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A B S T R A C T

Existing logo detection methods mostly rely on supervised learning with a large quantity of labelled training
data in limited classes. This restricts their scalability to a large number of logo classes subject to limited
labelling budget. In this work, we consider a more scalable open logo detection problem where only a fraction
of logo classes are fully labelled whilst the remaining classes are only annotated with a clean icon image (e.g.
1-shot icon supervised). To generalise and transfer knowledge of fully supervised logo classes to other 1-shot
icon supervised classes, we propose a Multi-Perspective Cross-Class (MPCC) domain adaptation method. In a
data augmentation principle, MPCC conducts feature distribution alignment in two perspectives. Specifically,
we align the feature distribution between synthetic logo images of 1-shot icon supervised classes and genuine
logo images of fully supervised classes, and that between logo images and non-logo images, concurrently.
This allows for mitigating the domain shift problem between model training and testing on 1-shot icon
supervised logo classes, simultaneously reducing the model overfitting towards fully labelled logo classes.
Extensive comparative experiments show the advantage of MPCC over existing state-of-the-art competitors on
the challenging QMUL-OpenLogo benchmark (Su et al., 2018).
. Introduction

Logo detection is a long-standing computer vision problem
Doermann et al., 1993) with significant real-world applications rang-
ng from brand trend prediction in smart business (Romberg et al.,
011; Romberg and Lienhart, 2013) to vehicle recognition in intel-
igent transportation (Pan et al., 2013) and document image logo
etrieval (Pham, 2003). It is inherently challenging due to no clear
efinition of what makes a logo. The difficulty is further amplified by
he presence of unconstrained contexts and varying logo instance scales
Fig. 1).

Existing logo detection methods have made progress on recognising
limited number of logo classes in most cases. They often exploit state-
f-the-art object detection models such as Fast (Girshick, 2015) and
aster R-CNN (Ren et al., 2015), or YOLO (Redmon and Farhadi, 2017)
hat require supervised learning from large labelled training data per
lass. There have been a number of logo detection datasets developed in
he literature (Joly and Buisson, 2009; Kalantidis et al., 2011; Romberg
t al., 2011; Bianco et al., 2017; Tüzkö et al., 2018; Liao et al., 2017;
ahbi et al., 2012; Hoi et al., 2015; Su et al., 2018) (Table 1). However,
heir scaling ability is limited in terms of both class and image, due to
he high cost of collecting and labelling in-the-wild logo images.

There are a few attempts of tackling the scalability limitation in
earning a logo detection model. For example, web logo image collec-
ion and annotation are explored in (Su et al., 2017a). The resulting

∗ Corresponding author at: Shenzhen University, Shenzhen, CN, China.
E-mail address: 9175ak@gmail.com (H. Su).

dataset contains a high proportion of noisy labels and negative images
with severe class imbalance. More recently, a new open logo detec-
tion setting is introduced (Su et al., 2018) where only a fraction of
logo classes are associated with fully labelled training data and the
objective is to train a detection model generalisable to 1-shot icon
supervised logo classes. To this end, Su et al. (2018) develop a data
augmentation method to generate context-consistent training images
for 1-shot icon supervised logo classes that are weakly supervised by
only a clean per-class icon image. This method directly handles the
problem of lacking training data. However, it still suffers the domain
shift problem between the synthetic training and genuine test images
of unlabelled logos, despite improved consistency between logo objects
and background context. This leads to model performance degradation.

In this work, we address the aforementioned limitation of open logo
detection. Similar as Su et al. (2018), we retain the use of synthetic
training data for 1-shot icon supervised logo classes. Importantly, we
further introduce a Multi-Perspective Cross-Class (MPCC) domain adapta-
tion method. Specifically, MPCC takes as input the genuine training im-
ages of labelled classes, synthetic training images of 1-shot icon super-
vised classes, and auxiliary non-logo object detection images (e.g. MS
COCO) simultaneously in model training. The aim is to transfer super-
vision information of labelled logo and non-logo instances in genuine
scenes to
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Fig. 1. Illustration of logo detection challenges.
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tatistics of logo detection datasets in the literature.

