
Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/pr

Person re-identification by unsupervised video matching

Xiaolong Maa,d, Xiatian Zhub, Shaogang Gongb, Xudong Xiea,⁎, Jianming Hua, Kin-Man Lamc,
Yisheng Zhonga

a Tsinghua University, China
b Queen Mary University of London, United Kingdom
c The Hong Kong Polytechnic University, Hong Kong
d China Academy of Electronics and Information Technology, China

A R T I C L E I N F O

Keywords:
Person re-identification
Action recognition
Gait recognition
Video matching
Temporal sequence matching
Spatio-temporal pyramids
Time shift

A B S T R A C T

Most existing person re-identification (ReID) methods rely only on the spatial appearance information from
either one or multiple person images, whilst ignore the space-time cues readily available in video or image-
sequence data. Moreover, they often assume the availability of exhaustively labelled cross-view pairwise data for
every camera pair, making them non-scalable to ReID applications in real-world large scale camera networks. In
this work, we introduce a novel video based person ReID method capable of accurately matching people across
views from arbitrary unaligned image-sequences without any labelled pairwise data. Specifically, we introduce a
new space-time person representation by encoding multiple granularities of spatio-temporal dynamics in form
of time series. Moreover, a Time Shift Dynamic Time Warping (TS-DTW) model is derived for performing
automatically alignment whilst achieving data selection and matching between inherently inaccurate and
incomplete sequences in a unified way. We further extend the TS-DTW model for accommodating multiple
feature-sequences of an image-sequence in order to fuse information from different descriptions. Crucially, this
model does not require pairwise labelled training data (i.e. unsupervised) therefore readily scalable to large
scale camera networks of arbitrary camera pairs without the need for exhaustive data annotation for every
camera pair. We show the effectiveness and advantages of the proposed method by extensive comparisons with
related state-of-the-art approaches using two benchmarking ReID datasets, PRID2011 and iLIDS-VID.

1. Introduction

In visual surveillance, associating automatically individual people
across disjoint camera views is essential. This task is known as person
re-identification (ReID). Cross-view person ReID enables automated
discovery and analysis of person-specific long-term structural activities
over widely expanded areas and is fundamental to many important
surveillance applications such as multi-camera people tracking and
forensic search. Specifically, for performing person ReID, one matches
a probe (or query) person observed in one camera view against a set of
gallery people captured in another disjoint view for generating a ranked
list according to their matching distance or similarity [1]. This is an
inherently challenging problem [1]. Most existing approaches [3–10]
perform ReID by modelling spatial visual appearance (shape, texture
and colour) of one or multiple person images. However, people
appearance is intrinsically limited due to the inevitable visual ambi-
guity and unreliability caused by appearance similarity among different

people and appearance variations of the same person from unknown
significant cross-view changes in human pose, viewpoint, illumination,
occlusion, and dynamic background clutter. This motivates the need of
seeking additional visual information sources for person ReID.

On the other hand, video (or image-sequence) data are often
available from visual surveillance cameras. Videos have been exten-
sively exploited for performing action and activity recognition by
extracting and modelling a variety of dynamic space-time visual
features [11,12]. However, action recognition differs fundamentally
from person ReID. First, it often aims to discriminate between different
action categories but tolerate the variance of the same action per-
formed by different people. In contrast, the objective of ReID is to
discriminate among different person identities regardless of actions by
the person. Moreover, action recognition methods often consider a pre-
defined set of action categories during both training/testing phases,
whereas person ReID models are required to generalise from the
training categories (identities) to previously unseen ones.
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Apart from action recognition, another closely related problem is
gait recognition [13]. Similar to ReID, gait recognition aims for
differentiating between distinct people by characterising people's
walking dynamics. Further, an advantage of gait recognition is no
assumption being made on either subject cooperation or person
distinctive actions. These characteristics are analogous in spirit to
person ReID. Nonetheless, existing gait recognition methods are
heavily subject to stringent requirements on person foreground
segmentation and accurate temporal alignment throughout a gait
image sequence (a walking cycle). Additionally, most gait recognition
methods do not deal well with cluttered background and/or random
occlusions with unknown covariate conditions [14] (Figs. 1 and 2).
Hence, person ReID in public spaces is inherently challenging for
existing gait recognition techniques.

This work aims to develop a video based person ReID approach,
without the need for exhaustively labelling people pairs across camera
views. To that end, one needs to extract and model reliably person-
specific space-time information from videos. This is non-trivial,
especially when the videos are captured from uncontrolled and
crowded public scenes. The specific challenges include: (1) The
starting/ending frames of individual videos may correspond to arbi-
trary walking phases. Thus, any two compared videos are mostly
unaligned. This misalignment leads to inaccuracy in people matching,
especially when the useful space-time information in person videos can
be very subtle. (2) Person videos have varying numbers of walking
cycles and a holistic matching between videos may yield suboptimal

recognition. While pose estimation and walking cycle detection may
help in theory, contemporary techniques [15,16] are still rather
unreliable for video data with distracting background and low imaging
quality. (3) Person image-sequences captured from public places can
consist of corrupted frames due to background clutter and random
inter-object occlusions (see Fig. 1). A blind trust and utilisation of all
visual data may degrade the person matching accuracy. Following [17],
we call this unregulated image-sequences. We wish to develop an
accurate person ReID method that does not require performing explicit
walking phase detection for videos neither occlusion estimation for
image frames. The main contributions of this study are:

1. We propose an unsupervised approach to person ReID based on
typical surveillance image-sequences. Our model differs significantly
from most conventional static image based methods (e.g. leveraging
dynamic space-time information versus static appearance informa-
tion), and also the recent DVR video ReID model [18] (e.g.
unsupervised versus supervised).

2. We present a new video representation particularly tailored for
person ReID. Specifically, this representation is built up on existing
action space-time features (e.g. histograms of oriented 3D spatio-
temporal gradient [19]) and spatio-temporal pyramids [20,21]. In
contrast to most visual features for action recognition which are
vectorial, our video representation is in form of sequence or time
series. This is specially designed for reliable selection based person
matching between cross-view unregulated video pairs with possibly

(b) Visually similar but different people(a) Appearance change across views
Fig. 1. The challenges of person re-identification in visual surveillance [1]. (a) The appearance of the same person may change significantly across disjoint camera views due to great
cross-camera variations in illumination, viewpoint, random inter-object occlusion and complex background clutter in typically-crowded public spaces. Each blue bounding box
corresponds to a specific person. (b) Different people may present largely similar visual appearance. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article).

Fig. 2. Example GEI features of PRID2011 [22] (top) and iLIDS-VID [17] (bottom) videos.
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ambiguous, incomplete and noisy observation.
3. We introduce an effective video matching algorithm, Time Shift

Dynamic Time Warping (TS-DTW) and its Multi-Dimensional
variant MDTS-DTW, for data selective based sequence matching.
Particularly, the proposed model computes the distance between two
videos by iteratively (1) altering their mutual time shift relation and
(2) then matching two partial segments of them. Importantly, our
method is capable of simultaneously performing sequence align-
ment, selecting best-matched segments, and fusing diverse informa-
tion for person ReID in a unified manner.

We show the effectiveness of the proposed approach on two
benchmarking image-sequence ReID datasets (PRID2011 [22] and
iLIDS-VID [17]) under both the closed-world and more realistic open-
world scenarios [23,9][9,23]. Extensive comparative evaluations were
conducted by comparing alternative sequence-matching person recog-
nition models including gait recognition [24] and dynamic time
warping [25], and the state-of-the-art person ReID methods including
SDALF [3], eSDC [6], DVR [18], RDL [26], and XQDA [27].

