
Pattern Recognition 114 (2021) 107862 

Contents lists available at ScienceDirect 

Pattern Recognition 

journal homepage: www.elsevier.com/locate/patcog 

Hierarchical distillation learning for scalable person search 

Wei Li a , Shaogang Gong 

a , Xiatian Zhu 

b , ∗

a School of Electronic Engineering and Computer Science, Queen Mary University of London, London E1 4NS, UK 
b Vision Semantics Limited, London E1 4NS, UK 

a r t i c l e i n f o 

Article history: 

Received 23 March 2020 

Revised 16 November 2020 

Accepted 24 January 2021 

Available online 1 February 2021 

Keywords: 

Person search 

Person re-identification 

Person detection 

Knowledge distillation 

Scalability 

Model inference efficiency 

a b s t r a c t 

Existing person search methods typically focus on improving person detection accuracy. This ignores the 

model inference efficiency, which however is fundamentally significant for real-world applications. In this 

work, we address this limitation by investigating the scalability problem of person search involving both 

model accuracy and inference efficiency simultaneously. Specifically, we formulate a Hierarchical Distil- 

lation Learning (HDL) approach. With HDL, we aim to comprehensively distil the knowledge of a strong 

teacher model with strong learning capability to a lightweight student model with weak learning capa- 

bility. To facilitate the HDL process, we design a simple and powerful teacher model for joint learning of 

person detection and person re-identification matching in unconstrained scene images. Extensive experi- 

ments show the modelling advantages and cost-effectiveness superiority of HDL over the state-of-the-art 

person search methods on three large person search benchmarks: CUHK-SYSU, PRW, and DukeMTMC-PS. 

© 2021 Published by Elsevier Ltd. 
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. Introduction 

Person search considers the problems of person detection and 

erson re-identification (re-id) simultaneously [1,2] . It is valid and 

ecessary due to that the practical application of person re-id re- 

ies heavily on person detection. The detection quality of persons 

n the surveillance scene images affects the re-id performance 

argely. For example, missing detection causes the inability of per- 

on re-id on the corresponding person instance, and misalignment 

ntroduces noise or information loss to person re-id. 

In addition to person matching accuracy, this task joining by 

erson search also expands the scope for model efficiency consid- 

rations. Conventionally, person search efficiency is mostly consid- 

red in person re-id model design, since person bounding boxes 

re assumed already available. This breaks the connection between 

erson re-id and person detection, therefore, losing their joint 

omputing opportunity for improving model efficiency. This issue 

s naturally solved in the person search problem setting. 

Model efficiency is fundamentally crucial for scalable person 

earch, due to the intrinsic large scale search requirement in real- 

orld deployment ( Fig. 1 ). The efficiency problem was initially in- 

estigated in the introduction of person search [1] , followed by 

 few followup joint learning model designs [3–5] . However, all 

hese existing methods are significantly outperformed by indepen- 
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ent learning competitors [6,7] . Moreover, some of the joint learn- 

ng methods [3,5,8] are even not necessarily more efficient than in- 

ependent learning, because of their query-specific search design 

ature. That is, the model needs to conduct an independent search 

rocess in every whole scene image for every query person, with 

he search cost proportional to the quadratic pairwise combination 

i.e. multiplication) of the query and gallery samples. This implies 

otentially even more inefficient solutions than simpler indepen- 

ent learning [3,5] , totally opposite to their original efficiency ob- 

ective. 

In the literature, only the OIM method [1] makes an initial at- 

empt for efficient person search. The key idea is that person de- 

ection and person re-id can share a large proportion of comput- 

ng cost by jointly using the low-level feature network layers. This 

s analogous to the core idea of Faster R-CNN [9] . After the OIM 

odel is trained, person detection and re-id feature extraction can 

e conducted jointly on the gallery data by a single network. It is a 

ne-off process, independent to the size of query images therefore 

uch more scalable than query-specific search models. However, 

he main focus of OIM is on how to exploit unlabelled person in- 

tances for improving re-id matching. This method does not fully 

nvestigate the significant model efficiency problem. This is partly 

ue to that its performance is somewhat weak, e.g. significantly 

nferior to the current state-of-the-art methods [6,7] . Overall, the 

calability problem including both model accuracy and inference ef- 

ciency for person search remains largely under-studied, despite its 

ignificant practical importance. 

In this work, we investigate the scalability problem for person 

earch. We explore the potential of knowledge distillation [10] by 

https://doi.org/10.1016/j.patcog.2021.107862
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
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Fig. 1. The significance of scalability in person search. Both sets of query persons and scene imagery are of large scale. 
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eveloping a Hierarchical Attention Learning (HDL) method. The 

ore idea behind the HDL is to transfer the person search knowl- 

dge of a heavy teacher model that can be optimised more dis- 

riminatively with stronger learning capability into a lightweight 

tudent model with weaker learning capability. Whilst knowledge 

istillation has been previously studied mostly in single label im- 

ge classification [10–13] , it has not been explored for the more 

omplex person search problem with two different tasks involved. 

o this end, we design a novel approach for distilling comprehen- 

ive knowledge in the teacher network hierarchy including feature 

epresentation, attention, and prediction. To facilitate distillation, 

e further develop a strong joint learning teacher model for en- 

uring the knowledge quality which is lacking in the literature, 

nd a structurally consistent and computationally efficient student 

odel. 

We make three contributions in this work: (1) We investi- 

ate for the first time the scalability problem involved in person 

earch. This is a fundamentally significant problem to be solved 

or scaling up the deep learning solutions to person search in the 

eal-world applications. (2) We formulate a Hierarchical Distilla- 

ion Learning approach for more discriminating knowledge transfer 

rom a stronger teacher model into an efficient student model. (3) 

e design a simple and effective teacher model for joint learning 

f person search, which largely facilitates the knowledge distilla- 

ion by avoiding knowledge transfer between structure inconsis- 

ent teacher and student models. Extensive experiments show the 

odel cost-effectiveness and performance advantages of our HDL 

ver the state-of-the-art alternative approaches on three person 

earch benchmarks: CUHK-SYSU [1] , PRW [2] , and DukeMTMC-PS 

14] . 

. Related work 

.1. Person re-identification 

Person re-identification (re-id) [15–18] is part of person search. 

ypically, re-id assumes the availability of person bounding boxes 

cross the supervised [19–26] , unsupervised [27–32] , and domain 

daptation [33–39] settings. This overlooks the opportunity for in- 

eracting person re-id and person detection. From the system de- 

loyment viewpoint, this is an incomplete problem design. More- 

ver, the existing re-id studies often ignore the correlation be- 

ween person detection and re-id matching. For example, miss- 

ng detection can cause a deemed failure of person re-id there- 

ore affecting the final search result. Poor person detection may 

egatively affect the re-id matching accuracy. Such considerations 

owever are totally missing in the current person re-id benchmark 

atasets [14,17,18] . The recent introduction of person search bench- 
2 
arks [1,2] aims to solve these issues by jointly considering person 

etection along with re-id matching in a single problem setting. 