Dataset Classes Images Availability

BelgaLogos (Joly and Buisson, 2009) 37 1,321 ✓

FlickrLogos-27 (Kalantidis et al., 2011) 27 810 ✓

FlickrLogos-32 (Romberg et al., 2011) 32 2,240 ✓

Logo32plus (Bianco et al., 2017) 32 7,830 ✓

Logo-In-The-Wild (Tüzkö et al., 2018) 1196 9,393 ✓

SportsLogo (Liao et al., 2017) 20 1,978 ✓

MICC-Logos (Sahbi et al., 2012) 13 720 ✕

LOGO-NET (Hoi et al., 2015) 160 73,414 ✕

OpenLogo (Su et al., 2018) 352 27,083 ✓

1-shot icon supervised logo classes by joint domain adaptation, whilst
alleviating the underlying risk of model overfitting towards labelled
logo classes. Unlike the conventional domain adaptation, this task
focuses on cross-class knowledge transfer between genuine labelled
images of logos and non-logo objects, as well as the synthetic images
of 1-shot icon supervised logos.

The contributions of this work are: (1) We address the problem
of domain shift between synthetic images of 1-shot icon supervised
logo classes and genuine images of fully supervised logo classes in
model training for open logo detection. This is the first attempt of
addressing a cross-class domain shift problem for open logo detection.
To this end, we provide a theoretical analysis of this cross-class domain
shift problem in a probabilistic viewpoint, in order to achieve model
learning for generalising to 1-shot icon supervised logo classes given a
limited training set of labelled logo classes. (2) We formulate a Multi-
Perspective Cross-Class (MPCC) domain adaptation method. By exploring
unsupervised domain adaptation, MPCC aligns the feature distribution
among synthetic logo images, genuine logo images, and non-logo object
images in a joint model learning process. Extensive experiments show
the performance advantage of the proposed MPCC method for open
logo detection over state-of-the-art alternative approaches on the public
QMUL-OpenLogo benchmark.

2. Related work

Logo Detection. Most earlier methods for logo detection exploit
hand-crafted visual features in sliding window localisation scheme. For
example, SIFT features are often used for logo retrieval (Joly and Buis-
son, 2009), vehicle brand recognition (Psyllos et al., 2010) and brand
logo matching (Sahbi et al., 2012). Common alternative representation
options include bag-of-visual-word (Boia et al., 2014; Kalantidis et al.,
2011; Revaud et al., 2012; Romberg and Lienhart, 2013), triangulation
geometry representation (Kalantidis et al., 2011), and Histograms of
Oriented Gradient (HOG) (Li et al., 2014). Due to remarkable success of
deep learning (Nanni et al., 2017), recent state-of-the-art logo detection
2

methods leverage generic object detection networks (Girshick, 2015;
Ren et al., 2015; Redmon and Farhadi, 2017). For instance, Iandola
et al. (2015) and Liao et al. (2017) exploit Fast R-CNN. Later on, Faster
R-CNN are often selected (Hoi et al., 2015; Su et al., 2017b) due to the
superior efficiency and performance. Universal logo characteristics is
explored by considering a binary logo detection problem (Tüzkö et al.,
2018; Fehérvári and Appalaraju, 2019). To alleviate the training data
labelling effort, web logo images with noisy annotation are mined for
training detection (Su et al., 2017a). Commonly, these methods focus
on supervised learning with the need for accurately labelling fine-grained
object-level bounding box on the training data per logo class. They are
therefore not scalable because it is time-consuming for collecting such
training data annotation particularly considering the existence of many
logo classes in real-world applications.

To scale up the learning algorithms, Su et al. (2017a) propose to
leverage the rich web information from the online Internet multimedia
data streams that contain weak but noisy label information. Whilst
being highly noisy, this method can easily acquire a massive number of
in-the-wild images without manual labelling efforts therefore scalable
and facilitating the training of deep neural network models. One weak-
ness of using web data is the low quality of supervision with severe class
imbalance which dramatically increases the model learning difficulty.
Elaborative logo image synthesis pipeline is also proposed (Montserrat
et al., 2018) by depth estimation on background image for generating
more realistic synthetic data. However, this method is computationally
expensive, reducing its usability in large scale learning scenarios. How
to use the already labelled logo detection data in a scalable manner
seems a promising approach. To this end, an open logo detection setting
is introduced (Su et al., 2018) where only a proportion of logo classes
are associated with labelled training images. The goal is to learn a
detection model that can be deploy to detect 1-shot icon supervised
logo classes.