The remainder of this paper is organised as follows. In Section 2, we
discuss broadly the related studies. In Section 3, we present an
overview of our approach, followed by video representation in
Section 4, video matching in Section 5, and person re-identification
application in Section 6. Then, we depict the experimental settings in
Section 7 and provide comparative evaluations of our proposed
approach in Section 8. Finally, we conclude this study in Section 9.

2. Related work

2.1. Gait recognition

Gait recognition [13,28–31] has been extensively exploited for
people identification using video space-time features, e.g. correlation
based motion feature [32], and Gait Energy Image (GEI) templates
[33]. To improve gait representations, Veres et al. [34] and Matovski
et al. [35] suggest feature selection and quality measure. These
methods assume that image-sequences are aligned and captured in
controlled environments with uncluttered background, as well as
having complete gait cycles, little occlusion, and accurate gait phase
estimation. However, these constraints are often invalid in person
ReID context as shown in Figs. 2 and 7.

To handle often-occurring occlusion, Hofmann et al. [36] propose a
specific dataset for evaluating their negative influence on gait recogni-
tion performance. Meanwhile, a number of part-based methods [37–
39] are developed by assuming that matched people share common
observed parts (COPs). For relaxing this assumption, Muramatsu et al.
[40] reconstruct complete gait features from partially observed body
parts without sharing COPs. These methods rely on accurate body part
segmentation and occlusion detection, which is however over-demand-
ing for contemporary segmentation methods [15,16,41] given typical
ReID video data captured against uncooperative people and dynamic
scenes.

Main challenges for gait recognition arise from various covariate
conditions, e.g. carrying, clothing, walking surface, footwear, and
viewpoint. Beyond the attempts of designing and investigating gait
features invariable to specific covariates [13,42–44,14], more powerful
learning based methods have also been presented for explicitly and
accurately modelling the complex variances of gait structures. For
example, Martín-Félez and Xiang [45] exploit the learning-to-rank
strategy for jointly characterising a variety of covariate conditions in a
unified model. Whilst a learning process may help improve the gait
recognition accuracy, this strategy is heavily affected by the goodness of
gait features. On person ReID videos however, gait features are likely to
be extremely unreliable, as demonstrated in Fig. 2.

2.2. Temporal sequence matching

Temporal sequence matching is another alternative strategy. The
Dynamic Time Warping (DTW) model [25,46,47] and its variants
including derivative DTW [48,49], weighted DTW [50], are common
sequence matching algorithms widely used in data mining and pattern
recognition. Given two temporal sequences, it searches for the optimal
non-linear warp path between the sequences that minimises the
matching distance. However, the conventional DTW models assume
that the two sequences have the same number of temporal cycles
(phases) and are aligned at the starting and ending points/elements.
These conditions are difficult to be met in person videos from typical
surveillance scenes. Hence, directly using DTW variants to holistically
match these unregulated videos may be suboptimal. To further
compound the problem, there are often unknown occlusions and
background clutters that can lead to corrupted video frames with
missing and/or noisy observation thus potentially inaccurate distance
measurement.

In case of cyclic sequences, e.g. closed curves, the starting element
is often unknown and may be located by a greedy search or some
heuristic method [51]. However, there can exist more than one starting
elements for periodic sequences like people walking videos. Whilst
continuous dynamic programming or spotting [52] identifies both
starting/ending elements, it requires a good pre-defined threshold,
which however is not available in our person ReID problem. Single/
multi-shot and video based person ReID. Most existing ReID methods
[4–8,53–57] only consider one-shot image per person per view. This is
inherently weak when multi-shot are available, due to the intrinsically
ambiguous and noisy people appearance and large cross-view appear-
ance variations (Fig. 1). There are efforts on multi-shot ReID. For
example, Hamdoun et al. [58] propose to employ the interest points
cumulated across a number of images; Cong et al. [59] utilise the data
manifold geometric structures of multiple images for constructing
more compact spatial appearance description. Other attempts include
training a robust appearance model using image sets [60] and
enhancing local image region/patch spatial feature representation
[3,61-63]. In contrast to all these methods focusing on exploiting
spatial appearance information, this work explores space-time infor-
mation from available videos for person ReID.

Previous efforts of exploiting space-time dynamics for person ReID
are built on either gait recognition or action recognition. Specifically,
gait features are exploited for enriching appearance ReID representa-
tions in [64–67]. But these methods naturally share similar limitations
of gait recognition models, e.g. severely suffering from feature noises
inherent in ReID data. Recently, Wang et al. [17,18] partly solve this
problem by formulating a discriminative video ranking (DVR) model
using the space-time HOG3D feature [19]. However, this fragment-
based DVR model is limited as only a few local fragments from each
person image-sequence is exploited whilst the remaining data is totally
discarded. Critically, the DVR model is supervised, i.e. its model
construction requires a large number of cross-view matched people
for each camera pair. This renders DVR non-scalable for large-scale
networks with many camera pairs. Other video based ReID methods
[68,69] are also supervised and thus subject to the similar scalability
limitation as DVR.

2.3. Space-time visual features

Our person video representation is inspired by existing successful
action features and the DVR model [18], e.g. histograms of oriented 3D
spatio-temporal gradient (HOG3D) [19]. In contrast to most feature
vector based action representations [70–75,21,76], we represent
person videos with temporal sequences based representations. This
design is capable of (1) not only encoding the dynamic temporal
structures of motion, (2) but also selectively matching unregulated
person videos (see Section 5). While some action recognition models
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also regard videos as sequences of observation [77–81], their focus is
coarse temporal structure modelling alone.

To extract different granularities of localised temporal ordering
dynamics, we adopt the notion of temporal pyramids (see Fig. 4(b)).
Instead of using temporal sub-sampling to construct a temporal
pyramid [82,83], we segment videos with different sequence-element
lengths for preserving all possible dynamic information at all levels as
in [21,84]. However, our representation is different significantly from
the latter two because: (1) They use vector based representationswhilst
ours are sequential or temporal series; (2) They assume well segmented
videos as input (e.g. one action per video) whilst our person videos can
contain a varying numbers of walking action periods without any
temporal segmentation; (3) We additionally consider spatial pyramid
[20] at each temporal granularity and importantly data selection in
video matching.

3. Approach overview

Unlike most action recognition methods that represent each video
with a feature vector [11] or the image-sequence based person re-
identification (ReID) approach that describes each video with a set of
independent vectors [17,18], we consider person videos as sequences
of localised space-time dynamics for performing ReID. This allows to:
(1) Explicitly represent and model localised temporal motion dy-
namics; (2) Flexibly achieve temporal alignment between different
videos; (3) Facilitate data driven selective matching without any
supervision (see Section 5). All these capabilities are desired and
helpful for reliable person ReID by accurately characterising and
exploiting space-time dynamic information of person's walking beha-
viour recorded in unregulated videos with random inter-object occlu-
sions, arbitrary video duration and uncertain starting/ending phases,
and uncontrolled background clutter.

However, it is non-trivial to automatically detect and exploit identity-
sensitive space-time information from noisy video data, particularly in
an unsupervised manner. Critically, one needs to address the problems
of (1) how to extract rich dynamics information of people's walking
motion, and (2) how to suppress the negative influence of unknown
noisy observation, e.g. various types of occlusion and clutter in the
background. This is beyond solving the more common temporal
misalignment problem in video matching. To this end, we formulate a
novel unsupervised person re-identification method capable of extracting
multi-scale spatio-temporal structure information (Section 4), automa-
tically aligning sequence pairs and adaptively selecting/employing
informative visual data (Section 5) from noisy person videos captured
in non-overlapping camera views. This allows to relax the stringent
assumptions of existing gait recognition methods and overcome the
limitations of previous temporal sequence matching models, and result
in more accurate person recognition, particularly with incomplete and
noisy person videos captured in public spaces. Compared with the state-
of-the-art DVR re-id model, our method is able to extract and employ
much richer space-time cues from videos. Moreover, the proposed
method is unsupervised, as opposite to DVR which needs a large number
of cross-view matching pairs for every camera pair. Therefore, our
proposed method is more scalable to the real-world applications
involving large surveillance camera networks. Additionally, we further
consider information fusion from multiple feature-sequences each
capturing some different aspects of person video data. An overview
diagram of the proposed approach is presented in Fig. 3.

