaluations and analysis on incremen-

tal model learning in this study for giving more insights. (iii) We

further expand the large WebLogo-2M dataset by additional data

collection and manual labelling. 
1 The WebLogo-2M benchmark is released publicly at: https://weblogo2m.github. 

io/ . 

A  

l  

w

. Related works 

Logo detection Early logo detection methods are established

n hand-crafted visual features (e.g. SIFT [25] and HOG [3] ) and

onventional classification models (e.g. BoW [26] ). These meth-

ds were only evaluated by small logo datasets with a limited

umber of logo images and classes. Recently, Convolutional Neu-

al Networks (CNN) have emerged as stronger solutions [27] . A

ew deep logo detection methods [7,28,29] have been recently pro-

osed by exploiting the state-of-the-art object detection models

uch as Faster R-CNN [4] . This leads to a need for a large number

f labelled training data. To this end, a couple of works leverage

any synthetic logo imagery with the bounding boxes obtained

t zero annotation cost [7,28] . To better generalise logo detection,

he notions of universal logo detection [14,29] and open set logo

etrieval [14] have been formulated respectively. Meanwhile, this

lso inspires large data construction [13] . However, all these exist-

ng models are not scalable to real world deployment due to two

tringent requirements: (1) Accurately labelled training data per

ogo class; (2) Strong object-level bounding box annotations. This

s because, both requirements give rise to time-consuming train-

ng data collection and annotation, which is not scalable to a very

arge number of logo classes given limited human labelling budget.

n contrast, our method eliminates both needs by enabling model

earning from image-level weakly annotated and noisy web images.

s such, we enable automated introduction of any quantity of new

ogos for both dataset construction/expansion and model update

ithout exhaustive manual labelling. 

https://weblogo2m.github.io/
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Table 2 

WebLogo-2M statistics. Numbers in parentheses: the mini- 

mum/median/maximum per class. 

Logos Raw images Filtered images Noise rate (%) 

194 4,941,317 2,190,757 Varying 

– – (6/2583/179,789) (25.0/90.2/99.8) 

 

l  

a  

f  

s  

c  

l  

t  

f  

l  

l  

e  

l

 

t  

i  

b  

p  

m  

a  

n  

i  

b  

s  

w

 

s  

o  

t  

w  

p  

s  

d  

t  

[  

b  

B  

s  

d  

a  

o  

e  

a

3

 

l  

f

3

 

c  

a  

c  

S  

v  

m

 

T  

s  

u  

t  

a  

(  

r  

t  

l  

s  

p

 

S  

i  

q  

q  

b  

w

 

a  

W  

1  

w  

t  

a  

a  

t  

F  

5  

t

3

 

L  

p  

p

 

b  

c  

a  

a

 

w  

o  

p  

c  

c  

a  

S  

e

 

u  

l  

b  

2 http://www.ranker.com/crowdranked-list/ranking-the-best-logos-in-the-world . 
3 http://zankrank.com/Ranqings/?currentRanqing=logos . 
4 http://uk.complex.com/style/2013/03/the- 50- most- iconic- brand- logos- of- all- 

time . 
5 http://www.forbes.com/powerful-brands/list/#tab:rank . 
6 http://brandirectory.com/league _ tables/table/apparel- 50- 2016 . 
7 For sparse logo classes with < 10 0 0 web images, we examined the whole. 
Logo datasets A number of logo detection datasets exist in the

iterature ( Table 1 ). All existing datasets are constructed manually

nd typically small in both sample and category thus insufficient

or deep learning. Recently, Hoi et al. [13] attempt to create a large

cale logo dataset LOGO-NET. However, it is still not publicly ac-

essible. To address this scalability problem, we propose to collect

ogo images automatically from the social media. This brings about

wo unique benefits: (1) Weak image level labels can be obtained

or free; (2) We can easily upgrade the dataset by expanding the

ogo category set and collecting new logo images without human

abelling therefore scalable to any quantity of logo images and cat-

gories. To our knowledge, this is the first attempt to construct a

arge scale logo dataset by exploiting inherently noisy web data. 