Image synthesising is an effective approach to solving scarce logo
training data. Eggert et al. (2015) applied synthetic data to train SVM
models for company logo detection. Gupta et al. (2016) and Jaderberg
et al. (2016) generated scene-text images for learning text recogni-
tion models, a problem very similar to logo detection. Montserrat
et al. (2017) employed synthetic images with both brand logo and
toy classes. Letessier et al. (2012) created a synthetic dataset Flick-
rBelgaLogos by pasting logo instances to background web images.
Generative Adversarial Networks were also used to generate clean logo
images (Sage et al., 2017), which however are not suitable for logo
detection on in-the-wild images with complex background. The recent
work CAL (Su et al., 2018) attempts to address this problem by synthe-
sising context coherent training images for 1-shot icon supervised logo
classes. However, it is extremely challenging to achieve this due to the
difficulty of simulating the genuine logo instance contexts in real-world
scenes.

We tackle this same challenge from a different modelling per-
spective – cross-class domain adaptation. Beyond using the synthetic
training images, we further address the feature distribution discrepancy
between fully supervised and 1-shot icon supervised classes for better
optimising the model detection capability. We additionally leverage
less relevant auxiliary object images for reducing the model overfitting
risk towards fully labelled logo classes.

Zero-Shot Object Detection. Open logo detection is conceptually simi-
lar to the notion of zero-shot object detection where no labelled training
data are available for test classes. It is extended from the zero-shot
classification problem with the aim of enabling the machines to detect
objects visually unseen before (Xian et al., 2017). These methods often
rely on the semantic relationships between seen and unseen classes via
manually labelling mid-level attributes (Lampert et al., 2009) and/or
learning text vector embeddings from large scale corpus (Mikolov et al.,
2013). However, such side information is hard and time-consuming to
obtain and currently unavailable for open logo detection, which renders



H. Su, S. Gong and X. Zhu Computer Vision and Image Understanding 204 (2021) 103156

s
t
s
F
m
s
i
u
c

i
s
l

Fig. 2. Examples of (a) fully supervised logo classes, (b) 1-shot icon supervised logo classes, and (c) synthetic logo images from QMUL-OpenLogo.
s
all the corresponding methods inapplicable. Besides, existing methods
are not designed to work with clean icon images as in this context.

Unsupervised Domain Adaptation. In the literature, most unsuper-
vised domain adaptation methods are focused on the classification
problem (Wang and Deng, 2018; Sun and Saenko, 2016; Tzeng et al.,
2017). More recently, this has been studied for object detection in vari-
ous settings by several works (Hattori et al., 2015; Xu et al., 2014; Chen
et al., 2018). In particular, Chen et al. (2018) modify the state-of-the-
art Faster R-CNN model with domain adaptation layers for transferring
knowledge between synthetic and real image domains. However, this
study is limited to the closed-class setting where both domain share
the same classes. All other existing methods make the same closed-set
class assumption. In contrast, we investigate a more challenging and
practical problem of cross-class logo detection adaptation. Specifically,
we do not assume the availability of real training data for the target
logo classes. This avoids the expense of collecting labelled training
data which is often costly or even unavailable in many cases. As such,
a feasible solution is to leverage synthetic training data. This leads
to a further need for domain adaptation from synthetic data to real
data for the unsupervised target logo classes. Besides, we consider
multi-perspective domain adaptation by concurrently exploiting both
synthetic and less-relevant auxiliary imagery data for further improving
the cross-class model generalisation capability in end-to-end model
optimisation.

3. Method

Problem definition. In open logo detection, we have access to a
training set  of fully supervised logo classes and a training set  of 1-
hot icon supervised logo classes. For fully supervised logo classes, the
raining data contain both category and bounding box labels; Therefore,
tate-of-the-art object detection methods (Ren et al., 2015; Redmon and
arhadi, 2017; Lin et al., 2017) can be applied to train their detector
odels. For each 1-shot icon supervised logo class, however, only a
ingle exemplar icon image (Fig. 2) is available. An exemplar icon image
s necessary to specify how a target logo class appears visually. The
nderlying reason is due to the man-made nature — logo class names
annot reflect the corresponding visual appearance in most cases.