4. Structured video representation

4.1. Video sequentialisation

Suppose we have a collection of video (or image-sequence) pairs
Q Q{( , )}i

p
i
g

i
n
=1, where Qi

p and Qi
g denote the videos of person i

captured by two disjoint cameras p and g, and n the number of people.
Each video is defined as a set of consecutive frames I (e.g. obtained by
an independent person tracking process [85] with simple post-proces-
sing or not): Q I I= { , , …}1 2 , where the video length Q| | is varying as in
typical surveillance settings, independently extracted person videos do
not guarantee to have a uniform duration (arbitrary frame number),
nor the number of walking cycles and starting/ending phases.

Given varying-long videos with unknown and random noise, it is
ineffective to perform matching between two image-sequences holisti-
cally. A possible strategy [18] is: (1) Segmenting each video into
multiple independent fragments; (2) Selecting the optimal/best frag-
ment pairs for matching. This method, however, may lose potentially
useful information encoded in the discarded fragments. In this work,
we instead consider a richer representation for exploiting as much
space-time information from inherently noisy videos as possible.

Specifically, we divide uniformly each individual video Q into
multiple temporally localised slices with a small number l of image
frames. Different slice lengths l correspond to different temporal
granularities. Each slice encodes localised space-time information
about the walking characteristics of the corresponding person. As a
result, a video can be converted into a space-time slice-sequence
S s s= { , , …}1 2 (Fig. 4). This localised slice-based sequence represen-
tation has three advantages over the bag-of-fragments model [17]: (1)
It keeps the original sequential data form, whilst DVR only considers
each fragment of a sequence as an isolated instance without temporal
ordering among fragments. This allows us to enjoy the merits of
existing sequence matching algorithms, e.g. non-linear dynamic time
warping for handling the misalignment problem. (2) Alignment
between sequences (e.g. starting/ending with the same walking
phases) is made more robust due to the existence of a large number
of short localised slices corresponding to various walking phases. In
contrast, the bag-of-fragments strategy may suffer from fragilely
aligned fragment pairs at times when only a small number of
fragments are available from a video and the starting/ending phases
of fragments are not sufficiently diverse to match. (3) It provides
more flexible opportunities for selecting and exploring informative
localised space-time information irregularly distributed across the
original image-sequences, e.g. not only in the form of isolated
fragments. This is difficult for the bag-of-fragments representation
in DVR due to its hard video fragmentation and coarse fragment
selection mechanism.

4.2. Temporal pyramid

Since variations in walking styles may exist over various local
temporal extends, it is suboptimal to utilise video slices of a uniform
length. Also, fine-to-coarse localised temporal information is possible
to complement each other in expressing temporal structure dynamics,
as demonstrated in existing action recognition studies [21,84]. In light
of these considerations, we enrich our representation of person videos
by imposing a temporal pyramid structure, motivated by pyramid
match kernel [86] and its spatial extension [20].

Specifically, we use a set of video slice length for video sequentia-
lisation as:

L l l= {2 ,…,2 }h0 ( −1)t (1)

which corresponds to a temporal pyramid with ht levels/layers. Given a
video Qi, we generate a separate slice-sequence at each temporal
pyramid level. Thus, a total of ht slice-sequences S{ }i

l
l
h
=0

−1t can be
produced for each video Qi after applying this temporal pyramid
(Fig. 4(c)). During sequentialising a video, at any temporal pyramid
level, we discard the last few image frames of person videos if they are
not sufficient to form a slice. For example, suppose there is 56 frames
in a person video and the slice length is 10, we drop/ignore the last 6
frames as they are not enough for a complete slice of 10 frames.
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4.3. Spatial pyramid

After obtaining slice-sequences S s s= { ,…, , …}i1 of person video,
we need to consider how to represent their localised video slices si. This
is the same as deriving video representation for action recognition [11]
in that each slice can be considered as a tiny action video. We want to
capture localised spatio-temporal dynamic structures of people's walk-
ing. Apparently, the style or characteristics of walking motion is closely
related to the action of different body parts, e.g. head, torso, arms, legs.
Hence, we spatially decompose every slice into a grid of 2×5 uniform
cells which approximately correspond to the layout of all body parts
(Fig. 5(right)). This division allows to encode roughly detailed spatial
cues of individual parts into video slices.

Additionally, accurate ReID may need more fine-grained and subtle
spatially structured cues of people's walking behaviour. This is because
finer spatial decomposition provides more detailed information and
potentially complements coarse divisions.

To that end, we adopt the spatial pyramid match kernel [20], due to
its superior expressive capability shown in action recognition [72]. In
particular, we further split each cell into 2×2 smaller ones, resulting in
a grid of 40 cells on each slice (Fig. 5(left)). By repeating this process,
we can obtain a hs-level spatial pyramid. Together with temporal
pyramid, we call our video representation as “Spatio-Temporal
Pyramidal Sequence” (STPS). Next, we describe the dynamic feature
descriptor for numerically representing localised space-time cells
below.

4.4. Localised space-time descriptor

We consider the HOG3D feature [19] for representing video slices
due to its strong expressiveness for recognising different activities [87]
and importantly for distinguishing between distinct people [17,18].
Particularly, given a specific spatial division on any video slice s, we
first extract the space-time gradient histogram from each cell where 3D
gradient orientations are quantised using regular polyhedrons [19],
then concatenate them to form a HOG3D feature vector x for the slice s.

Note that there is 50% overlap between any two adjacent cells for
increasing robustness against tracking/annotation errors. As such, we
obtain a HOG3D feature-sequence X x x= { , , …}1 2 for a slice-sequence
S s s= { , , …}1 2 . Finally, we apply histogram equalisation for reducing
the effect of uneven illuminations. While other space-time descriptors,
such as motion boundary histograms (MBH) [88], are considerable, it
is beyond our scope to exhaustively discuss and evaluate a variety of
different space-time descriptors.

5. Unsupervised video matching

In this section, we describe the details of the proposed sequence/
video matching model for person ReID. We aim to formulate an
unsupervised model. As a result, the expensive cross-camera pairwise
labelling process for every camera pair can be eliminated for realising
good deployment scalability in reality. To that end, we select the well-
known Dynamic Time Warping (DTW) algorithm [25,89] as the basis
of our model due to: (1) Its great success and popularity in sequence
based data analysis; (2) Its simple but elegant modelling.

Fig. 3. Overview of the proposed unsupervised video matching approach for person ReID. (a) An input pair of person videos; (b) Construct video representation by video
sequentialisation (Section 4.1), temporal pyramid (Section 4.2), spatial pyramid (Section 4.3), and localised space-time descriptor computation (Section 4.4); (c) Obtained feature-
sequences; (d) Video matching by the proposed TS-DTW (Section 5.2) and MDTS-DTW (Section 5.3) models.

Fig. 4. Illustration of temporal pyramid and video sequentialisation. Note the colour-coded correspondence between (b) the temporal pyramid level and (c) the slice-sequence. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).