.2. Person search 

Due to a more comprehensive problem formulation, person 

earch has gained increasingly more attention and research effort s 

3–7] since its establishment [1,2,40] . Existing methods are gener- 

lly fallen into two groups: (1) independent learning (IL) [6,7] and 

2) joint learning (JL) [1,3–5,8,41] based models. 

Thus far, the independent learning based person search meth- 

ds achieve the state-of-the-art performance [2,6,7] . They sepa- 

ate person detection and re-id matching by designing indepen- 

ent network models. Strong and computationally expensive CNN 

odels [42] are often selected in such designs for maximising the 

earch accuracy. One of the major disadvantages for these methods 

s costly deployment and slow execution. The model inference effi- 

iency can be further reduced due to the addition of auxiliary com- 

onents such as foreground segmentation and multi-branch fu- 

ion [7] . Although reaching good performance, this group of meth- 

ds are less scalable computationally therefore unsuitable for large 

cale deployments typically required in real applications. 

The joint learning based person search methods have been de- 

eloped with one of the main objectives as solving the above effi- 

iency limitation [1,3–5,8,41] . The methods in Xiao et al. [1] , 4 ] im-

rove the model inference speed by taking advantages of the Faster 

-CNN design. The key idea is to make person detection and re- 

d tasks share the low-level feature computation. NPSM [5] , RCAA 

3] and QEEPS [8] suggest query-specific person search strategies. 

GPS [41] learns contextual graph representations via coupling the 

argets and the background contexts. Opposite to their design ob- 

ectives for efficiency gain, these existing models all suffer from 

nother scalability limitation: every query-gallery pair needs to 

e processed independently. This means that the detection cost 

s proportional to the combination of query and gallery samples. 

nstead, person detection on all gallery images is conducted one- 

ff in Xiao et al. [1] , 4 ], therefore independent and scalable to any 

izes of query tasks. The efficiency of NPSM [5] is also significantly 

imited by the need of generating region proposals, e.g. EdgeBox 

43] . Besides, all these models are often less powerful than the IL 

ounterparts. 

In contrast to all the existing methods, we consider the scal- 

bility and cost-effectiveness problem of person search including 

oth model accuracy and inference efficiency. None of the previ- 

us methods are designed to address this problem, lacking suffi- 

ient model generalisation and/or inference efficiency. To this end, 

e explore the idea of knowledge distillation [10] . We also de- 

elop a simple and strong joint learning model that reaches the 
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Fig. 2. Overview of the proposed Hierarchical Distillation Learning (HDL) approach. The HDL process consists of two steps: (1) We first train the heavy teacher model 

( Section 3.2 ). See the details in Section 3.2 . (2) We then train the lightweight student model ( Section 3.3 ) by knowledge distillation from the teacher model. In test, we 

deploy the efficient student model for scalable person search. The symbols c j 
T 

and c j 
S 

( j ∈ { 0 , 1 , 2 , 3 } ) denote channel dimensions in the corresponding jth block of the 

teacher and student models. The first layers and standard detection loss functions in both teacher and student models are omitted for simplicity. T : Teacher; S : Student; 

PDN : Person Detection Network; ARM : Attention Residual Module; FD : Feature Distillation; AD : Attention Distillation; PD : Prediction Distillation. 
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erformance of the state-of-the-art independent learning method. 

his layouts a very competitive baseline method and inspires novel 

deas to the future works. 

. Hierarchical distillation learning 

For model training, we often collect m training scene images 

 = { I i } m 

i =1 
captured from multiple camera views. The annotation 

ncludes person bounding boxes Y box and identity labels Y id = 

 y i } n i =1 
on a total of n id training people, i.e. y i ∈ { 1 , . . . , n id } . A sin-

le unconstrained scene image may contain multiple (varying) per- 

on instances. The objective is to learn an efficient person search 

odel for simultaneous person detection and re-id matching. To 

his end, we formulate a Hierarchical Distillation Learning (HDL) 

pproach featured with comprehensive knowledge distillation and 

oint learning of person detection and person re-id (i.e. person 

earch) in unconstrained surveillance scene imagery data. An ar- 

hitectural overview of the proposed HDL method is depicted in 

ig. 2 . 

.1. HDL overview 

In design, the proposed HDL model takes the advantages of 

nowledge distillation [10] . Specifically, HDL consists of three com- 

onents: (1) A teacher model with a large size and great learn- 

ng capability, designed to realise a strong person search network 

 Section 3.2 ). (2) A student model with a small size and infe-

ior learning capability, developed for superior inference efficiency 

n deployment ( Section 3.3 ). (3) A hierarchical distillation learning 

trategy, formulated for comprehensive knowledge transfer from 

he stronger teacher model to the student model ( Section 3.4 ). This 

ddresses the hard-to-learn problem in training the small student 

odel. 

By deploying the student network as the final model in test 

ime, we are able to achieve both superior model generalisation 

apacity and model inference speed, i.e. higher cost-effectiveness 

uring deployment. 

.2. A strong joint learning teacher model 

By the means of knowledge distillation, the performance of the 

nal (student) model relies heavily on the strength of the teacher 

odel. That is, weaker teacher, weaker student. It is therefore criti- 

al and necessary to formulate a strong teacher model. To ease the 

istillation of person search knowledge, it is also desired that the 

eacher model can share a similar structure of the student model 

unctionally with the ability to jointly conduct both person detec- 

ion and re-id matching. This avoids distilling the knowledge from 

wo separate teacher networks (one for person detection, one for 
3 
erson re-id) to a single joint leaning student network, which is 

uch more difficult. 

Nonetheless, the only existing joint learning teacher model, 

IM [1] , is significantly inferior to the two-stage followup models 

6,7] . Therefore, using the OIM model as the teacher model will 

ead to a similarly weak student model. To address this issue, we 

ormulate a stronger yet simpler joint learning teacher model. 

Teacher model architecture Our teacher model is based on the 

esign idea of Faster R-CNN [9] with person search specific modifi- 

ation. Specifically, it consists of three parts: (i) feature subnet, (ii) 

erson detection subnet, and (iii) person re-id subnet. For design 

exibility, any standard deep convolutional networks [44,45] can 

e used as the stem network. In the follows, we detail the three 

arts. 