In the standard object detection perspective, such exemplar icon
mages are not appropriate training data. They come without any
cene context and bounding box annotations. The objective of open

ogo detection is to learn a logo model discriminative for 1-shot icon

3

upervised logo classes, using both fully labelled training data  and
1-shot icon data  .

Limitation of existing approach. An intuitive and effective approach
for open logo detection is to leverage synthetic training data of 1-shot
icon supervised logo classes (Su et al., 2018). Synthetic samples are
usually generated by placing a clean logo icon at random positions in
background scene images, and importantly the logo bounding box and
class label supervision can be freely obtained. An attractive merit is
that, a potentially infinite number of synthetic images can be produced.
This previous method, however, suffers from a domain shift problem —
synthetic training images differ from realistic testing imagery in distri-
bution. It leads to significant degradation in model performance (Pan
and Yang, 2010). Solving this training–testing domain shift problem is
critical, particularly for improving the model performance on 1-shot
icon supervised logo classes.

3.1. Multi-perspective cross-class alignment

To address the aforementioned problem, we introduce a Multi-
Perspective Cross-Class (MPCC) alignment method. The high-level idea
is to transfer the knowledge of fully supervised logo classes to 1-shot
icon supervised logo classes. Designed as a generic plug module, it can
be integrated into existing object detection networks.

Training data. Three types of training data are considered in MPCC:
(1) Genuine training data of fully supervised logo classes including
both scene images and bounding box annotations. They can be used
to train a conventional logo object detection model. (2) Synthetic logo
training images for 1-shot icon supervised logo classes, due to the
lacking of standard training data. The labels of logo instances can be
obtained during synthesis and used for model supervised training. (3)
Non-logo object detection training images to augment the appearance
distribution of genuine object instances.

It is non-trivial to train an effective model using such heterogeneous
training data with different distributions. MPCC solves this problem
from a domain adaption perspective, with an overview depicted in
Fig. 3.

3.1.1. Model architecture
Overall, we adopt the two-stage model design for logo detec-

tion (Ren et al., 2015). Taking as input a specific training image, we
compute feature maps, predict region proposals, extract feature vectors,
and perform classification and box regression. This method assumes
that all the training data are drawn from the same distribution as the
test data, which however is not the case in open logo detection. In par-
ticular, this assumption does not hold for 1-shot icon supervised logo
classes. We introduce two feature alignment components to mitigate

this problem.
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Fig. 3. Overview of the proposed Multi-Perspective Cross-Class (MPCC) domain alignment method. MPCC takes as input (a) genuine logo and non-logo object scene images, as well
s synthetic logo images of 1-shot icon supervised classes. (b) The baseline detection model (e.g. Faster R-CNN) then extracts feature maps, detects region proposals, and compute
eature representations for each proposal. Along with the conventional classification and bounding box regression loss, two domain alignment loss functions are further introduced:
c) one for aligning genuine and synthetic object instances, (d) and the other for aligning logo and non-logo object instances.
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.1.2. Alignment between genuine and synthetic images
We propose cross-class distribution alignment between fully super-

ised and 1-shot icon supervised logo classes. This aims to address the
onventional model learning bias towards the distribution of synthetic
raining data of 1-shot icon supervised logo classes. We consider this
roblem as a domain adaption problem. Concretely, we regard genuine
ully supervised classes and synthetic 1-shot icon supervised classes as
wo distinctive domains.

In design, we exploit the idea of adversarial gradient learning
Ganin and Lempitsky, 2015) due to its simplicity and good efficacy.
e introduce a domain classifier that aligns the feature distributions

f genuine and synthetic logo object instances. It can be implemented
ith a fully connected layer.