Level-0 Level-1

Extracting 
localised  
space-time  
descriptor

Fig. 5. Spatial pyramid structures on a temporally-localised video slice.
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Specifically, we derive a new sequence matching algorithm based on
the DTW model, called Time Shift Dynamic Time Warping (TS-DTW),
and further generalise TS-DTW to the multi-dimensional setting, i.e.
with multiple feature-sequences per person video. This formulation is
motivated by works in time delay based studies [90,91], multi-
dimension fusion [92], and neural networks (or deep learning) [93].
This proposed model is characterised with alignment free, data
selection, and information fusion. Before detailing our method, let us
first briefly describe the conventional DTW model.

5.1. Conventional DTW

In general, the DTW model [25,46,47,89] aims at measuring the
distance or similarity between two temporal-sequences by searching for
the optimal non-linear warp path. Formally, given two feature-
sequences X s s= { ,…, , …}p p

i
p

1 and X s s= { ,…, , …}g g
j
g

1 , we define a
warp path as:

W w w= { ,…, }d1 (2)

where the k-th entry w ww = ( , )k k
p

k
g indicates that the wk

p-th element
from Xp and wk

g-th element from Xg are matched. The warp path
length holds as: X X d X Xmax(| |, | |) ≤ < | | + | |p g p g . The symbol |·| denotes
the set size. We then define the sequence matching distance

X Xdist ( , )p g
dtw between Xp and Xg as:

∑X X
d

x xdist ( , ) = 1 dist ( , )p g

k

d

w
p

w
g

dtw
=1

el
k
p

k
g

(3)

with dist (·,·)el as the distance metric between two elements (or slices),
e.g. L1 or L2 norm, and d W= | | the warp path length. The objective of
DTW is to find the optimal warp path W* such that

W X X* = argmin dist ( , )W Ω
p g

∈ dtw (4)

where Ω is the set of all possible warp paths. This optimisation can be
realised using dynamic programming [94] subject to three constraints:
(1) bounding constraint: w = (1, 1)1 and X Xw = (| |, | |)d

p g ; (2) monotoni-
city constraint: w w w≤ ≤ …≤p p

d
p

1 2 and w w w≤ ≤ …≤g g
d
g

1 2 ; and (3) step-
size constraint: w w− ∈ (1, 0), (0, 1), (1, 1)k k+1 for k d∈ [1: − 1].

As indicated in the above bounding constraint, DTW assumes that
the starting and ending data elements of the two sequences are aligned.
However, this is mostly invalid in videos available for person ReID as
aforementioned. Moreover, DTW utilises all sequence element data for
distance computation, regardless the quality of individual elements.
This is likely to make the obtained distance sensitive to data noise often
present in typical ReID videos.

5.2. Time shift driven alignment and selective matching

To overcome the above limitations of DTW, we develop a new
model, Time Shift Dynamic Time Warping (TS-DTW), by introducing
additionally the notions of time shift and max-pooling into sequence
matching. Instead of matching two sequences X X( , )p g holistically at
one time as DTW, we perform iterative and partial matching. An
illustration of this time shift driven sequence alignment and matching
is depicted in Fig. 6. Specifically, given two feature-sequences Xp

(probe) and Xg (gallery), we temporally shift one sequence (say Xp)
against the other (Xg) from the beginning position (where only the
rightmost slice of Xp is utilised in matching with the leftmost slice of
Xg, e.g. tΔ = −2 as in Fig. 6), to the ending position (where the
rightmost slice of Xg is matched with the leftmost slice of Xp, e.g.

tΔ = 9 as in Fig. 6, and black dotted vertical lines indicate several (not
all) shift positions attempted during the entire shifting process). At any
shift tΔ , the alignment between partial segments X t(Δ )p and X t(Δ )g

(highlighted by the corresponding blue and red bounding box in Fig. 6)
is performed by the conventional DTW algorithm [89]. As such, a set of
local matching distances D X X t= {dist ( , , Δ )}p g

t Tdtw Δ ∈ (indicated as the

black hollow circles in Fig. 6) can be generated over all time shifts T.
Finally, we obtain the person video matching distance by taking
together all local ones as

X X X X tdist ( , ) = min {dist ( , , Δ )}p g
t T

p g
ts Δ ∈ dtw (5)

i.e. selecting the best-matched result. This time shift ensemble model is
inspired by the max-pooling layer in neural networks which aim at
summarising the responses of neighbouring groups of neurons [93].
We cope with a similar situation if sequence-element is thought of as
neuron and sequence-segment as group of neurons. Critically, the max-
pooling operation has data selection capability for guiding the super-
vised learning of neurons in neural network learning. Whereas our
objective is to achieve data selective sequence matching or recognition
in an unsupervised way, enjoying similar spirit but with a different
learning strategy.

5.2.1. Discussion
The data selection capability in our proposed matching algorithm

above is significant to accurately matching sequences, especially for
unregulated ReID videos from uncontrolled camera viewing conditions.
We summarise the key points for data selection below. First, we
automatically select the starting/ending walking poses, in contrast to
DTW which enforces the first and last elements of compared sequences
to be aligned so potentially introduces weak or noisy alignments into
distance computation. Moreover, we attempt many different partial
segments of Xp and Xg, and select the best-aligned parts for distance
estimation, different from DTW that uses all observed data regardless
of how good the constituent elements are. Thus, noisy elements can be
possibly suppressed in distance computation. These two abilities are
achieved by successively varying tΔ , since the element data of X t(Δ )p

and X t(Δ )g changes over time shifts. Apparently, the two benefits are
complementary to each other and their combination allows us to more
accurately match incomplete and noisy surveillance videos for person
ReID in an unsupervised manner, as demonstrated by our experi-
mental evaluations in Section 8.

5.3. Generalisation to the multi-dimensional setting

The TS-DTW model presented in Section 5.2 assumes one feature-
sequence per person video. This is the single-dimensional setting, a
special case of the multi-dimensional setting, e.g. ≥2 feature-sequences
per video [92]. The term “dimension ” here can be understood as a
specific way of extracting feature-sequence from videos. Our setting is
multi-dimensional (Fig. 4). Specifically, defining a dimension in our
context is related to one of the two aspects: (i) temporal pyramid (ht
levels); and (ii) spatial pyramid (hs levels); Thus, we have a total of
h h×t s dimensions (feature extraction ways). Note that, two feature-
sequences at different dimensions for the same video may have
different lengths, e.g. those extracted at different temporal pyramid
levels (Section 4.2).

Generally, there are two strategies to combine information from
multiple dimensions of sequences: (1) dependent, and (2) independent.
We will generalise our TS-DTW model to the multi-dimensional setting
using both strategies as detailed below.

5.3.1. Dependent fusion
The dependent fusion strategy assumes that: (1) feature-sequences of

a given video at different dimensions have the same length; (2) different
dimensions are strongly correlated one another, i.e. their warping paths
should be identical. Due to condition (1), we can not perform fusion of
multiple dimensions across different temporal pyramid levels with this
strategy. Consequently, we can only combine the hs dimensions from
different spatial divisions within each individual temporal pyramid level,
those extracted from the same slice-sequence.

Formally, when matching two slice-sequences of the same temporal
pyramid level: S s s= { ,…, , …}p p

i
p

1 from video Qp, and
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S s s= { ,…, , …}g g
j
g

1 from video Qg, we perform a joint sequence
alignment by using the feature data of all dimensions to compute the
distance between two elements si

p and sj
g as

∑s s α x xdist ( , ) = × dist ( , )i
p

j
g

k

κ

k i k
p

j k
g

el
D

=1
el ( , ) ( , )

(6)

where x i k
p
( , ) and x j k

g
( , ) are the feature data in the k-th dimension for si

p

and sj
g, respectively, κ is the total number of dimensions to be fused,

and αk defines the weight of the k-th dimension. To incorporate the
fine-to-coarse spatial information encoded in walking motion, we relate
the value of αk to the structure of spatial pyramid by setting

α = 2k
εk (7)

where ε h∈ [0, 1,…, − 1]k s denotes the spatial pyramid level of the k-th
dimension (see Fig. 5). This design is similar in spirit to pyramid kernel
matching [86]. All fused dimensions are at the same level of the
temporal pyramid whose structure is thus not considered here.