(I) Feature Subnet. To build the feature subnet, we use the 

ower part of the stem network starting from the first layer to 

he intermediate layer with 

1 
r down-sampling ratio. This subnet 

akes as input the scene image I ∈ R 

H×W ×3 ( H and W as im- 

ge height and width), and outputs the image-level features X f ∈ 

 

H 
r × W 

r ×c f ( c f feature channels). The output features are for both 

erson detection and re-identification tasks simultaneously. This 

odel structure sharing reduces the overall computational costs 

ith only a single unified forward pass needed. 

(II) Person Detection Subnet. We subsequently build a person 

etection subnet (e.g. region proposal net) on top of the output 

eatures for detecting candidates in a given scene image. The de- 

ails are as follows. With a 512 × 3 × 3 conv layer, we first make 

he features discriminating for person appearance. The followed is 

he anchor layer for per-feature-location person detection. To make 

t more effective for person class specifically rather than generic 

bject classes, we use eleven different anchor-box scales and only 

ne aspect ratio ( h w 

= 2 . 44 ) as [46] . Finally, we remove the redun-

ant detections by applying a Non-Maximum Suppression process. 

n training, the person detection is optimised jointly by a softmax 

ross-entropy classification loss and a spatial location regression 

oss. 

(III) Person Re-Id Subnet. We utilise the rest layers of the 

tem network to build person re-id subnet. It is based on the 

utputs of both feature and detection subnets. Specifically, we 

rst use RoIAlign [47] at a spatial scale of 7 × 7 to crop the 

etection regions from the output of the feature subnet. This 

ields the detection-level features X p ∈ R 

7 ×7 ×c f . X p is first pro- 

essed by batch normalisation, then used as the input of the 

erson re-id subnet to produce the identity discriminative features 

 

′ 
p ∈ R 

3 ×3 ×c p , where c p is the feature dimensions of the last layer 

n the stem network. To obtain the re-id feature x p ∈ R 

c p , we 

lobally pool X 

′ 
p followed by batch normalisation. In training, 

e introduce a softmax cross-entropy identity classification loss 
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Fig. 3. (a) A student’s building block contains three modules. Each module (b) in 

such a block consists of two conv layers. Layer type is indicated by background 

colour: grey for normal conv , and orange for depthwise separable conv layers. The 

three items in the bracket of a conv layer are: filter number, filter shape, and stride. 

BN: Batch Normalisation. ReLU: Rectified Linear Unit. (For interpretation of the ref- 

erences to colour in this figure legend, the reader is referred to the web version of 

this article.) 

Fig. 4. Attention residual module in knowledge distillation. 
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unction for re-id discriminative learning defined as: 

 ID = − 1 

N p 

N p ∑ 

i =1 

log ( ̄p 

i ) , (1) 

here N p specifies the number of persons detected in the current 

ini-batch training data. p̄ 

i is the posterior probability of the 

 th training person instance on the ground-truth identity class. 

pecifically, it is written as: 

p̄ 

i = 

exp ( p 

i ) ∑ 

i ∈Y id exp ( p 

i ) 
, (2) 

here p 

i is the identity class logits predicted by the identity 

lassification layer. 

In person search on unconstrained scene images, person detec- 

ion is often imperfect with inevitable false alarms and misalign- 

ent [1] . To mitigate this issue, we further impose a detection re- 

nement loss same as the person detection subnet, in conjugate 

ith the above re-id loss function. This refines the person localisa- 

ion and suppresses the wrong detections. 

Remarks. In this study, we aim for a simple but powerful 

eacher model. This is in contrast to most existing models that of- 

en become more complex making the model analysis and compar- 

son increasingly difficult. For instance, comparison between differ- 

nt models is mostly at the system level therefore less informative. 

y this simple teacher model we attempt to discourage this trend 

nd answer a question that how well a simple person search method 

an perform in a proper design , which is unfortunately lacking in the 

iterature. Interestingly, the proposed teacher model is surprisingly 

ffective although being simple. In comparison, our method has a 

ouple of significant merits: (1) More training friendly; (2) Poten- 

ially inspire new research ideas for developing novel joint learning 

erson search models. 

.3. An efficient joint learning student model 

One major weakness of using the standard CNN architecture in 

he teacher model (e.g. ResNet-50) is the high cost of model in- 

erence cost. Whilst facilitating to learn the discriminating feature 

epresentations, this is not desirable for large scale deployments. 

here is hence a need for developing a computationally more effi- 

ient student model. 

To that end, we design a lightweight building block based on 

epth-wise separable convolutions, inspired by efficient CNN mod- 

ls such as MobileNets [4 8,4 9] . The details of the student’s building

lock are shown in Fig. 3 . To build the entire student network, we

ust simply replace all levels of blocks of the teacher network by 

he proposed efficient blocks. This means that the student model 

dopts the teacher’s overall structure. 

Remarks. An important advantage of such a design is that, the 

eacher and student models are structurally consistent. This brings 

ignificant convenience for knowledge distillation, as described in 

he follows. 

.4. Hierarchical distillation learning 

Smaller networks are typically inferior for discriminating train- 

ng. To facilitate the learning of our student model, we propose 

 hierarchical distillation learning (HDL) strategy that can transfer 

omprehensively the teacher’s knowledge for helping the student’s 

raining. 

Specifically, our HDL method considers three levels of knowl- 

dge during distillation: feature, attention, and prediction. For en- 

bling attention distillation, we need an attention learning mech- 

nism for both the teacher and student models. In order to learn 

nd transfer richer attention knowledge distributed across different 
4 
ayers, we consider a module-wise attention design. That is, multi- 

le selected building blocks can be attended in a pyramid structure 

 Fig. 2 ). As a side benefit, this may also assist the feature represen-

ation learning of both models concurrently. 

Attention residual module Formally, the input to an attention 

odule is a 3-D tensor X 

j ∈ R 

h ×w ×c where h, w, and c denote 

he height, width, and channel dimensions, respectively; And j in- 

icates the block level of this module in the entire network. The 

ssence of attention learning is to estimate a salience weight map 

 

j ∈ R 

h ×w ×c of the same size as X 

j . In this work, we adopt the 

ttention Residual Module (ARM) design [50] due to its superior 

earning capability. It is formulated (see Fig 4 ) as: 