Model Self-Learning Self-training is a special type of incremen-

al learning where the new training data are labelled by the model

tself – predicting logo positions and class labels in weakly la-

elled or unlabelled images before converting the most confident

redictions into the training data [30] . A similar approach to our

odel is the detection model by Rosenberg et al. [31] . This model

lso explores the self-training mechanism. However, this method

eeds a number of per-class strongly and accurately labelled train-

ng data to initialise the detection model. Also, it assumes unla-

elled images drawn from the target categories. Such assumptions

everely limit the model usability and scalability when only noisy

eb training data are available. 

Model Co-Learning Model co-learning is a generic learning

trategy originally designed for semi-supervised learning, based

n two sufficient and conditionally independent feature represen-

ations with a single model algorithm [32] . Later on, co-learning

as further developed into the variants of using different model

arameter settings [33] or models [34] on the same feature repre-

entation. Recently, this strategy is also applied for hyperspectral

ata classification by co-training of spectral and spatial informa-

ion [35] , and multi-source domain adaptation by co-regression

36] . Overall, the key is that both models in co-learning need

e independently effective and complementary to each other.

eyond these, we further extend the co-learning concept from

emi-supervised learning to web data learning for scalable logo

etection. In particular, we unite co-learning and self-learning in

 single detection deep learning framework with the capability

f incrementally improving logo detection models. To our knowl-

dge, this is the first attempt of exploiting such a self-co-learning

pproach in the logo detection literature. 

. Weblogo-2M logo detection dataset 

We present a scalable method to automatically construct a large

ogo dataset, called WebLogo-2M , including 2,190,757 web images

rom 194 classes ( Table 2 ). 

.1. Logo image collection and filtering 

Logo selection A total of 194 logo classes from 13 different

ategories are selected in the WebLogo-2M dataset ( Fig. 4 ). They

re popular logos and brands in our daily life, including 32 logo

lasses of FlickrLogo-32 [10] and 10 logo classes of TopLogo-10 [7] .

pecifically, the logo class selection was guided by an extensive re-
iew of social media reports regarding to brand popularity 2 , 3 , 4 and

arket-value 5 , 6 . 

Image source selection We selected the social media website

witter as the data source of WebLogo-2M. Twitter offers well

tructured multi-media data stream sources and more critically,

nlimited data access permission therefore facilitating the collec-

ion of large scale logo images. We also attempted with Google

nd Bing search engines, and three other social media websites

Facebook, Instagram, and Flickr). However, all of them are more

estricted in data access and limiting incremental big data collec-

ion, for example, Instagram allows only 500 times of image down-

oading per hour through the official web API. The Amazon web-

ite provides a rich logo imagery source but limited to constrained

roduct images with clean background. 

Image collection We collected 4,941,317 web logo images.

pecifically, through the Twitter API, one can automatically retrieve

mages from tweets by matching query keywords. In our case, we

uery the logo names so that images in tweets containing the

uery words can be extracted. The collected images are then la-

elled with the corresponding logo name at the image level, i.e.

eakly labelled . 

Logo image filtering We obtained a total of 2,190,757 im-

ges after conducting a two-steps auto-filtering: (1) Noise Removal :

e removed images of small width and/or height (e.g. less than

00 pixels), statistically we observed that such images are mostly

ithout any logo objects (noise). (2) Duplicate Removal : We iden-

ified and discarded duplicates. Specifically, given a reference im-

ge, we removed those with identical width and height. This im-

ge spacial size based scheme is not only computationally cheaper

han the appearance matching alternative [37] , but also effective.

or example, we manually examined the de-duplicating process on

0 randomly selected reference images and found that over 90% of

he images are true duplicates. 

.2. Properties of WebLogo-2M 

Compared to existing logo datasets like FlickrLogos-32 [10] ,

OGO-NET [13] and TopLogo-10 [7] , this web logo image dataset

resents three distinct properties inherent to large scale data ex-

loration for learning scalable logo models: 

(I) Weak Annotation All WebLogo-2M images are weakly la-

elled at the image level. Since the labels are obtained automati-

ally, it is much more scalable than those with the need for manual

nnotation of logo bounding boxes, particularly when logo images

nd classes are at large scales. 