By replacing the single-dimensional distance dist (·,·)el of DTW with
Eq. (6), our TS-DTW model can be readily generalised to the multi-
dimensional scenario and performs dimension fusion dependently. We
call this dependently generalised model “MDTS DTW− D .”

5.3.2. Independent fusion
In contrast to the dependent fusion policy, the independent

counterpart assumes independent alignment behaviours among indi-
vidual dimensions by performing information combination in the
distance level. Importantly, this strategy is more flexible than the
former as it allows each dimension having their respective sequence
structure, e.g. the sequence length. Therefore, sequences across
different temporal pyramid levels can be combined in this fusion
way. Similarly, we further take into account temporal fine-to-coarse
structures and combine all dimensions to generate the final matching
sequence distance between two videos Qp and Qg via

∑Q Q β α Q Qdist ( , ) = × × dist ( , )p g

k

κ

k k k
p gI

=1 (8)

where β τ h= 2 , ∈ {0, 1,…, − 1}k
τ

k tk is the temporal pyramid level of
the k-th dimension (see Fig. 4), and Q Qdist ( , )k

p g the corresponding
matching distance using our TS-DTW model, i.e. Eq. (5). The para-
meters κ and αk are same as in Eqs. (6) and (7). We call this model
“MDTS DTW− I”

Usually, the two fusion strategies yield different matching results
over the same dimensions. This is because each dimension may capture
different aspects of video data and produce non-identical alignment
solutions, and thus result in different distance values. We will evaluate
and discuss their performances for person ReID in Section 8.

5.4. Model complexity

We analyse the video matching complexity of our TS-DTW model.
Formally, given two feature-sequences Xp and Xg, we need to compute
the matching distance between X t(Δ )p and X t(Δ )g with the time shift

t T X X XΔ ∈ = {−| | + 1,…, | | + | | − 1}p p g . X t| (Δ )|p (or X t| (Δ )|g ) lies in the
range of X X[1, min(| |, | |)]p g (see Fig. 6). Therefore, the total matching
complexity ψtsdtw of our TS-DTW model is

∑ψ ψ X t= (| (Δ )|)
t T

p
tsdtw

Δ ∈
dtw

(9)

where ψ X t(| (Δ )|)p
dtw refers to the matching complexity of DTW, which

is O X t(| (Δ )| )p 2 by the standard DTW model [89] and O X t(| (Δ )|)p by fast
variants [95]. As person feature-sequences are typically short (e.g. <25
on PRID2011 and <40 on iLIDS-VID), the entire matching process is
still efficient. Moreover, we can parallelise easily the matching process
over individual time shifts for further reducing the running time, as
they are independent against each other.

6. Person re-identification

Given a probe person video Q P∈p and a gallery set G Q= { }i
g

captured from two non-overlapping cameras, person ReID aims to find
the true identity match of Qp in G. To achieve this, we first compute the
space-time feature based distance Q Qdist ( , )p

i
gst between Qp and every

gallery video Qi
g with our TS-DTW (Eq. (5)) or MDTS − DTWD (Eq.

(6)) or MDTS − DTWI (Eq. (8)) model. In this way, we can obtain all
cross-camera pairwise video matching distances Q Q{dist ( , )}p

i
g

i
Gst
=1

| | .
Finally, we generate a ranked list of all the gallery people in ascendant
order of their matching distances, where the rank-1 gallery video is
considered to be the most likely true match of Qp.

6.1. Combination with the spatial appearance methods

The ReID matching distances computed by the proposed model can
be readily fused with those by other spatial appearance models. In

Fig. 6. Overview of our proposed time shift driven sequence alignment and matching. (For interpretation of the references to color in this figure, the reader is referred to the web version
of this article).
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particular, we incorporate our results Q Qdist ( , )p
i
gst into other appear-

ance based distance measures {dist }k
sp as

∑Q Q Q Q c Q Qdist ( , ) = dist ( , ) + × dist ( , )p
i
g p

i
g

k
k k

p
i
gfused st sp

(10)

where ci is a weighting assigned to the k-th method. Instead of cross-
validation, we simply set ck=1 for generality consideration since in
practice it is not always valid to assume the availability of pairwise
labelled data which is required by cross-validation.

As matching distances by distinct methods may lie in different ranges,
we normalise all per-probe pairwise distances Q Q Q Qdist ( , )/dist ( , )p

i
g

k
p

i
gst sp

to [0, 1] per method separately before performing fusion. Specifically, given
any matching distance dist* ∈ {dist , dist ,…,dist , …}k

st
1
sp sp , we rescale all

distances Q Q{dist*( , )}p
i
g

i
G
=1

| | with respect to a probe Qp as

Q Q
Q Q
Q Q

dist*( , ) =
dist*( , )

max({dist*( , )} )
p

i
g

p
i
g

p
i
g

i
G
=1

| |
(11)

where max(·) returns the maximal value of a set. Then, the final fused
distance can be expressed as

∑Q Q Q Q Q Qdist ( , ) = dist ( , ) + dist ( , )p
i
g p

i
g

k
k

p
i
gfused st sp

(12)

We will evaluate the complementary effect between space-time and
appearance features based person ReID methods in Section 8.

7. Experimental settings

7.1. Datasets

Two benchmark image sequence based person ReID datasets
(PRID2011 [22] and iLIDS-VID [17]) were utilised for evaluating the
performance of the proposed approach. Both datasets are challenging
due to the large cross-view covariates in view point, illumination
condition, and background noises. The dataset details are given below.

1. PRID2011. The PRID2011 dataset [22] includes 400 image se-
quences captured from 200 different people under two disjoint
outdoor camera views. Each image sequence contains 5–675 image
frames1 (Fig. 7a).

2. iLIDS-VID. The iLIDS-VID dataset [17] contains a total of 600
image sequences from 300 randomly sampled people, each with one
pair of image sequences from two indoor camera views. Every image
sequence has a variable length, e.g. consisting of 22–192 image
frames (Fig. 7b). Compared with PRID2011, this dataset has more
complex occlusion and background clutter.

7.2. Baseline methods

We compared our method with related state-of-the-art methods as
follows:

1. GEI-RSVM [24]: A state-of-the-art gait recognition model using
Gait Energy Image (GEI) feature [33] and the ranking SVM [96]
model.

2. DTW [89]: The widely used sequence matching algorithm -
Dynamic Time Warping. DTW measures the distance between
two sequences based on the optimal non-linear warping of ele-
ments across sequences.

3. DDTW [49]: In contrast to DTW directly comparing feature values
of elements that can be sensitive to diverse variations, DDTW
considers the global shape of sequences by matching the first

derivative of the original sequences. Besides, DDTW allows to avoid
singularities, i.e. a single element of one sequence may map with a
large partition of another sequence, which may lead to pathological
measures [48].

4. WDTW [50]: The weighted form of DTW model that also takes into
account the shape similarity between two sequences. Specifically,
WDTW introduces a multiplicative weight penalty on the warping
distance between elements during distance estimation. This may
suppress the negative influence of some outlier elements that are
far away in element index but happen to be well matched. This
model usually prefers close warping. We utilised a logistic weight
function of the warping index-difference abs(w − w )k

p
k
q as:

f w w( , ) =k
p

k
q

w w μ
1

1 + exp(−(abs( − ) − ) / 2)k
p

k
q , where μ is the half average-

length of two sequences Qp and Qg; wk
p and wk

q are the
corresponding aligned element index of the k-th warp path entry
(Eq. (2)).