 

j = (1 + A 

j ) ∗ X 

j 
, (3) 

here H 

j ∈R 

h ×w ×c and X 

j ∈R 

h ×w ×c represent the modu- 

ated and original features, respectively. To further improve 



W. Li, S. Gong and X. Zhu Pattern Recognition 114 (2021) 107862 

c

l

e

k

 

e

n

w

i

d

t

w  

f

x

W

L

w

s

t

w

t

fi

t

t

L

T

t

d

a

t

e

e

l

L

w

s

t

g

w

o

s

a

g

i

o

i

j

t

i

t

j

t

d

t

r

c

3

i

p

f

L
w

t

a

H

l

t

m

L

w

b

3

t

f

c

c

t

s

o

c

l

b

f  

I  

s

t  

a

4

t

a

D

F

a

p

l

m

r

s

ost-effectiveness, we separate the spatial and channel attention 

earning as [20,51] . (I) Feature Distillation. Feature distillation 

ncourages the student to imitate the teacher’s representation 

nowledge. Formally, we denote X 

j 
S/T 

as the feature maps at the 

jth block level of the teacher ( X 

j 
T 

) or student ( X 

j 
S 
) network. For

fficiency gain, the student network often has fewer feature chan- 

els. As a result, X 

j 
S 

and X 

j 
T 

are not aligned in channel dimension, 

hich disables channel-to-channel distillation. To address this 

ssue, we consider a 2-D spatial collective distillation scheme by 

iscarding the channel dimension. Specifically, we first accumulate 

he feature tensor along the channel dimension as: 

f ( X 

j 
S/T 

) = 

∑ 

i 

| X 

j 
S/T 

(·, ·, i ) | 2 , (4) 

here X 

j 
S/T 

(·, ·, i ) is the i th feature channel of X 

j 
S/T 

. We then obtain

eature vectors by vectorisation: 

 

j 
S/T 

= v ec( f ( X 

j 
S/T 

)) 

e finally design the feature distillation loss as: 

 F D (�S ) = 

1 

2 

∑ 

j∈J 
‖ 

x j 
S 

‖ x j 
S 
‖ 2 

− x j 
T 

‖ x j 
T 
‖ 2 

‖ 2 (5) 

here �S denotes the parameters of the student model, and J the 

et of all block levels involved. (II) Attention Distillation. Atten- 

ion distillation aims for salience knowledge transfer. Specifically, 

e have the 3-D attention maps A 

j 
S 

and A 

j 
T 

from the student and 

eacher models at the jth level. Similar to feature distillation, we 

rst perform a channel-dimensional accumulation and vectorisa- 

ion by computing a 

j 
S/T 

= v ec( f ( A 

j 
S/T 

)) , then formulate the atten- 

ion distillation loss as: 

 AD (�S ) = 

1 

2 

∑ 

j∈J 
‖ 

a 

j 
S 

‖ a 

j 
S 
‖ 2 

− a 

j 
T 

‖ a 

j 
T 
‖ 2 

‖ 2 , (6) 

his essentially constrains the student model to mimic the at- 

ending behaviour optimised by the teacher model. (III) Pre- 

iction Distillation. By prediction distillation, the student model 

ttempts to simulate the high-level classification actions of the 

eacher model. Since the class space is the same for both mod- 

ls, their predictions are structurally consistent therefore allowing 

lement-wise alignment. Formally, we design the prediction distil- 

ation loss as: 

 PD (�S ) = t 2 
∑ 

i ∈Y id 
˜ p 

i 
S log 

˜ p 

i 
S 

˜ p 

i 
T 

(7) 

hich minimises the Kullback–Leibler divergence between the 

oftened per-identity predictions ˜ p 

i 
S (by student) and ˜ p 

i 
T (by 

eacher). The temperature parameter t controls the softening de- 

ree as: 

˜ p 

i 
S/T = 

exp ( p 

i 
S/T /t) 

∑ 

i ∈Y id exp ( p 

i 
S/T 

/t) 
(8) 

here p 

i 
S/T 

is the identity class logits predicted by the student 

r teacher model. As the gradient magnitudes produced by the 

oft targets ˜ p 

i 
S/T are scaled by 1 

t 2 
, we multiply this loss term by 

 factor t 2 . This is to ensure that the relative contributions of the 

round-truth and teacher probability distributions remain approx- 

mately unchanged. Remarks. The proposed HDL method is based 

n existing distillation techniques that have been explored in vary- 

ng context and problems [10,12,13,52] . However, they are rarely 

ointly modelled in a unified model. Therefore, their complemen- 

ary effects remain largely unknown. Moreover, the efficiency issue 

n person search is under-studied significantly, let alone exploiting 

he knowledge distillation notion. One main reason is that existing 
5 
oint learning person search models [1] are dramatically inferior, 

herefore lacking a strong teacher model to enable the knowledge 

istillation. We overcome this obstacle to person search and fur- 

her explore the potential of three fundamental distillation algo- 

ithms jointly for addressing the ignored and realistically signifi- 

ant scalability issue. 

.5. Model training 

As the conventional knowledge distillation, we start with train- 

ng the teacher model, followed by student training using the pro- 

osed HDL algorithm. 

Teacher model By joint learning person search, the loss function 

or the teacher network �T is formulated as: 

 (�T ) = L ID (�T ) + L DET (�T ) , (9) 

here L ID () is the cross-entropy loss for person identity classifica- 

ion, and L DET () the person detection loss including box regression 

nd binary-class classification. 

Student model To train the student model, we also exploit the 

DL loss functions in addition to the joint learning person search 

oss that same as Eq (9) . This aims to transfer the already-trained 

eacher’s knowledge. Formally, the loss function of the student 

odel �S is designed as: 

 (�S ) = (1 − λ0 ) ∗ L ID (�S ) + λ0 ∗ L PD (�S ) 

+ λ1 ∗ L AD (�S ) + λ2 ∗ L F D (�S ) 

+ L DET (�S ) , (10) 

here λ0 / 1 / 2 are three loss weighing hyper-parameters, estimated 

y cross-validation. 

.6. Network architecture details 

In this section, we provide the details of HDL network architec- 

ure. 

Teacher model We adopt a ResNet50 [42] as the stem network 

or the teacher model. It consists of four blocks (named conv2_x to 

onv5_x) each containing 3, 4, 6, 3 residual units. In particular, we 

hoose the first layer (conv1_x, i.e. 64 × 7 × 7 conv layer) to the 

hird block (conv4_x) as feature sub-network, and conv5_x as per- 

on re-id sub-network. The person detection sub-network is built 

n conv4_x. The channel dimensions for the four blocks (Fig 2 ) are 

 

0 
T 

= 256 , c 1 
T 

= 512 , c 2 
T 

= 1 , 024 , and c 3 
T 

= 2 , 048 , respectively. 

Student model For the student model, we use a 32 × 3 × 3 conv 

ayer with stride 2 as the input layer. To achieve a good balance 

etween efficiency and accuracy, we construct the corresponding 

our blocks by setting c 0 
S 

= 128 , c 1 
S 

= 256 , c 2 
S 

= 384 , and c 3 
S 

= 512 .

n each building block ( Fig. 3 ), we set the strides as s 1 = s 2 = 1 and

 3 = 2 . 

Attention module For both teacher and student models, we in- 

roduce a ARM unit at the end of each block (Fig 2 ). This forms an

ttention pyramid for richer salience learning. 