(II) Noisy (False Positives) Web images are inherently noisy

ith most presenting no logo classes, therefore exhibiting plenty

f false positive samples. For estimating the noise degree, we sam-

led randomly and examined manually up to 10 0 0 web images per

lass. 7 As shown in Fig. 2 , the true logo image ratio varies signifi-

antly over classes, e.g. 75% for “Rittersport” vs. 0.2% for “3M”. On

verage, only 21.26% of the examined imagery are true positives.

uch noisy images pose significant challenges to model learning,

ven though there are plenty of training data. 

(III) Class Imbalance The WebLogo-2M dataset presents a nat-

ral logo object occurrence imbalance in public scenes. Specifically,

ogo images collected from web streams exhibit a power-law distri-

ution ( Fig. 3 ). This property is often artificially eliminated in most

http://www.ranker.com/crowdranked-list/ranking-the-best-logos-in-the-world
http://zankrank.com/Ranqings/?currentRanqing=logos
http://uk.complex.com/style/2013/03/the-50-most-iconic-brand-logos-of-all-time
http://www.forbes.com/powerful-brands/list/#tab:rank
http://brandirectory.com/league_tables/table/apparel-50-2016
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Fig. 2. True logo image ratios (%). This was estimated from up to 10 0 0 random 

images per class. 

Fig. 3. Imbalanced logo image class distribution, ranging from 6 images 

(“Soundrop”) to 179,789 images (“Youtube”), with the imbalance ratio as severe as 

1:29,965. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Logo detection performance on WebLogo-2M. 

Method mAP (%) 

SSD [18] 8.8 

Faster R-CNN [4] 14.9 

YOLOv2 [5] 18.4 

YOLOv3 [20] 11.0 

RetinaNet [19] 4.1 

WSL [21] 3.6 

PCL [22] 0.2 

WLOD [23] 19.3 

WLOD [23] + SCL [7] 7.8 

ULD [14,29] 13.2 

SLST [24] 36.8 

SL 2 (Ours) 46.9 
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l  

Y  
existing logo datasets by careful manual filtering, which not only

requires extra labelling effort but also renders the model learn-

ing challenges unrealistic . We preserve the inherent class imbalance

nature for achieving fully automated dataset construction and re-

taining realistic model learning challenges. This requires minimis-

ing model learning bias towards densely-sampled classes [38] . 

Further remarks Since the proposed dataset construction

method is completely automated, new logo classes can be easily

added without human labelling. This permits scalability for facil-

itating dataset expansion, in contrast to existing methods of Ima-

geNet [6] , PASCAL VOC [39] , MSCOCO [40] that require exhaustive

human labelling. This automation is particularly more important

for object detection datasets with expensive needs for labelling

bounding boxes, beyond cheaper image-level class label annotation

[41] . While being more scalable, WebLogo-2M poses more realis-

tic challenges to model learning due to weaker label information,

noisy image data, unknown scene context, and significant class im-

balance. 

3.3. Benchmarking training and test data 

We define a benchmarking logo detection setting here. In the

scalable webly learning context, we deploy the whole WebLogo-

2M dataset (2,190,757 images) as the training data. For perfor-

mance evaluation, a set of images with bounding box annotation

groundtruth is required. To that end, we construct an indepen-

dent test set of 6558 logo images with logo bounding box labels

by (1) assembling 2870 labelled images from the FlickrLogo-32

[10] and TopLogo [7] datasets and (2) manually labelling 3688 im-

ages independently collected from the Twitter website. Note that,

the test set is only for model performance evaluation, independent

of WebLogo-2M auto-construction. 

4. Training a multi-class logo detector 

We aim to automatically train a multi-class logo detection

model from noisy and weakly labelled web images. Different from

existing methods building a detector in a one-pass “batch” learning
rocedure, we propose to incrementally enhance the model capa-

ility in a joint spirit of self-learning [30] and co-learning [32] . This

s due to the unavailability of sufficient accurate fine-grained train-

ng data. In particular, the model must self-select reliable images

rom the noisy WebLogo-2M to progressively develop and refine it-

elf. This is a catch-22 problem: The lack of sufficient good-quality

raining data leads to a suboptimal model that is error-prone dur-

ng inference. This may cause model drift – the errors in model pre-

iction will be propagated and cumulated through the iterations

herefore have the potential to corrupt the model knowledge struc-

ure. Also, the inherent class imbalance may make model learning

iased towards only a few number of majority classes whilst ne-

lecting the minority classes. The two problems above are intrin-

ically interfered. It is non-trivial to solve these challenges without

xhaustive fine-grained manual annotations of training data. 