We create a genuine–synthetic domain alignment problem as fol-
ows. We start by assigning the genuine logo instances of fully super-
ised classes with domain label ‘‘1’’, and the synthetic ones of 1-shot
upervised logo classes with label ‘‘0’’. We then want to train such the
odel that yields a feature representation space in which an optimal
omain classifier cannot distinguish between genuine and synthetic
nstances. This process is conducted in every mini-batch training. In
oing so, aligning the distributions of the two types of logo objects
an be well achieved. Consequently, the trained detection model is
upposed to have minimal bias towards synthetic logo objects and
ecome more generalisable when applied to the genuine images of
-shot icon supervised classes.
Loss design. We adopt the softmax based cross-entropy loss func-

ion in training. Formally, given an object instance 𝒙𝑖, we start by pre-
icting the domain class posterior probability 𝑝genu

𝑖 on the ground-truth
omain class label 𝑦𝑖 ∈ {0, 1} using the softmax function as:

𝑝genu
𝑖 =

exp(𝒘⊤
𝑦𝑖
𝒙𝑖)

∑

𝑘∈{0,1} exp(𝒘⊤
𝑘𝒙𝑖)

(1)

here 𝒘𝑘 specifies the classifier parameters of domain class 𝑘 ∈ {0, 1}.
The cross-entropy loss for a mini-batch of 𝑛𝑏 training objects is then
defined as:

genu
ad = −

𝑛𝑏
∑

𝑖=1
log(𝑝genu

𝑖 ) (2)

nterestingly, we still minimise the genu
ad loss as in standard training. To

achieve the effect that the detection model cannot distinguish genuine
objects from synthetic ones, we insert a gradient reversal layer before
the genuine–synthetic domain classifier.

3.1.3. Alignment between logo and non-logo images
As the size of fully supervised logo images is limited due to high

labelling cost, we propose to leverage auxiliary non-logo object imagery
to further enrich the distribution of genuine instances and improve the
effectiveness of feature alignment. However, this may introduce some
negative distracting effect due to the intrinsic difference between logo
 i

4

and non-logo objects in appearance. To achieve a consistent solution,
we consider again this problem from domain adaptation perspective.

Together with genuine–synthetic domain setup, we further intro-
duce logo–nonlogo domain alignment. Same as genuine–synthetic do-
main alignment, we employ the adversarial gradient concept. Differ-
ently, in this alignment we design the domain label based on if an object
instance belongs to logo or not. Specifically, we assign logo instances by
domain label ‘‘1’’ and non-logo instance by ‘‘0’’. We then leverage these
domain labels to align the feature distribution across logo and non-
logo instances. Conceptually, this scheme can be understood as a soft
regularisation constraint that encourages the model to selectively learn
information particularly useful for logo object detection in an implicit
manner.

Loss design. The same softmax based cross-entropy loss function is
used as above. We first estimate the domain class probability 𝑝logo

𝑖 of
an object instance 𝒙𝑖 on the ground-truth domain label 𝑦′𝑖 ∈ {0, 1} as:

𝑝logo
𝑖 =

exp(�̄�⊤
𝑦′𝑖
𝒙𝑖)

∑

𝑘∈{0,1} exp(�̄�⊤
𝑘𝒙𝑖)

(3)

here �̄�𝑘 denotes the classifier parameters of domain class 𝑘 ∈ {0, 1}.
he cross-entropy loss is then computed as:

logo
ad = −

𝑛𝑏
∑

𝑖=1
log(𝑝logo

𝑖 ) (4)

here 𝑛𝑏 is the batch-size. To realise adversarial gradient learning, we
imilarly deploy a gradient reversal layer before classification.

.1.4. Objective loss function
Combining the two alignment constraints with the conventional

bject detection loss det, we obtain the MPCC objective loss function
s:

mpcc = det + 𝜆1
logo
ad + 𝜆2

genu
ad (5)

here the hyper-parameters 𝜆1 and 𝜆2 control the relative importance
atio of the two adaptation loss terms. Note that, det typically consists
f a classification loss and a regression loss. As a model-agnostic design,
q. (5) can be integrated in existing detection models to boost open
ogo detection performance.

.2. Model implementation

In implementing our MPCC method, we adopt a ResNet-101 based
aster R-CNN (Ren et al., 2015) as the base detection model. The final
bjective function is an additive aggregation of Faster R-CNN detection
oss and our MPCC loss (Eq. (5)). The model can be trained end-to-end
y stochastic gradient descent. Other alternative models (Redmon and
arhadi, 2017; Lin et al., 2017) can be similarly considered.

We used the same method as (Su et al., 2018) to synthesise training
mages for 1-shot icon supervised logo classes (see examples in Fig. 2).
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Table 2
Open logo detection setting and data statistics.