. Experiments 

Datasets To evaluate the proposed HDL model, we used 

hree person search benchmarks: CUHK-SYSU [1] , PRW [2] , 

nd DukeMTMC-PS which is newly introduced based on the 

ukeMTMC tracking dataset [14] . Example images are shown in 

ig 5 . We adopted the standard evaluation setting of CUHK-SYSU 

nd PRW ( Table 1 ). We re-purposed the DukeMTMC data into a 

erson search benchmark DukeMTMC-PS . The train/test ID split fol- 

ows the person re-id counterpart [53] . This dataset provides much 

ore training and test scene images than CUHK-SYSU and PRW, 

epresenting a more realistic and more challenging person search 

cenario. We will publicly release the DukeMTMC-PS dataset. 
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Fig. 5. Example query and unconstrained scene images from (a) CUHK-SYSU [1] , (b) PRW [2] , and (c) DukeMTMC-PS [14] . 

Table 1 

Data statistics of person search datasets. 

Dataset IDs Images 

ID Split Image split 

Train Test Train Test 

CUHK-SYSU 8432 18,184 5532 2900 11,206 6978 

PRW 932 11,816 482 450 5704 6112 

DukeMTMC-PS 1404 35,543 702 702 16,362 17,350 
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Table 2 

Performance evaluation on CUHK-SYSU . The gallery size is 100. IL: In- 

dependent Learning; JL: Joint Learning; T: Teacher; S: Student; R101: 

ResNet-101; G: GFLOPs ( 1 × 10 9 ); M: MFLOPs ( 1 × 10 6 ). 

Type Metric (%) Rank-1 mAP Cost (scene/person) 

IL MGTS [7] 83.7 83.0 > 1725.6G/52.8G 

CLSA [6] 88.5 87.2 > 410.7G/26.4G 

JL OIM [1] 78.7 75.5 410.7G/2.0G 

IAN(R101) [4] 80.5 77.2 1146.2G/2.0G 

NPSM [5] 81.2 77.9 –

RCAA [3] 81.3 79.3 –

QEEPS [8] 84.4 84.4 –

CGPS [41] 86.5 84.1 410.7G/2.0G 

HDL(T) 87.3 86.0 427.5G/2.1G 

HDL(S) 86.2 84.6 37.5G / 76.4M 

Fig. 6. Test mAP of varying gallery sizes on CUHK-SYSU. 
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Performance metrics For person detection, a bounding box was 

onsidered as correct if the overlap with the ground truth is over 

0% [1,2] . For person re-id, we used the Cumulative Matching Char- 

cteristic (CMC) and mean Average Precision (mAP). To evaluate 

he model inference efficiency, we adopted the common measure- 

ent of floating point operations (FLOPs) consumed by processing 

ne typical scene image and one person bounding box. 

Competitors For model performance comparisons, we considered 

ix state-of-the-art deep learning person search methods, including 

our joint learning model (OIM [1] , RCAA [3] , IAN [4] , NPSM [5] )

nd two independent learning models (MGTS [7] , CLSA [6] ). We did 

ot include other significantly inferior hand-crafted feature based 

lternative approaches in terms of both model performance and 

nference efficiency. 

Implementation details We conducted the experiments in the Py- 

orch framework. For model training, we adopted the SGD algo- 

ithm with the momentum set to 0.9, the weight decay to 0.0 0 05. 

e set batch size to 8 for CUHK-SYSU with input size of 800 × 800 

nd 4 for PRW and DukeMTMC-PS with input size of 1920 × 1080 . 

ean value padding was used for organising images into batches. 

or teacher model training, we set the epoch number to 60 and 

nitialised the learning rate at 0.005, with a decay factor of 10 at 

0th epoch. For student model training, we set the epoch num- 

er to 150 and initialised the learning rate at 0.005, with a de- 

ay factor of 5 every 50 epochs. We set the weights λ0 = 0 . 9 ,

1 = 2 × 10 4 , λ2 = 2 × 10 3 (Eq (10) ), and the temperature t = 4 (Eq

8) ) by cross-validation for all the experiments. The L 2 normalisa- 

ion was applied before computing the pairwise cosine similarity 

or re-id matching. 

.1. Comparisons to state-of-the-art methods 

Evaluation on CUHK-SYSU We reported the person search per- 

ormance on CUHK-SYSU with the standard gallery size of 100 

cene images in Table 2 . We made the following observations: 

1) Our teacher model HDL(T) achieves the second best rank-1 

ate and mAP among all competitors. In particular, the margin of 

DL(T) over all existing joint learning competitors are consistently 

ignificant. This suggests that the joint learning strategy is not 

ecessarily inferior to independent learning, even without adopt- 

ng sophisticated techniques like attention inference [5] and rein- 

orcement learning [3] . (2) By the proposed distillation method, 

ur student model HDL(S) can achieve very competitive perfor- 

ance, e.g. matching the state-of-the-art CGPS [41] and surpass- 

ng all other existing joint learning methods and one independent 

earning model MGTS [7] . This indicates the efficacy of the pro- 

osed distilling method in transferring the teacher’s knowledge. 

3) The proposed HDL(S) reaches the best model inference ef- 
6 
ciency, i.e. the superior cost-effectiveness benefits over all the 

lternative solutions. Note, we do not evaluate the model infer- 

nce cost for NPSM [5] , RCAA [3] and QEEPS [8] due to their

uery-specific search design, a less scalable strategy than query- 

ndependent search by all the other methods. (4) HDL(S) is over 

ne order of magnitude more efficient than all existing methods, 

hich facilitates large scale and cost-effective deployments. 

We further tested the model performance with the full gallery 

ize at 6978. This allows to evaluate larger scale search perfor- 

ance. Following the previous works, we compared the mAP re- 

ults. Fig. 6 shows similar observations as in Table 2 , suggesting 

hat the model performance advantages of HDL generalise to large 

cale search. 

Evaluation on PRW We compared the model performance on the 

RW benchmark. Overall, we obtained similar comparison obser- 

ations in Table 3 that our teacher model HDL(T) achieves the sec- 

nd best performance in both rank-1 and mAP rates. HDL(S) sim- 

larly approaches the accuracy levels of HDL(T) whilst significantly 

utperforming all existing joint learning competitors in addition to 

 great model efficiency advantage. This consistently indicates the 

ost-effectiveness and scalability superiority of our model over the 
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Table 3 

Performance evaluation on PRW . IL: Independent Learning; JL: Joint 

Learning; T: Teacher; S: Student; R101: ResNet-101; G: GFLOPs ( 1 ×
10 9 ); M: MFLOPs ( 1 × 10 6 ). 