Formulation rationale In this work, we present a scalable

ogo detection solution capable of addressing the aforementioned

wo issues in a self-co-learning manner. The intuition is that,

eb knowledge provides ambiguous and useful image level logo

nnotations, self-learning offers a scalable learning mechanism

o explore such information and co-learning allows for mining

he complementary advantages of different models in order to

urther improve the effectiveness of self-learning. Note that self-

ining of training data may introduce label errors which can

urther propagate and expand through training. To better leverage

o-learning, it is favoured that two learners differ significantly

ith certain conditional independence and respective specificity.

s such, they can achieve jointly high complementary effects to

utually benefit each other. We call the proposed method Scalable

ogo Self-co-Learning (SL 2 ). 

Model design To establish a more effective SL 2 framework,

e select strongly-supervised rather than weakly-supervised

bject detection models for two reasons: (1) Weakly-supervised

odels [42] are much inferior; (2) The noisy labels may further

amper the efficacy of weakly supervised learning. In our self-co-

earning instantiation, we choose the Faster R-CNN [4] and YOLOv2

5] models based on two considerations: (1) Faster R-CNN and

OLOv2 are formulated by different design principles with good

omplementary hence suitable for co-learning. (2) We empirically

ound that the two models perform superiorly for scalable logo

etection as compared to arguably stronger alternatives Reti-

aNet with FPN [19] , YOLOv3 [20] and SSD [18] (see Table 3 ).

ote, this model selection is conceptually independent of the SL 2 

ormulation. A schematic overview of SL 2 is depicted in Fig. 5 . 

.1. Model bootstrap 

To start the SL 2 process, we feed logo detection model co-

earning with bootstrapping training data. Both Faster R-CNN and

OLOv2 need supervised learning from bounding box annotations
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Fig. 4. A glimpse of the WebLogo-2M dataset. (a) Example webly (Twitter) logo images randomly selected from the class “Adidas” with logo instances manually labelled 

by green dashed bounding boxes only for facilitating viewing. Most images contain no “Adidas” object, i.e. false positives. This suggests a high noise degree in such webly 

collected data without exhaustive filtering and selection. (b) Clean images of 194 logo classes automatically collected from the Google Image Search, used in synthetic 

training images generation and context enhancement. (c) Examples of true positive web images per logo class, totally 194 images, showing the rich and diverse context in 

unconstrained images where typical logo objects reside in practice, as compared to those clean logo images in (b). 
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o achieve detection discrimination, which however is not available

n our webly learning setting. 

To address this problem above in our context, we exploit the

dea of synthesising fine-grained training logo images for main-

aining model learning scalability for accommodating large quan-

ity of logo classes. In particular, this is achieved by generating

ynthetic training images as in [7] : Overlaying logo icon images at

andom locations of non-logo background images so that bound-

ng box annotations can be automatically and completely gener-
ted. The logo icon images are automatically collected from Google

mage Search by querying logo class names ( Fig. 4 (b)). The back-

round images can be chosen flexibly, e.g. non-logo images in

lickrLogo-32 [10] and others retrieved by irrelevant query words

rom search engines. To enhance appearance variations in synthetic

ogos, colour and geometric transformation can be applied [7] . 