5. SDALF [3]: A classic hand-crafted visual appearance ReID feature.
Both single and multiple shot cases are considered.

6. eSDC [6]: A state-of-the-art unsupervised spatial appearance based
ReID method, which is able to learn localised appearance saliency
statistics for measuring local patch importance.

7. Iterative Sparse Ranking (ISR) [97]: A contemporary weighted
dictionary learning based algorithm that iteratively extends sparse
discriminative classifiers in a transductive learning manner.

8. Regularised Dictionary Learning (RDL) [26]: The most recent
dictionary learning based unsupervised ReID model. It iteratively
learns the dictionary with the regularisation term updated in each
iteration so that the cross-view noisy correspondence can be
improved gradually.

9. SS-ColLBP [5]: A ranking SVM model [96] based ReID method
with one of the most effective features Colour & LBP [5].

10. MS-ColLBP [17]: A multi-shot extension of SS-ColLBP.
Specifically, the averaged Colour & LBP feature [5] over all image
frames of a video is used to represent the spatial appearance of the
person.

11. L1/L2-norm: The basic common distance metrics that can be very
competitive with other complex metrics in many cases [98]. For
matching two sequences, we remove the tail part of the longer one
to make the two sequences have an equal duration.

12. Kernelised Cross-View Discriminant Component Analysis
(KCVDCA) [99]: A competitive asymmetric distance learning
method capable of inducing camera-specific projections for trans-
forming unmatched visual features from different camera views to
a shared subspace wherein discriminative features can be then
learned and extracted.

13. Cross-View Quadratic Discriminant Analysis (XQDA) [27]: A
state-of-the-art static appearance feature based supervised person
ReID approach. Specifically, the XQDA algorithm learns simulta-
neously a discriminant low dimensional subspace and a QDA
metric on the derived subspace.

14. DVR [18]: The state-of-the-art image-sequence based person ReID
model which achieves the most competitive performance. In
particular, this supervised model is characterised by discriminative
fragment selection and exploitation for learning an effective space-
time ranking function.

7.3. Person ReID scenarios

We evaluated two person ReID scenarios, closed-world and open-
world:

1. Closed-World ReID: In this setting, all probe people are assumed to
exist in the gallery. In evaluations, we followed the data partition
setting as [17,18]. Specifically, for either PRID2011 or iLIDS-VID,
we split the entire dataset into two partitions: one half for training,

1 For a fair comparison with existing methods, we followed the setting in [17], i.e.
sequences of more than 21 frames from 178 people were selected and utilised in our
evaluations.
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and the other half for testing. Note that our model does not utilise
the training partition since it is unsupervised.

2. Open-World ReID: In addition, we evaluated a more realistic
scenario called open-world ReID [23]. Specifically, its key difference
from the closed-world case is that a probe person i P∈ is not
assumed to appear necessarily in the gallery G under the open-world
setting. This situation is more plausible to real-world ReID applica-
tions since we generally have no prior knowledge about whether one
person (in gallery) re-appears in certain (probe) camera views in
most applications, e.g. due to the complex topology structure of
camera networks. That is, P and G may be just partially overlapped
in different camera views. Similar data partitions as the closed-world
case were utilised, with the only difference that the gallery set of the
testing partition is reduced by one third (1

3
) of randomly selected

people (they are considered as imposters, only appearing in the
probe set), i.e. 60 gallery people on PRID2011 and 100 on iLIDS-
VID.

7.4. Evaluation metrics

For closed-world ReID, the conventional Cumulated Matching
Characteristics (CMC) curves were utilised for a quantitative perfor-
mance comparison between different methods [1]. For open-world
ReID, two separate steps are involved in performance evaluation under
the open-world setting [23]: (1) Detection - decide if a probe person
Q P∈p exists in the gallery or not; For convenience, we define
P P G= ⧹ , the probe people that are not included in the gallery G. (2)
Identification - compute the truly matched rates over only accepted
target people. Specifically, we utilised detection and identification rate
(DIR) and false accept rate (FAR) defined as:

τ k Q Q G Q k Q Q τ
G

DIR( , ) = |{ | ∈ , rank( ) ≤ , dist( , ) ≤ }|
| |

p g p g p

(13)

τ
Q Q P Q Q τ

P
FAR( ) =

|{ | ∈ , min dist( , ) ≤ }|

| |

p p
Q G

g p
∈g

(14)

where dist(·,·) refers to the cross-view distance score induced by some
person ReID model,Q g

the gallery person having the same identity (i.e.
true match) as the probe person Qp, and τ the decision threshold.

Q krank( ) =g
means that the true match Q g

is ranked at k in the
ranking list. Thus, given a rank k, a Receiver Operating Characteristic
(ROC) curve can be obtained by varying τ.

7.5. Implementation details

Since video slices are localised over time, the value of l (the shortest
slice length) should be small and related to the walking cycle length.
We fixed l=5 in that the process of a walking step takes around l2 = 10
frames. Whilst the size ht of the temporal pyramid largely depends on

video length, e.g. an over-large ht may lead to discarding many frames
during sequentialisation (thus causing potentially much information
loss), or very few slices produced for videos (with little temporal
ordering dynamics). Thus, ht is set to 2 accordingly. We utilised a 2-
level spatial pyramid, i.e. hs=2. This is because, our empirical experi-
ments suggest that the addition of one more spatial pyramid level
slightly degrades the model performance possibly due to the local patch
misalignment problem in over fine-grained spatial decomposition. The
distance metric between sequence elements dist (·,·)el is set as L1.

For obtaining stable statistics, we evaluated both person ReID
scenarios with 10 folds of experiments with different random training/
testing partitions on each dataset, and reported the averaged results.

8. Experimental results

8.1. Evaluation on our proposed approach

We evaluated the detailed aspects of the proposed video represen-
tation and sequence matching models for person ReID in the common
closed-world scenario, i.e. the ReID accuracies of our TS-DTW and
MDTS-DTW models using different parts of the proposed STPS
features. The results are reported in Table 1. It is evident that both
temporal and spatial pyramids are effective for person ReID and their
fusion with the proposed method can improve significantly the match-
ing accuracy. This is consistent with the finding in scene and action
recognition [20,21].

Specifically, given either of the two temporal pyramid levels, when
comparing with the coarse spatial pyramid level (SPL-1), the fine-
grained spatial division (SPL-0) produces similar result on PRID2011,
but significantly better accuracy on the more challenging iLIDS-VID. In
contrast, with the same SPL, two temporal pyramid levels (TPL-0 and
TPL-1) produce similar results. The plausible reason is that larger
spatial regions are more likely to be contaminated by random noise in a
crowded public space. When combining the matching results from
different dimensions/feature-sequences of the same temporal pyramid
level by either MDTS − DTWD or MDTS − DTWI, the ReID accuracy
can be improved similarly on both datasets. This suggests largely the
independence property among distinct sequence dimensions, i.e.
modelling their dependence does not bring any benefit in enhancing
ReID. Moreover, after the results from different temporal granularities
are fused by MDTS − DTWI, ReID accuracies are further increased
(note, MDTS − DTWD is not able to fuse image sequences of different
lengths, see Section 5.3). These evidences show good complementary
effect of different spatio-temporal pyramid levels and effectiveness of
our model in fusing information from multiple localised motion
patterns with different space-time extends. In the remaining evalua-
tions, we utilised our MDTS − DTWI model and the full STPS video
representation for comparison with the baseline methods.