Split Classes Train images Val images Test images

Fully supervised logo 176 10,586 1,561 3,121
1-shot icon supervised logo 176 0 0 3,649

To better generalise the detection model to 1-shot icon supervised
logo classes, we formulate the objective of RPN as binary (logo and
non-logo) classification. This is inspired by the idea of universal logo
detection (Tüzkö et al., 2018; Fehérvári and Appalaraju, 2019) – class
agnostic localisation models can learn the generic characteristics of
logo objects more strongly. Note that, we only use the manually la-
belled bounding boxes to minimise the loss of region proposal net.
The intuition is that, synthetic instances are with unrealistic background
context which may mislead model optimisation. This is verified in our
evaluation (see Table 7).

3.3. Computational complexity analysis

We analyse the computational complexity of MPCC on top of the
baseline method CAL (Su et al., 2018). As a model training strategy,
MPCC does not increase the inference cost for logo detection on test
images. It maintains the same inference cost as the base detection
model. MPCC does increase the cost of model training by 2.3 times,
due to more training data used. However, this should not be a big
limitation, since training takes place only once.

4. Experiments

Dataset and setting. To evaluate the proposed MPCC model, we
utilised the public QMUL-OpenLogo1 detection dataset (Su et al., 2018).
It contains a total of 27,083 images from 352 logo classes, established
by combining and refining seven previous logo datasets. To facilitate
model training, we adopted the second benchmark setting where 176
logo classes are fully supervised and the remaining 176 are 1-shot icon
supervised. Fig. 2 shows example scene images and logo icons. It is
noted that, in open logo detection, we focus more on the performance
evaluation of 1-shot icon supervised logo classes. The statistics for
train/val/test image sets are summarised in Table 2.

Performance metrics. For the performance evaluation of logo detec-
tion models, we used the common Average Precision (AP) for indi-
vidual logo classes, and the mean Average Precision (mAP) over all
classes (Everingham et al., 2010). We considered a logo detection as
being correct if the Intersection over Union (IoU) between the detected
and ground-truth boxes exceeds 50%.

Implementation details. For model optimisation, we adopted the
Adam solver (Kingma and Ba, 2014). We set the learning rate of
0.0002, the batch size of 2, the max epoch number of 5. Following Su
et al. (2018), we generated 100 synthetic images for each of 352
logo classes, resulting in 35,200 synthetic logo images. Three types of
training data were involved: 10,586 genuine logo images from QMUL-
OpenLogo, 35,200 synthetic logo images by synthetic data generation
with background images from FlickrLogo-32 (Romberg et al., 2011),
and 82,081 non-logo data from COCO 2014 benchmark (Lin et al.,
2014). The size ratio corresponds to 1.0:3.3:7.8. We also tested different
proportion configurations to verify their effect (Table 8). The model
hyper-parameters were setting as 𝜆1 = 0.1, and 𝜆2 = 0.1 for Eq. (5)
by cross-validation on the validation set. Concretely, we first cross-
validated 𝜆1 and 𝜆2 on the validation set; Once the hyper-parameters
were estimated, we merged the validation and training sets to train the
final model.

1 QMUL-OpenLogo: https://qmul-openlogo.github.io/
 t

5

4.1. Comparisons to the state-of-the-art methods

Competitors. We compared the MPCC with two synthetic data gen-
eration methods SCL (Su et al., 2017b) and CAL (Su et al., 2018) in
conjunction with two strong object detection models YOLOv2 (Redmon
and Farhadi, 2017) and Faster R-CNN (Ren et al., 2015). Moreover,
we further compared to a feature manipulation method (Sage et al.,
2017) based on Faster R-CNN. This method quantifies the latent vi-
sual attribute discrepancy between genuine and synthetic logo ob-
ject instances for improving the representation quality of synthetic
logo object instances by algebraic addition and subtraction vector
operations. The key idea is to represent the logo instances by la-
tent attributes that can be manipulated such that the corresponding
instances are accordingly transformed. Specifically, a general logo de-
tector was first trained with both genuine and synthetic logo data to
learn logo localisation. Second, a multi-label classifier is trained to
classify both the logo classes and genuine/synthetic labels of the logo
instances, thus the genuine/synthetic feature boundary was modelled.
Third, the genuine and synthetic data of the supervised logo classes
were fed into the model to extract their latent features which are
used to obtain their mean difference. In the evaluation stage, this
genuine–synthetic instance difference was transferred to the unsuper-
vised logo classes to bridge the gap of synthetic training data and
genuine test data. This model can be considered as a feature domain
alignment strategy in contrast to the adversarial learned MPCC method
for imagery pixel alignment. All these competitors were trained on
the same training data (if possible by design) for a fair compari-
son.