Training Details We synthesised 10 0 0 training images per class,

otally 194,0 0 0 images. This is estimated based on the cost-

ffectiveness of YOLOv2 ( Table 7 ). For learning the Faster R-CNN
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Synthetic Dataset

Initial
Model

Model 
Bootstrap

WebLogo-2M Dataset

Increm
ental

D
ata G

enerating

Incremental Self-Mining Noisy Web Images Incremental Model Co-Learning

Self-Mined New Training
Data by Each Detector Data 

Merging

Updated
YOLOv2

Updated
Faster-RCNN

Faster-RCNN 
Discovered Data

YOLOv2 
Discovered Data

Balance Training Data 
by Synthetic Context 

Augmentation

Fig. 5. Overview of the Scalable Logo Self-co-Learning (SL 2 ) method. (a) Model initialisation by using synthetic logo training images ( Section 4.1 ). (b) Incrementally self- 

mining positive logo images from noisy web data pool ( Section 4.2 ). (c) Incrementally co-learning the detection models by mined web images and context-enhanced synthetic 

data ( Section 4.3 ). This process is repeated iteratively for progressive training data mining and model update. 
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and YOLOv2 models, we set the learning rate at 0.0 0 01 and the

learning iterations at 6,0 0 0. Following [7] , we pre-trained the mod-

els on ImageNet [6] for model warmup. 

4.2. Incremental self-mining noisy web images 

After logo detectors are bootstrapped, we proceed to improve

their detection capability with self-mined positive (likely) logo im-

ages from WebLogo-2M. To identify the most compatible training

images, we define a selection function using the detection score of

up-to-date model: 

S(M t , x , y ) = S det (y |M t , x ) ∈ [0 , 1] (1)

where M t denotes the t th iteration model (Faster R-CNN or

YOLOv2), x represents a training image with the label y ∈
 = { 1 , 2 , · · · , m } , and m represents the logo class number.

S det (y |M t , x ) specifies the maximal detection score of x on a logo

class y inferred by the model M t . For reliable logo image discov-

ery, we consider a high threshold detection confidence (0.9 in our

experiments) [43] for mitigating the impact of model detection er-

rors. The proposed training data discovery and model incremental

learning process is summarised in Algorithm 1 . 

Algorithm 1 Incremental self-mining noisy web logo images. 

Input: Current model M t−1 , Unexplored logo training data

D t−1 , Self-discovered logo training data T t−1 ( T 0 = ∅ ); 
Output: Updated self-discovered training data T t , Updated unla-

belled data pool D t ; 

Initialisation: T t = T t−1 , D t = D t−1 ; 

for image i in D t−1 

Apply M t−1 to get the detection results; 

Evaluate image i as a potential positive logo image; 

if Meeting selection criterion 

T t = T t ∪ { i } ; 
D t = D t \ { i } ; 

end if 

end for 

Return T t and D t . 

Through the same self-mining process, we obtain a separate set

of updated training data for Faster R-CNN and YOLOv2, denoted as

T f 
t and T y t respectively. This leverages the unique characteristics of

different model formulations, region proposal based Faster R-CNN

versus grid regression based YOLOv2. It hence creates a satisfactory

condition for cross-model co-learning. 
.3. Incremental model co-learning 

Given the two up-to-date training sets T f 
t and T y t , we conduct

o-learning for detection models ( Fig. 5 (c)). Specifically, we incre-

entally update Faster R-CNN model using the set T y t mined by

OLOv2, and vice versa. As such, the complementary advantages

an be propagated incrementally in a cross-model manner. 

Recall that the logo images are imbalanced across classes

 Fig. 3 ). This causes biased learning favoured towards well-sampled

lasses [38] . To address this problem, we propose an idea of cross-

lass context enhancement. It aims for both exploring the rich con-

ext of WebLogo-2M and addressing the imbalanced class problem.

Specifically, we ensure that at least N cls images will be newly

ntroduced into the training data pool in each self-discovery iter-

tion for each detection model. Suppose N 

i 
sf 

web images are self-

iscovered for the logo class i ( Algorithm 1 ), we generate N 

i 
syn syn-

hetic images where 

 

i 
syn = max (0 , N cls − N 

i 
sf ) . (2)

herefore, we only perform synthetic context enhancement for

hose classes with less than N cls real web images mined in the cur-

ent iteration. We set N cls = 500 considering that too many syn-

hetic images may bring in negative effects due to the imperfect

ogo appearance rendering. Besides, we set logo images of other

lasses ( j � = i ) as background scenes for enriching context diversity

f class i ( Fig. 6 ). We utilise the SCL synthesising method [7] as in

he model bootstrap ( Section 4.1 ). 