(a) PRID2011 (b) iLIDS-VID
Fig. 7. Example person videos from the (a) PRID2011 [22] and (b) iLIDS-VID [17] datasets. In each dataset, every blue bounding box contains two videos from the same person
captured by two non-overlapping camera views. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
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8.1.1. Computational cost
Apart from person re-id accuracy, we also evaluated the computa-

tional cost of our MDTS − DTWI model on matching cross-view person
videos for ReID. Time was measured on a work station (Intel i7-4770K
CPU at 3.50 GHz and memory of 16 GB) with Matlab implementation
in Windows OS. Time analysis was conducted under the same experi-
mental setting as above. On average, matching each probe video
against the gallery set takes 5.26 s on PRID (89 gallery people) and
9.50 s on iLIDS-VID (150 gallery people). That is, the average match-
ing time for two person sequences is around 0.06 s. Note that, the
whole process above can be conducted in parallel over a cluster of
machines to further speed up model deployment.

8.2. Evaluation on closed-world person ReID

In this conventional setting, we performed comparative evaluations
with gait recognition, temporal sequence matching, and person ReID
approaches.

8.2.1. Comparing gait recognition and temporal sequence matching
methods

In Table 2, we compared our MDTS − DTWI model with a number
of state-of-the-art gait recognition and dynamic programming based
sequence matching methods. It is evident that the proposed model
outperforms both alternative strategies by a large margin on each
dataset. Specifically, the gait recognition method produces much better
ReID accuracy on PRID2011 than on iLIDS-VID. This is because, the
image sequences from the latter contain more background noise such
as clutter and occlusion which can contaminate the gait feature heavily
(see Fig. 2) . By automatically aligning starting/ending walking phases
and selecting best-matched sequence parts, our TS-DTW model allows
to better overcome this challenge. On the other hand, conventional
temporal sequence matching algorithms, e.g. DTW and its variants, can
only provide much weaker results than the proposed MDTS-DTW. This
is largely owing to: (1) ReID image sequences have different lengths

with arbitrary starting/ending phases, and incomplete/noisy frames.
Hence, attempts to match and utilise entire sequences inevitably suffer
from mismatching with erroneous similarity measurement; (2) there is
no explicit mechanism to avoid incomplete/missing data, typical in
crowded surveillance scenes.

8.2.2. Comparing person ReID methods
We compared our MDTS − DTWI method with contemporary

unsupervised and supervised ReID methods, and further evaluated
the complementary effect between appearance and space-time feature
based approaches.

8.2.2.1. Comparing unsupervised methods. Table 3 shows the
comparison among unsupervised ReID approaches. The proposed
MDTS − DTWI outperforms significantly all competitors on
PRID2011 and iLIDS-VID. Specifically, space-time feature based
methods (e.g. ours and L1/L2-norm) produce better ReID accuracies
than the remaining spatial appearance based methods, particularly on
the more challenging iLIDS-VID dataset. This suggests the inherent
challenge caused by the ambiguous and unreliable nature of people's
appearance in person ReID applications, and simultaneously the
exceptional effectiveness of space-time cues for people matching
when expressed and exploited effectively. In addition, the weak
performance by SDALF is largely because of the intrinsic difficulty in
designing general identity-discriminative hand-crafted appearance
feature given unknown cross-camera covariates. Through iteratively
learning and extending discriminative classifiers in ISR or modelling
localised saliency statistics in eSDC or exploiting iteratively cross-view
soft-correspondence in RDL, person ReID performance is greatly
improved. However, due to relying on static appearance information
alone, they are inherently sensitive to cross-camera viewing conditions,
e.g. with a severe perform degradation from PRID2011 to iLIDS-VID.

Table 1
The closed-world person ReID performance of the proposed TS-DTW (single-dimensional) and MDTS-DTW (multi-dimensional) model with different parts of our STPS video
representation. (TPL: Temporal Pyramid Level; SPL: Spatial Pyramid Level).

Dataset PRID2011 [22] iLIDS-VID [17]

Rank R (%) 1 5 10 20 1 5 10 20

TS-DTW(TPL0, SPL0) 36.7 59.1 73.5 84.7 23.3 51.5 65.2 79.6
TS-DTW(TPL0, SPL1) 32.5 63.8 75.4 84.9 12.3 37.0 53.2 68.5
MDTS − DTWD(TPL

0) 37.1 60.2 73.7 85.7 25.1 51.9 66.5 79.9
MDTS − DTWI(TPL

0) 39.2 60.8 75.3 86.6 25.9 52.7 67.1 79.1

TS-DTW(TPL1, SPL0) 34.2 58.9 74.4 86.1 23.8 49.5 62.7 78.4
TS-DTW(TPL1, SPL1) 32.4 61.7 77.0 87.2 16.5 40.7 53.4 68.7
MDTS − DTWD(TPL

1) 36.2 60.3 74.8 86.3 23.8 50.0 62.5 78.6
MDTS − DTWI(TPL

1) 37.2 61.7 75.2 87.0 24.3 50.1 62.4 78.5

MDTS − DTWI(full) 41.7 67.1 79.4 90.1 31.5 62.1 72.8 82.4

Table 2
Comparing gait recognition and sequence matching methods (closed-world scenario).

Dataset PRID2011 [22] iLIDS-VID [17]

Rank R (%) 1 5 10 20 1 5 10 20

GEI-RSVM [24] 20.9 45.5 58.3 70.9 2.8 13.1 21.3 34.5
DTW [89] 19.9 41.2 53.6 65.8 15.9 32.1 41.5 55.5
DDTW [49] 5.4 18.2 27.5 38.5 2.9 10.1 18.1 31.5
WDTW [50] 4.2 13.7 20.9 29.4 5.1 11.5 16.0 23.9

MDTS DTW− I 41.7 67.1 79.4 90.1 31.5 62.1 72.8 82.4

Table 3
Comparing unsupervised person ReID methods (closed-world scenario).

Dataset PRID2011 [22] iLIDS-VID [17]

Rank R (%) 1 5 10 20 1 5 10 20

L1-norm 26.4 47.5 57.8 73.7 19.3 39.2 51.9 66.5
L2-norm 23.3 46.7 57.5 73.6 15.6 37.7 49.0 63.1

SS-SDALF [3] 4.9 21.5 30.9 45.2 5.1 14.9 20.7 31.3
MS-SDALF [3] 5.2 20.7 32.0 47.9 6.3 18.8 27.1 37.3

ISR [97] 17.3 38.2 53.4 64.5 7.9 22.8 30.3 41.8
eSDC [6] 25.8 43.6 52.6 62.0 10.2 24.8 35.5 52.9
RDL [26] 29.1 53.6 66.2 76.1 11.5 26.2 34.3 46.3
MDTS DTW− I 41.7 67.1 79.4 90.1 31.5 62.1 72.8 82.4
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In contrast, our method mitigates this challenge by properly designing
and effectively exploiting dynamic space-time features, another
information source which presents better stability than the widely-
used appearance features.

8.2.2.2. Comparing supervised methods. We present the comparison
between our unsupervised MDTS − DTWI and previous supervised
methods in Table 4. It is found that space-time feature based methods
(i.e. DVR & ours) are less sensitive to crowded background than other
appearance feature based models particularly XQDA and KCVDCA,
when comparing the ReID performance on PRID and iLIDS-VID
(more busy and crowded, see Fig. 7) . This is partially attributed to the
selective matching strategy in the former models for extracting more
reliable space-time representations. Moreover, it is observed that our
method surpasses appearance based SS-/MS-ColLBP on two datasets
and XQDA/KCVDCA on iLIDS-VID, and produces competitive results as
video based DVR. Note that the DVRmodel exploits both space-time and
colour information in the price of exhaustive pairwise labelling whilst
our MDTS − DTWI method only utilises dynamic space-time cues
without the need for cross-view pairwise labelling. These comparisons
demonstrate the advantage and capability of our STPS video
representation and selective matching model in extracting and
exploiting identity-discriminative space-time information from noisy
person videos for relaxing the label availability assumption and
making better use of unregulated video data.