Type Metric (%) Rank-1 mAP Cost (scene/person) 

IL MGTS [7] 72.1 32.6 > 1725.6G/52.8G 

CLSA [6] 65.0 38.7 > 1330.7G/26.4G 

JL OIM [1] 49.9 21.3 1330.7G/2.0G 

IAN(R101) [4] 61.9 23.0 3713.7G/2.0G 

NPSM [5] 53.1 24.2 –

HDL(T) 69.2 33.6 1381.6G/2.1G 

HDL(S) 64.4 28.2 121.4G / 76.4M 

Table 4 

Performance evaluation on DukeMTMC-PS . IL: Independent Learning; 

JL: Joint Learning; T: Teacher; S: Student; FRCNN + R50: Faster R-CNN 

+ ResNet-50; G: GFLOPs ( 1 × 10 9 ); M: MFLOPs ( 1 × 10 6 ). 

Type Metric (%) Rank-1 mAP Cost (scene/person) 

IL FRCNN + R50 68.9 42.7 > 1330.7/26.4G 

JL OIM [1] 50.5 34.5 1330.7G/2.0G 

HDL(T) 74.3 50.0 1381.6G/2.1G 

HDL(S) 71.8 45.5 121.4G / 76.4M 

Table 5 

Evaluating attention (A) learning. T: Teacher; S: Student. Setting: The 

gallery size for CUHK-SYSU is 6978. 

Dataset CUHK PRW Duke 

Metric (%) Rank-1 mAP Rank-1 mAP Rank-1 mAP 

T(w/o A) 68.5 63.8 62.1 26.3 69.9 44.3 

T(w/ A) 73.2 69.7 69.2 33.6 74.3 50.0 

Gain + 4.7 + 5.9 + 7.1 + 7.3 + 4.4 + 5.7 

S(w/o A) 42.6 38.6 50.6 16.8 56.5 26.2 

S(w/ A) 49.5 45.1 59.1 22.8 61.4 33.4 

Gain + 6.9 + 6.5 + 8.5 + 6.0 + 4.9 + 7.2 

e

s

m

P

a

f

p

i

r

s

s

a

F  

(

t

4

l

a

t

b

s

c

i

t

a

m

Table 6 

Evaluating different distillation. T: Teacher; 

S: Student. FD: Feature Distillation; AD: At- 

tention Distillation; PD: Prediction Distilla- 

tion. Setting: The gallery size for CUHK-SYSU 

is 6978. 

Distillation CUHK-SYSU 

FD AD PD Rank-1 mAP 

1 – – – 49.5 45.1 

2 � – – 58.1 54.1 

3 – � – 52.0 47.8 

4 – – � 65.8 62.6 

5 � � – 59.4 55.8 

6 � – � 66.4 63.0 

7 – � � 68.2 65.4 

8 � � � 70.0 66.4 

Table 7 

Evaluating different loss functions for model training. 

Model: Teacher model. Setting: The gallery size for CUHK- 

SYSU is 6978. 

Dataset CUHK-SYSU 

Metric (%) Rank-1 mAP FLOPs 

Softmax loss 73.2 69.7 1300.7G 

Centre loss 64.9 54.2 1300.7G 

Softmax + Centre loss 71.7 67.5 1300.7G 

Table 8 

Evaluating different attention mechanisms. Model: Teacher 

model. Setting: The gallery size for CUHK-SYSU is 6978. G: 

GFLOPs ( 1 × 10 9 ). 

Dataset CUHK-SYSU 

Metric (%) Rank-1 mAP FLOPs 

w/o attention 68.5 63.8 1300.7G 

Non-local attention [55] 73.5 69.9 + 133.2G 

Our attention 73.2 69.7 + 50.9G 
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xisting person search methods in a more challenging application 

cenario. 

Evaluation on DukeMTMC-PS We further evaluated the perfor- 

ance of our HDL model on the newly introduced DukeMTMC- 

S benchmark. Compared to CUHK-SYSU and PRW, test scene im- 

ges from this benchmark are more than two times larger, there- 

ore presenting a more challenging person search task. We com- 

ared with the only scalable joint learning competitor OIM and an 

ndependent learning baseline using Faster R-CNN+ResNet-50. The 

esults in Table 4 show the consistent performance and efficiency 

uperiority of HDL and the knowledge distillation efficacy from the 

tronger teacher model to the lightweight student model. Encour- 

gingly, HDL(S) even surpasses the independent learning model, 

aster R-CNN + ResNet50, by 2 . 9% (71.8–68.9) in Rank-1 and 2 . 8%

45.5–42.7) in mAP, in addition to more than one order of magni- 

ude inference efficiency advantage. 

.2. Further analysis and discussions 

Attention learning We evaluated the benefits of our attention 

earning design. It is evident from Table 5 that, both the teacher 

nd student models benefit significantly. In particular, our atten- 

ion learning not only improves the quality of teacher’s knowledge, 

ut also facilitates the knowledge transfer process given that the 

tudent acquires more gains in most cases. This verifies our design 

onsideration of integrating attention with feature and prediction 

n HDL. 

Knowledge distillation We examined the effect of different dis- 

illation and their combinations on CUHK-SYSU. Table 6 reveals 

 couple of observations: (1) Each distillation alone brings about 

odel improvements, with prediction distillation contributing the 
7 
ost. This is because as the model output the prediction en- 

odes the most discriminative abstraction information. (2) As the 

ow-level knowledge, transferring attention and feature further en- 

ances model learning on top of high-level prediction distillation. 

his verifies the complementary benefits of exploiting different 

odel knowledge in HDL design. 

Loss design We examined the effect of more complex loss design 

y additionally introducing the popular centre loss [54] on top of 

he original softmax loss. The teacher model was used in this ex- 

eriment. Table 7 shows that softmax loss outperforms both cen- 

re loss and softmax + centre loss on the CUHK-SYSU dataset. This 

uggests that feature distance based centre loss is less compatible 

ith softmax loss in person search context. 

Attention mechanism We further evaluated the effectiveness of 

ifferent attention mechanisms in our HDL framework. To that end, 

he more powerful non-local attention [55] was additionally tested 

nd compared. As shown in Table 8 , whilst slightly outperformed 

y non-local attention (73.5% vs. 73.2% in Rank-1, i.e. 0.3% gap), 

ur attention learning enjoys a significant computational cost ad- 

antage (133.2G vs. 50.9G). This suggests that non-local attention 

echanism scarifies largely the scalability for marginal accuracy 

ain. 