Once we have self-mined web training images and generated

ontext enriched synthetic data, we perform detection model fine-

uning at the learning rate of 0.0 0 01 by 60 0 0–14,0 0 0 iterations de-

ending on the training data size at each iteration. We adopt the

riginal deep learning loss formulation for both Faster R-CNN and

OLOv2. Model generalisation is expected to improve when the

raining data quality is sufficient in terms of label accuracy and

ontext richness. 

.4. Incremental learning stop criterion 

We conduct incremental model self-co-learning until some stop

riterion is met, for example, the model performance gain becomes

arginal or zero. We adopt the YOLOv2 as the deployment logo

etection model due to its superior efficiency and accuracy (see

able 5 ). In practice, we can assess the model performance on an

ndependent validation set. 
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Fig. 6. Example logo images with the synthetic context enhancement. Red box: model detection; Green box: synthetic logo ground truth. (For interpretation of the references 

to colour in the text, the reader is referred to the web version of this article.) 
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. Experiments 

Competitors We compared the proposed SL 2 model against

our types of state-of-the-art object detection methods. (1) Fully

upervised object detection , including a total of five deep learning

odels (Faster R-CNN [4] , SSD [18] , YOLOv2 [5] , YOLOv3 [20] , and

etinaNet [19] ). For training, we used the synthetic training data

enerated by SCL [7] , same as SL 2 . (2) Weakly supervised object

etection , in particular the Weakly Supervised object Localisation

WSL) [21] and Proposal Cluster Learning (PCL) [22] models, de-

igned for training detectors with image-level class label anno-

ations. Therefore, we can directly utilise the WebLogo-2M data

o train a Weakly supervised object detection logo model. Note,

oisy logo labels may pose extreme challenges. (3) Webly super-

ised object detection , in particular Webly Learning Object Detec-

ion (WLOD) [23] . It is a state-of-the-art weakly supervised object

etection method where clean Google images are used to train ex-

mplar classifiers which is deployed to classify region proposals

y EdgeBox [44] . In our implementation, we further improved the

lassification component by exploiting an ImageNet and PASCAL

rained VGG-16 [45] model as the feature extractor and L2 distance

s the matching metric. We adopted the nearest neighbour clas-

ification model with the logo icon images ( Fig. 4 (b)) as labelled

ata. Additionally, we considered a variant of WLOD by synthesis-

ng context enhanced logo icon instances with SCL [7] . (4) Univer-

al logo detection [14,29] that collectively treats all logo classes as

he positive class. Following [14,29] , we reformulated the original

ulti-class regional proposal learning into a binary-class version.

e used the same synthetic training data as our model. 

Performance metrics To measure logo detection performance,

e used the Average Precision (AP) for each individual logo class,

nd the mean Average Precision (mAP) for all classes [46] . A detec-

ion is considered being correct when the Intersection over Union

IoU) between the predicted and groundtruth exceeds 50%. 

.1. Comparative evaluations 

We compared the scalable logo detection performance on the

est data of WebLogo-2M in Table 3 . It is evident that the proposed

L 2 model significantly outperforms all other alternative methods,

.g. surpassing the best baseline WLOD by 27.6% (46.9–19.3%) in

AP. SL 2 also surpasses our preliminary model SLST due to joint

enefits of self-learning and co-learning. Specifically, we have the

ollowing observations: 

(1) The weakly supervised learning models, WSL [21] and PCL

22] , produce the worst results, due to the joint effects of complex

ogo appearance variations and large proportions of false positive

mages ( Fig. 2 ). 
(2) The WLOD method performs reasonably well, suggesting

hat the joint auxiliary knowledge from clean logo icon images and

eneral object data of ImageNet and Pascal VOC is transferable. 

(3) By using the synthetic training data with rich context, fully

upervised detection models YOLOv2 and Faster R-CNN are able

o achieve relatively strong results. This suggests that context en-

ancement is critical for object detection, and the combination of

trongly supervised learning model + training data synthesising

s superior to weakly supervised learning. Interestingly, unlike the

revious findings [20] , it is observed differently that two arguably

tronger models YOLOv3 and RetinaNet yield even weaker results.

e consider that this is due to two reasons: (a) The existence of

oisy training labels that bring about more severe harm to meth-

ds with more discriminative learning capabilities; (b) A higher

ensitivity to the gap between synthetic and real logo images re-

ulted from stronger fitting to potentially noisy training data. 