8.2.2.3. Evaluating complementary effect. We further evaluated how
well spatial appearance and space-time feature based ReID methods
complement each other. To this end, we integrated contemporary
unsupervised (eSDC, ISR and RDL) and supervised (MS-ColLBP,
KCVDCA and XQDA) appearance based approaches with DVR and our
MDTS − DTWI model (Eq. (10)) , respectively. The results are presented
in Table 5. It is observed that by fusing space-time feature based ReID
results of either DVR or ours, the matching accuracies of existing
appearance based methods can be significantly boosted. This confirms
the similar finding by [18] that, the combination of appearance and space-
time motion information sources can be very effective for person ReID as
they are largely independent in nature. Overall, XQDA+DVR achieves the
best performance on PRID2011 whilst KCVDCA+Ours and KCVDCA
+DVR perform similarly best on iLIDS-VID. This is as expected because
the combination with DVR doubly benefits much from effective modelling
on labelled data which contain strong discriminative information but very
expensive to acquire for every camera pair in reality. Once removing the
label availability assumption, the best results are obtained by eSDC+Ours
on iLIDS-VID and RDL+Ours on PRID2011. Under the unsupervised
setting, we observed a similar complementary effect as XQDA/KCVDCA
+DVR/Ours. This validates the efficacy of our ReID method in deriving
dynamic identity information from unregulated videos, independent of
and completing well the commonly used spatial appearance.

8.3. Evaluation on open-world person ReID

In this section, we evaluated the open-world ReID problem, a more
practical scenario compared to the above closed-world setting.
Different single ReID methods and their combinations were assessed
and reported in Table 6. The performance evaluation metric is
Detection and Identification Rate (DIR, Eq. (13)) with k = 1 (e.g.
Rank-1) at given False Accept Rates (FAR, Eq. (14)). For the
performance of single models, largely similar situations are found as
in the closed-world case. Particularly, for iLIDS-VID, the supervised
space-time ReID method DVR obtains the best results followed by our
approach and KCVDCA but ours is unsupervised. On PRID2011, our
method has the best DIR scores given low (≤10%) FAR rates (corre-
sponding to small τ in Eq. (14)). That means, our method can recognise
more accurately the true match at rank-1 when the false accept rate is
required to be small. This situation is mostly ignored in the current
ReID literature but very important in real-world applications, particu-
larly when a large number of probe people are given and high FARs are
not acceptable.

When fusing appearance and space-time feature based ReID
methods, the recognition scores across all FARs are greatly improved,
similar to the early observations. In particular, the best ReID accura-
cies are obtained by the combination of XQDA/KCVDCA and DVR/
Ours, assuming truth match labels are accessible. In the unsupervised
setting, RDL+Ours is the best on both PRID201 and iLIDS-VID.
Clearly, most findings in the closed-world scenario can be reflected in
the open-world setting, whilst some new different observations emerge
especially under strict false accept rate conditions. In general, all
comparisons above extensively validate the advantages and effective-
ness of the proposed video representation and selective matching
models for person ReID.

Table 4
Comparing supervised person ReID methods (closed-world scenario).

Dataset PRID2011 [22] iLIDS-VID [17]

Rank R (%) 1 5 10 20 1 5 10 20

SS-ColLBP [5] 22.4 41.8 51.0 64.7 9.1 22.6 33.2 45.5
MS-ColLBP [5] 34.3 56.0 65.5 77.3 23.2 44.2 54.1 68.8
DVR [18] 40.0 71.7 84.5 92.2 39.5 61.1 71.7 81.0
KCVDCA [99] 43.8 69.7 76.4 87.6 16.7 43.3 54.0 70.7

XQDA [27] 46.3 78.2 89.1 96.3 16.7 39.1 52.3 66.8
MDTS DTW− I 41.7 67.1 79.4 90.1 31.5 62.1 72.8 82.4

Table 5
Evaluating the complementary effect between space-time and appearance feature based
person ReID methods (closed-world scenario).

Dataset PRID2011 [22] iLIDS-VID [17]

Rank R (%) 1 5 10 20 1 5 10 20

DVR [18] 40.0 71.7 84.5 92.2 39.5 61.1 71.7 81.0
MDTS DTW− I 41.7 67.1 79.4 90.1 31.5 62.1 72.8 82.4

eSDC [6] 25.8 43.6 52.6 62.0 10.2 24.8 35.5 52.9
eSDC+DVR [18] 44.3 68.4 78.2 91.1 29.5 54.0 66.4 78.4
eSDC

+MDTS DTW− I

48.0 69.9 82.0 91.8 33.5 64.1 74.2 83.5

ISR [97] 17.3 38.2 53.4 64.5 7.9 22.8 30.3 41.8
ISR+DVR 43.8 63.3 72.5 81.3 30.0 46.0 55.1 63.6
ISR+MDTS DTW− I 46.2 66.7 72.6 83.3 33.1 51.5 58.7 69.7

RDL [26] 29.1 53.6 66.2 76.1 11.5 26.2 34.3 46.3
RDL+DVR 58.9 79.7 87.5 93.6 31.7 56.9 67.7 80.5
RDL+MDTS DTW− I 59.2 82.7 88.4 94.9 35.3 63.4 73.9 83.3

MS-ColLBP [5] 34.3 56.0 65.5 77.3 23.2 44.2 54.1 68.8
MS-ColLBP+DVR 44.8 66.9 77.1 89.9 39.5 61.0 72.7 82.8
MS-ColLBP

+MDTS DTW− I

47.8 67.5 79.9 91.0 44.1 69.9 79.1 88.8

KCVDCA [99] 43.8 69.7 76.4 87.6 16.7 43.3 54.0 70.7
KCVDCA+DVR 65.7 88.1 93.4 97.3 54.9 76.8 83.7 91.3
KCVDCA

+MDTS DTW− I

71.0 89.0 93.8 97.5 50.6 77.0 85.6 92.6

XQDA [27] 46.3 78.2 89.1 96.3 16.7 39.1 52.3 66.8
XQDA+DVR 77.4 93.9 97.0 99.4 51.1 75.7 83.9 90.5
XQDA

+MDTS DTW− I

69.6 89.4 94.3 97.9 49.5 75.7 84.5 91.9
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9. Conclusion and future work

9.1. Conclusion

In this work, we presented a video matching based person ReID
framework. This is achieved by (1) developing an effective spatio-
temporal pyramids based video representation, called Spatio-Temporal
Pyramid Sequence (STPS), for encoding more effective and complete
space-time information available in person video data; and (2)
formulating a novel Time Shift Dynamic Time Warping (TS-DTW)
model and its Multi-Dimensional extension named MDTS-DTW for
selective matching between pairs of inherently incomplete and noisy
image sequences from two disjoint camera views. Our method also
shows significant complementary effect on previous spatial appearance
based ReID approaches for obtaining favourable ReID accuracies.
Importantly, our model is unsupervised and does not require exhaus-
tive cross-view pairwise data annotation for every camera pair in model
building. Under both the closed-world and open-world ReID scenarios,
extensive comparative evaluations have demonstrated clearly the
advantages of the proposed approach over a wide range of contempor-
ary state-of-the-art gait recognition, temporal sequence matching,
supervised and unsupervised ReID methods.

9.2. Future work

Our future work for the unsolved person ReID problem includes:
(1) How to introduce other complementary schemes beyond time shift
based data selection for further suppressing noisy observations caused
by background distractions; (2) How to exploit effectively extra types of
information (e.g. semantic text from human or correlated sources) as
computing constraints for improving the matching performance.
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