. Conclusion 

In this work, we present a novel Hierarchical Distillation Learn- 

ng (HDL) method for person search in unconstrained surveillance 

cene images. This method is designed particularly for addressing 
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he largely ignored scalability problem in person search. It is in 

ontrast to existing alternative methods that typically focus on 

odel performance improvement alone. Specifically, we formulate 

 comprehensive knowledge distillation method for transferring 

eature representation, attention map, and class prediction from a 

trong and heavy teacher model to a weak and lightweight student 

odel. This addresses the hard-to-optimise challenge for small 

odels. We also contribute a simple and powerful joint learning 

eacher model, potentially motivating the further development 

f new models of its kind. Extensive comparative evaluations 

ave been conducted on three large person search benchmarks. 

he results validate the scalability advantages of our HDL model 

ver a variety of state-of-the-art person search methods. We pro- 

ide in-depth component analysis to give the insights on model 

erformance gain and design rationale. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

cknowledgements 

This work is supported by the China Scholarship Council , the 

lan Turing Institute , and Innovate UK Industrial Challenge Project 

 98111-571149 ). We are especially grateful to the QMUL ITS Re- 

earch group for their support. 

eferences 

[1] T. Xiao , S. Li , B. Wang , L. Lin , X. Wang , Joint detection and identification feature
learning for person search, in: CVPR, 2017, pp. 3415–3424 . 

[2] L. Zheng , H. Zhang , S. Sun , M. Chandraker , Y. Yang , Q. Tian , Person re-identifi-
cation in the wild, in: CVPR, 2017, pp. 1367–1376 . 

[3] X. Chang , P.-Y. Huang , Y.-D. Shen , X. Liang , Y. Yang , A.G. Hauptmann , RCAA:
relational context-aware agents for person search, in: ECCV, 2018, pp. 84–100 . 

[4] J. Xiao , Y. Xie , T. Tillo , K. Huang , Y. Wei , J. Feng , IAN: the individual aggregation

network for person search, Pattern Recognit. 87 (2019) 332–340 . 
[5] H. Liu , J. Feng , Z. Jie , K. Jayashree , B. Zhao , M. Qi , J. Jiang , S. Yan , Neural person

search machines, in: ICCV, 2017, pp. 493–501 . 
[6] X. Lan , X. Zhu , S. Gong , Person search by multi-scale matching, in: ECCV, 2018,

pp. 536–552 . 
[7] D. Chen , S. Zhang , W. Ouyang , J. Yang , Y. Tai , Person search via a mask-guided

two-stream CNN model, in: ECCV, 2018, pp. 734–750 . 

[8] B. Munjal , S. Amin , F. Tombari , F. Galasso , Query-guided end-to-end person
search, in: CVPR, 2019, pp. 811–820 . 

[9] S. Ren , K. He , R. Girshick , J. Sun , Faster R-CNN: towards real-time object detec-
tion with region proposal networks, in: NIPS, 2015, pp. 91–99 . 

[10] G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural network, 
arXiv preprint arXiv: 1503.02531 (2015). 

[11] A. Romero, N. Ballas, S.E. Kahou, A. Chassang, C. Gatta, Y. Bengio, Fitnets: hints 

for thin deep nets, arXiv preprint arXiv: 1412.6550 (2014). 
[12] X. Lan , X. Zhu , S. Gong , Knowledge distillation by on-the-fly native ensemble,

in: NIPS, 2018, pp. 7528–7538 . 
[13] Y. Zhang , T. Xiang , T.M. Hospedales , H. Lu , Deep mutual learning, in: CVPR,

2018, pp. 4320–4328 . 
[14] E. Ristani , F. Solera , R. Zou , R. Cucchiara , C. Tomasi , Performance measures and

a data set for multi-target, multi-camera tracking, ECCVW, 2016 . 
[15] S. Gong , M. Cristani , S. Yan , C.C. Loy , Person Re-Identification, Springer, 2014 . 

[16] W.-S. Zheng , S. Gong , T. Xiang , Reidentification by relative distance compari-

son, IEEE TPAMI 35 (3) (2013) 653–668 . 
[17] L. Zheng , L. Shen , L. Tian , S. Wang , J. Wang , Q. Tian , Scalable person re-identi-

fication: a benchmark, ICCV, 2015 . 
[18] W. Li , R. Zhao , T. Xiao , X. Wang , Deepreid: deep filter pairing neural network

for person re-identification, CVPR, 2014 . 
[19] C. Liu , S. Gong , C.C. Loy , On-the-fly feature importance mining for person re-i-

dentification, Pattern Recognit. 47 (4) (2014) 1602–1615 . 

20] W. Li , X. Zhu , S. Gong , Harmonious attention network for person re-identifica-
tion, in: CVPR, 2018, pp. 2285–2294 . 

[21] W. Li , X. Zhu , S. Gong , Person re-identification by deep joint learning of mul-
ti-loss classification, IJCAI, 2017 . 

22] Y. Sun , L. Zheng , W. Deng , S. Wang , Svdnet for pedestrian retrieval, ICCV, 2017 .
23] Y.-C. Chen , X. Zhu , W.-S. Zheng , J.-H. Lai , Person re-identification by camera

correlation aware feature augmentation, IEEE TPAMI 40 (2) (2017) 392–408 . 
8 
24] W. Li , X. Zhu , S. Gong , Scalable person re-identification by harmonious atten-
tion, Int J Comput Vis 128 (2020) 1635–1653 . 

25] J. Meng , A. Wu , W.-S. Zheng , Deep asymmetric video-based person re-identifi- 
cation, Pattern Recognit. 93 (2019) 430–441 . 

26] C. Zhao , X. Wang , W.K. Wong , W. Zheng , J. Yang , D. Miao , Multiple metric
learning based on bar-shape descriptor for person re-identification, Pattern 

Recognit. 71 (2017) 218–234 . 
27] M. Li, X. Zhu, S. Gong, Unsupervised tracklet person re-identification, IEEE 

TPAMI 7 (42) (2020) 1770–1782, doi: 10.1109/TPAMI.2019.2903058 . 

28] M. Li , X. Zhu , S. Gong , Unsupervised person re-identification by deep learning
tracklet association, in: ECCV, 2018, pp. 737–753 . 

29] G. Wu , X. Zhu , S. Gong , Tracklet self-supervised learning for unsupervised per-
son re-identification, AAAI, 2020 . 

30] Y. Chen , X. Zhu , S. Gong , Deep association learning for unsupervised video per-
son re-identification, BMVC, 2018 . 

[31] X. Ma , X. Zhu , S. Gong , X. Xie , J. Hu , K.-M. Lam , Y. Zhong , Person re-identifica-

tion by unsupervised video matching, Pattern Recognit. (2017) . 
32] Y. Lin , X. Dong , L. Zheng , Y. Yan , Y. Yang , A bottom-up clustering approach to

unsupervised person re-identification, in: AAAI, 2019, pp. 8738–8745 . 
33] Z. Zhong , L. Zheng , Z. Luo , S. Li , Y. Yang , Invariance matters: exemplar memory

for domain adaptive person re-identification, in: CVPR, 2019, pp. 598–607 . 
34] Y. Chen , X. Zhu , S. Gong , Instance-guided context rendering for cross-domain 

person re-identification, in: ICCV, 2019, pp. 232–242 . 