(4) Another supervised one-stage model SSD yields weak detec-

ion performance. This is similar to the original finding that SSD is

ore sensitive to object size with weaker detection performance

n small objects as in-the-wild logo instances [18] . 

(5) WLOD + SCL gives a weaker result (7.8%) than WLOD (19.3%).

his indicates that joint supervised learning is critical for exploit-

ng enhanced context. 

(6) ULD gives a weaker performance (13.2%) compared to the

tandard Faster R-CNN (14.9%). This implies that it is not scalable

o cases with a large number of logo classes – A multi-class detec-

ion learning can already well mine the class agnostic property. 

Qualitative Evaluation For visual comparison, we show a number

f qualitative logo detection examples from three classes by the

L 2 and WLOD models in Fig. 7 . 

.2. Further analysis and discussions 

.2.1. Effects of incremental model self-co-learning 

We evaluated the effects of incremental model self-co-learning

n discovered training data and context enriched synthetic im-

ges by examining the model performance of SL 2 at individual it-

rations. Table 4 and Fig. 8 show that SL 2 improves consistently

rom the 1st to 8th iterations of self-co-learning. In particular, the

tarting data mining brings about the maximal mAP gain of 10.2%

28.6–18.4%) with per-iteration benefit dropping gradually. This

uggests that our model design is capable of effectively addressing

he notorious error propagation challenge thanks to (1) a proper

etection model initialisation by logo context synthesising for pro-

iding a sufficiently good starting-point detection; (2) a strict se-

ection on self-evaluated detections for reducing the amount of

alse positives and suppressing the likelihood of error propagation;

nd (3) cross-model co-learning with cross-class context enhance-

ent with the capability of addressing the class imbalanced data
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Fig. 7. Qualitative evaluations of the (a) WLOD and (b) SL 2 models. Green dashed boxes: ground truth. Red solid boxes: detected. The WLOD fails to detect visually ambiguous 

(1st column) logo instance, success on relatively clean (2nd column) logo instances, while only fires partially on the salient one (3rd column). The SL 2 model can correctly 

detect all these logo instances with varying context and appearance quality. (For interpretation of the references to color in the text, the reader is referred to the web version 

of this article.) 

Fig. 8. Evaluating the model co-learning and self-learning strategies, and the effect 

of Context Enhancement (CE) based training data class balancing. 

Table 4 

Model performance development over incremental SL 2 

iterations. 

Iteration mAP mAP Gain Training images 

0 18.4 N/A 5862 

1st 28.6 10.2 21,610 

2nd 33.2 4.6 41,314 

3rd 39.1 5.9 54,387 

4th 42.2 3.1 74,855 

5th 44.4 2.2 86,599 

6th 45.6 1.2 98,055 

7th 46.9 1.3 107,327 

8th 46.9 0.0 Stop 

Table 5 

Co-learning versus self-learning. 

Method mAP (%) 

Self-Learning (Faster R-CNN) 36.8 

Self-Learning (YOLO) 39.4 

Co-Learning (Faster R-CNN) 44.2 

Co-Learning (YOLO) ( SL 2 ) 46.9 
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e  
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l

earning problem whilst enhancing the model robustness against

nconstrained background. We also observed that more images are

ined along the process, indicating that SL 2 effectively improves

ver time in the capability of tackling more complex context. How-

ver, false positives with similar/confusing appearance can be in-

vitably introduced during automated self-discovery of new train-

ng data in the iterative learning process, causing failure cases dur-

ng model inference ( Fig. 9 ). 