Quantitative evaluation. From Table 3, we conclude that:

1. CAL (Su et al., 2018) is superior to SCL (Su et al., 2017b)
by generating context more coherent synthetic images. This
superiority is consistent over two detectors. Both methods aim
to address the cross-class detection challenge by training data
synthesis. Despite random context sampling and rendering, the
domain mismatch between the genuine and synthetic images still
remain at large.

2. YOLOv2 (Redmon and Farhadi, 2017) is shown as a weaker
architecture than Faster R-CNN (Ren et al., 2015) for open logo
detection. The potential reason is that logo object instances vary
significantly in size, which makes the region proposal estimation
more necessary.

3. Feature manipulation (Sage et al., 2017) further improves the
performance, e.g. a mAP gain of 1.32% (19.95–18.63) with SCL
and 0.78% (21.09–20.31) with CAL. This suggests the efficacy
of such feature level alignment between synthetic and genuine
data.

4. MPCC achieves the best performance, indicating the overall
result superiority of our method thanks to the principled domain
adaptation between classes for supervision knowledge transfer
from both labelled logo classes and generic non-logo objects in
realistic context. This also reduces the necessity of rendering
logo context as implied by the smaller difference between using
SCL and CAL in MPCC.

ualitative evaluation. To visually assess the model performance, we
ompared MPCC (w/ CAL) with the best alternative model Feature
anipulation (w/ CAL) (Sage et al., 2017) in Fig. 4. We observed

imilar performance comparisons as the numerical evaluation above.
oreover, we also compared the feature distributions of genuine and

ynthetic logo images from the MasterCard class using two models
rained with and without the MPCC. Fig. 5 shows that MPCC can bring
bout a more immersed single overlapping region from the distributions
f the genuine and synthetic logo data whilst ‘‘without MPCC’’ their
istributions are in two more separable regions. This demonstrates
hat ‘‘with MPCC’’ the synthetic data are more effective for model

raining.

https://qmul-openlogo.github.io/
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Table 3
Open logo detection performance by MPCC and state-of-the-art methods. Metric: mAP.

Classes 1-shot supervised Fully supervised All

YOLOv2 (Redmon and Farhadi, 2017) + SCL (Su et al., 2017b) 12.75% 47.36% 30.06%
YOLOv2 (Redmon and Farhadi, 2017) + CAL (Su et al., 2018) 13.72% 46.60% 30.16%

Faster R-CNN (Ren et al., 2015) + SCL (Su et al., 2017b) 18.63% 49.16% 33.89%
Faster R-CNN (Ren et al., 2015) + CAL (Su et al., 2018) 20.31% 48.19% 34.25%

Faster R-CNN + SCL + Feature Manipulation (Sage et al., 2017) 19.95% 46.90% 33.43%
Faster R-CNN + CAL + Feature Manipulation (Sage et al., 2017) 21.09% 46.72% 33.91%

Faster R-CNN + SCL + MPCC (Ours) 23.40% 48.60% 36.00%
Faster R-CNN+ CAL + MPCC (Ours) 24.53% 49.41% 36.97%
Fig. 4. Five qualitative logo detection examples by Feature Manipulation (FM) (Sage et al., 2017) (2nd row) and MPCC (3rd row) along with the ground-truth (1st row). (a) Both
models correctly detect the logo instance; In (b) FM misses the target; In (c) FM produces a miss classification, whist MPCC succeeds; (d) FM fails to identify two ‘‘Lacoste’’ logo
instances, while MPCC misses the hard instance with significantly varied appearance on the bottom left; (e) Both models find the correct logo instance whilst making a false

positive detection.
Fig. 5. A visualisation of the t-SNE feature distributions of genuine (red circles) and
ynthetic (blue stars) logo images from the ‘MasterCard’ class with (left) and without

(right) the proposed MPCC method. It is evident that MPCC can bring about a more
immersed single overlapping region from the distributions of the genuine and synthetic
logo data whilst ‘‘without MPCC’’ their distributions are in two more separable regions.
This demonstrates that ‘‘with MPCC’’ the synthetic data are more effective for model
training..