35] J. Wang , X. Zhu , S. Gong , W. Li , Transferable joint attribute-identity deep learn-
ing for unsupervised person re-identification, in: CVPR, 2018, pp. 2275–2284 . 

36] P. Peng , T. Xiang , Y. Wang , M. Pontil , S. Gong , T. Huang , Y. Tian , Unsupervised
cross-dataset transfer learning for person re-identification, CVPR, 2016 . 

37] H.-X. Yu , A. Wu , W.-S. Zheng , Cross-view asymmetric metric learning for un-
supervised person re-identification, in: ICCV, 2017, pp. 994–1002 . 

38] A. Wu , W.-S. Zheng , J.-H. Lai , Unsupervised person re-identification by camer- 

a-aware similarity consistency learning, in: ICCV, 2019, pp. 6922–6931 . 
39] H.-X. Yu , W.-S. Zheng , A. Wu , X. Guo , S. Gong , J.-H. Lai , Unsupervised person

re-identification by soft multilabel learning, in: CVPR, 2019, pp. 2148–2157 . 
40] Y. Xu , B. Ma , R. Huang , L. Lin , Person search in a scene by jointly model-

ing people commonness and person uniqueness, in: ACM MM, ACM, 2014, 
pp. 937–940 . 

[41] Y. Yan , Q. Zhang , B. Ni , W. Zhang , M. Xu , X. Yang , Learning context graph for

person search, in: CVPR, 2019, pp. 2158–2167 . 
42] K. He , X. Zhang , S. Ren , J. Sun , Deep residual learning for image recognition,

CVPR, 2016 . 
43] C.L. Zitnick , P. Dollár , Edge boxes: locating object proposals from edges, in: 

ECCV, Springer, 2014, pp. 391–405 . 
44] S. Xie , R. Girshick , P. Dollár , Z. Tu , K. He , Aggregated residual transformations

for deep neural networks, in: CVPR, 2017, pp. 1492–1500 . 

45] G. Huang , Z. Liu , L. Van Der Maaten , K.Q. Weinberger , Densely connected con-
volutional networks, in: CVPR, 2017, pp. 4700–4708 . 

46] S. Zhang , R. Benenson , B. Schiele , Citypersons: a diverse dataset for pedestrian
detection, in: CVPR, 2017, pp. 3213–3221 . 

[47] K. He , G. Gkioxari , P. Dollár , R. Girshick , Mask R-CNN, in: ICCV, 2017,
pp. 2961–2969 . 

48] A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An- 
dreetto, H. Adam, Mobilenets: efficient convolutional neural networks for mo- 

bile vision applications, arXiv preprint arXiv: 1704.04861 (2017). 

49] M. Sandler , A. Howard , M. Zhu , A. Zhmoginov , L.-C. Chen , Mobilenetv2: in-
verted residuals and linear bottlenecks, in: CVPR, 2018, pp. 4510–4520 . 

50] F. Wang , M. Jiang , C. Qian , S. Yang , C. Li , H. Zhang , X. Wang , X. Tang , Residual
attention network for image classification, in: CVPR, 2017, pp. 3156–3164 . 

[51] J. Park , S. Woo , J.-Y. Lee , I.S. Kweon , BAM: bottleneck attention module, BMVC,
2018 . 

52] S. Zagoruyko , N. Komodakis , Paying more attention to attention: improving 

the performance of convolutional neural networks via attention transfer, ICLR, 
2017 . 

53] Z. Zheng , L. Zheng , Y. Yang , Unlabeled samples generated by GAN improve the
person re-identification baseline in vitro, in: ICCV, 2017, pp. 3754–3762 . 

54] Y. Wen , K. Zhang , Z. Li , Y. Qiao , A discriminative feature learning approach for
deep face recognition, in: ECCV, 2016, pp. 499–515 . 

55] X. Wang , R. Girshick , A. Gupta , K. He , Non-local neural networks, in: CVPR,

2018, pp. 7794–7803 . 

ei Li is working toward the Ph.D. degree at Queen Mary University of London. 
is research interests include person re-identification, object detection, and deep 

earning. 

iatian Zhu received his Ph.D. from Queen Mary University of London. He won The 

ullivan Doctoral Thesis Prize 2016, an annual award representing the best doctoral 
hesis submitted to a UK University in computer vision. His research interests in- 

lude computer vision and machine learning. 

haogang Gong is Professor of Visual Computation at Queen Mary University of 
ondon (since 2001), a Fellow of the Institution of Electrical Engineers and a Fellow

f the British Computer Society. He received his D.Phil (1989) in computer vision 

rom Keble College, Oxford University. His research interests include computer vi- 
ion, machine learning and video analysis. 

https://doi.org/10.13039/501100004543
https://doi.org/10.13039/100012338
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0001
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0001
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0001
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0001
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0001
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0001
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0009
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1412.6550
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0020
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0020
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0020
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0020
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0026
https://doi.org/10.1109/TPAMI.2019.2903058
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0034
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0034
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0034
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0034
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0037
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0037
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0037
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0037
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0038
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0038
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0038
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0038
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0039
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0039
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0039
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0039
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0039
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0039
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0039
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0040
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0040
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0040
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0040
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0040
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0041
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0041
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0041
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0041
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0041
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0041
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0041
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0042
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0042
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0042
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0042
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0042
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0043
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0043
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0043
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0044
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0044
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0044
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0044
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0044
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0044
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0045
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0045
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0045
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0045
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0045
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0046
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0046
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0046
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0046
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0047
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0047
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0047
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0047
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0047
http://arxiv.org/abs/1704.04861
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0049
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0049
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0049
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0049
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0049
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0049
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0050
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0050
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0050
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0050
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0050
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0050
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0050
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0050
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0050
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0051
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0051
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0051
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0051
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0051
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0052
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0052
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0052
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0053
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0053
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0053
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0053
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0054
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0054
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0054
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0054
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0054
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0055
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0055
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0055
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0055
http://refhub.elsevier.com/S0031-3203(21)00049-2/sbref0055

	Hierarchical distillation learning for scalable person search
	1 Introduction
	2 Related work
	2.1 Person re-identification
	2.2 Person search

	3 Hierarchical distillation learning
	3.1 HDL overview
	3.2 A strong joint learning teacher model
	3.3 An efficient joint learning student model
	3.4 Hierarchical distillation learning
	3.5 Model training
	3.6 Network architecture details

	4 Experiments
	4.1 Comparisons to state-of-the-art methods
	4.2 Further analysis and discussions

	5 Conclusion
	Declaration of Competing Interest
	Acknowledgements
	References