.2.2. Effects of cross-model co-learning 

We assessed the benefits of cross-model co-learning between

aster R-CNN and YOLOv2 in SL 2 in comparison of the single-model

elf-learning strategy. In contrast to co-learning, the self-learning

xploits self-mined new training data for incremental model up-

ate without the benefit of cross-model complementary advan-

ages. Table 5 and Fig. 8 show that both models benefit clear per-

ormance gains from co-learning, e.g. 7.4% (44.2–36.8) for Faster R-

NN, and 7.5% (46.9–39.4) for YOLOv2. This verifies our motivation

f exploiting the co-learning principle for maximising the comple-

entary advantages of distinct model formulations in the scalable

ogo model optimisation. 
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Fig. 9. Randomly selected images self-discovered in the (a) 1st, (b) 4th, and (c) 8th iterations for the logo class “Android”. Red box: SL 2 model detection. Red cross: false 

detection. The images mined in the 1st iteration have clean logo instances and background, whilst those discovered in the 4th and 8th iterations have more diverse logo 

appearance variations in richer and more complex context. More false positives are likely to be produced in the 4th and 8th self-discovery. (For interpretation of the 

references to colour in the text, the reader is referred to the web version of this article.) 

Table 6 

Effects of training data Context Enhancement (CE). Metric: mAP 

(%). 

Iteration 0 1st 2nd 3rd 4th 5th 

With CE 18.4 28.6 33.2 39.1 42.2 44.4 

Without CE 18.4 25.3 27.7 28.7 28.9 28.0 

Table 7 

Estimating the bootstrap synthetic data size 

using YOLOv2. 

Number of Images Per Class mAP (%) 

100 15.6 

300 17.2 

1000 18.4 
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.2.3. Effects of synthetic context enhancement 

We evaluated the impact of context enhancement (i.e. the

ross-class context enriched synthetic training data) on model

erformance. Table 6 shows that context enhancement not only

rovides a clear model improvement across iterations due to the

uppression of negative imbalance learning effect, but also simul-
aneously enlarges the data mining capacity due to potentially less

oisy training data aggregation. Without context enhancement

nd training class balancing, the model stops to improve by the

th learning iteration, resulting in weaker performance at 28.9%

s. 46.9% by the full SL 2 model. This verifies the importance of

ontext enhancement and class balancing for detection model

earning, validating our model design considerations. 

.2.4. Estimating the bootstrap synthetic data size 

For efficiency, we estimated the synthetic data size in model

ootstrap with YOLOv2. Table 7 shows that whilst more synthetic

raining data generally lead to higher mAP rates, the benefit is

apidly diminishing with size increasing. Besides, this gain comes

ith drastically higher model training cost. According to the re-

ource limit, we generated 10 0 0 synthetic images per class in our

ain experiments. 

. Conclusion and future work 

In this work, we presented a scalable logo detection method

ncluding dataset establishment and model learning. This is re-

lised by exploring the web data learning principle without a te-

ious need of manually labelling fine-grained logo bounding boxes.
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Specifically, we proposed a new incremental learning method

named Scalable Logo Self-co-Learning (SL 2 ). It uniquely enables reli-

able self-discovery and auto-labelling of new training images from

unconstrained in-the-wild web data to progressively improve the

model detection capability in a cross-model co-learning manner.

We constructed a very large logo benchmark WebLogo-2M by au-

tomatically collecting and processing free web data in a scalable

manner. This facilitates the community for further investigation of

scalable logo detection in the future. We have conducted exten-

sive comparative evaluations and analysis on the benefits of incre-

mental model training and context enhancement on the WebLogo-

2M benchmark. The results show the advantages and superiority

of our SL 2 method over the state-of-the-art alternative methods,

ranging from strongly-supervised and weakly-supervised detection

models to webly learning models. We finally provided in-depth

model component analysis and evaluations for giving insights on

model performance gain and formulation. 

As an early attempt for scalable logo detection in deep learn-

ing, our approach still has a number of limitations that need be

addressed in the future work. First , the web imagery data we col-

lected are over noisy, imposing an extreme challenge for data se-

lection during self-labelling. Therefore, developing superior data

collection is one of the most effective methods. Second , the pro-

posed SL 2 model relies heavily on the detection scores of ob-

ject instances which is error prone partly due to the model over-

confident on unknown classes. How to mitigate this effect is worth

more investigation. Third , the detection models we leveraged in

designing SL 2 are not sufficiently efficient to process millions of

images. An important future research is to develop more cost-

effective object detection models. We reckon that with dedicated

development in the above directions, the scalability of logo detec-

tion can be advanced significantly. 
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