4.2. Model component analysis

Genuine and synthetic domain adaptation. We examined the effect
of domain adaptation between genuine and synthetic training images.
Table 4 shows that it brings clear mAP gain to the models. This suggests
the significance of aligning the synthetic towards the genuine logo
training data, which is mainly caused by unrealistic image synthesis
in terms of both logo instance appearance and background context.

Table 4
Effect of genuine and synthetic domain adaptation.
genu

ad mAP

✕ 21.47%(SCL) / 23.24%(CAL)
✓ 23.40%(SCL) / 24.53%(CAL)
6

Logo and non-logo domain adaptation. We tested the benefits of
using non-logo object detection images (COCO) in a domain adaptation
manner. Table 5 shows a positive impact of this component in model
performance. This validates our design consideration of transferring
generic object instance supervision for enlarging the training data
and reducing the model overfit inclination towards the 1-shot icon
supervised logo classes.

Table 5
Effect of logo and non-logo domain adaptation.

Non-logo data logo
ad mAP

✕ ✕ 21.62%(SCL) / 21.82%(CAL)
✓ ✕ 21.01%(SCL) / 22.00%(CAL)
✓ ✓ 23.40%(SCL) / 24.53%(CAL)

Non-logo object image source. We evaluated the impact of non-logo
object image with two sources: 9,963 PASCAL VOC 2007 images (Ev-
eringham et al., 2015) vs. 82,081 MS COCO 2014 images (Lin et al.,
2014). Table 6 suggests that COCO serves as a better data source
as expected. The plausible reason is the availability of more labelled
genuine object detection images with richer contexts.

Table 6
Effect of non-logo object image source.

Non-logo image source mAP

PASCAL VOC 2007 22.02%(SCL) / 23.15%(CAL)
MS COCO 2014 23.40%(SCL) / 24.53%(CAL)

Synthetic box supervision. Recall that we deliberately ignore the
synthetic bounding box supervision of 1-shot icon supervised logo
classes in training the RPN function. We tested this design. Table 7
shows that using synthetic bounding box labels leads to a small model
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performance decrease. A plausible reason is due to less realistic context
within synthetic logo instances.

Table 7
Effect of synthetic box supervision (SBS).

SBS mAP

✓ 23.11%(SCL) / 24.22%(CAL)
✕ 23.40%(SCL) / 24.53%(CAL)

Training data configuration. Recall that we used three different
raining sets, including genuine logo images, synthetic logo images and
on-logo images, to train our model, with a proportion of 1.0:3.3:7.8.
o evaluate the effect of different data combinations, we further tested
hree more proportional configurations by halving one of the three
raining sets, individually. Table 8 shows that reducing the amount
f any type of training data would negatively affect the model perfor-
ance. In particular, genuine data and non-logo data are most and least

mportant, respectively.

able 8
ffect of training data configuration.

Data configuration mAP

Default 23.40%(SCL) / 24.53%(CAL)
50% synthetic data 22.34%(SCL)/ 22.50%(CAL)
50% non-logo data 22.40%(SCL)/ 23.04%(CAL)
50% genuine logo data 20.71%(SCL) / 21.36%(CAL)

5. Conclusion

We presented a Multi-Perspective Cross-Class (MPCC) domain adap-
tation method for overcoming the domain shift problem of open logo
detection so that synthetic training images of 1-shot icon supervised
logo classes can be more discriminatively leveraged. This method scales
up existing logo detection models that rely on conventional supervised
learning due to no need for large labelled training data per class.
Compared to previous alternative methods, it solves the largely ignored
domain mismatch problem between synthetic and genuine logo images.
MPCC also leverages large auxiliary non-logo object detection images
for further improving the model generalisation capability on 1-shot icon
supervised logo classes. Empirical evaluations show the performance
advantages of our MPCC method over the state-of-the-art competing
methods on the standard QMUL-OpenLogo benchmark. We provided
component analyses to give insights on the design considerations of
our model.
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