

Person Re-Identification by Joint Learning of Multi-Loss Classification

Wei Li, Xiatian Zhu, Shaogang Gong

Queen Mary University of London

{w.li, xiatian.zhu, s.gong}@qmul.ac.uk

Model Design

Experiments

Model Design

Experiments

What is person re-identification?

Matching person identities from non-overlapping camera views.

- ☐ Challenges: appearance changes in human pose, illumination, occlusion, and background clutter [Gong et al., 2014];
- □ **Objective**: the view- and location-invariant (cross-domain) <u>representation</u> or good matching <u>metric</u>.

Queen Mary University of London

Person re-ids

Cat	Method	Feature	;	Metric		
Cat	Wiethod	Hand-Crafted	DL	CPSL	Generic	
	XQDA [Liao et al., 2015]	LOMO	-1	XQDA	-1	
A	GOG [Matsukawa et al., 2016b]	GOG	- 1	XQDA	- 1	
A	NFST [Zhang <i>et al.</i> , 2016]	LOMO, KCCA	-	NSFT	- 1	
	SCS [Chen et al., 2016]	CHS	= 1	SCS	- 1	
	DCNN+ [Ahmed <i>et al.</i> , 2015]	-	DCNN+	DVM	-	
B	X-Corr [Subramaniam et al., 2016]	= 1	X-Corr	DVM	- 1	
	MTDnet [Chen et al., 2017a]	-	MTDnet	DVM, L2	-	
	S-CNN [Varior <i>et al.</i> , 2016]	- 1	S-CNN	H 1	L2	
$ _{\mathbf{C}} $	DGD [Xiao et al., 2016]	=	DGD	-	L2	
	MCP [Cheng et al., 2016]	-	MCP	-1	L2	
	JLML (Ours)	-1	JLML	-	L2	

To construct good features for person images [feature learning]

To achieve good distance metric for matching task [metric learning]

Focused on the deep feature learning while using L2 metric only.

Observations

- Person images have some kind of unified body structure;
- Low inter-class and high intra-class variance caused by appearance changes;
- Human visual systems leverage both global (contextual) and local (saliency) information concurrently;
- Either local or global feature learning alone is suboptimal .

Problem Definition

How to discover and capture concurrently **complementary discriminative** information for both local and global visual features of person images?

Model Design

Experiments

Joint Learning of Multi-Loss

- Local branch of m streams learning the discriminative local visual features for m local image regions; (saliency)
- Global branch responsible for learning the most discriminative global level features from the entire person image. (contextual)

Joint Learning of Multi-Loss

- Shared low-level features;
- Multi-task independent learning subject to shared label constraints;
- Adopt the Residual CNN unit [He et al., 2016] as the JLML's building blocks.

Feature Selections:

Learning robustness against noise and diverse data source.

Loss function

Learning robustness against noise and diverse data source.

$$I = -\frac{1}{n_{\text{bs}}} \sum_{i=1}^{n_{\text{bs}}} \log \left(p(\tilde{y}_i = y_i | I_i) \right)$$

- Significantly simplified training data batch construction;
- More scalable in real-world applications with very large training population sizes when available;
- Representations optimised for classification tasks can generalise well to new categories

13

Introduction

Model Design

Experiments

State-of-the-art re-id results on CUHK01 and CUHK03

Table 7: CUHK01 evaluation. $1^{st}/2^{nd}$ best in bold/typewriter.

Cat	Split		871/100 split						
Cai	Rank (%)	R1	R5	R10	R20	R1	R5	R10	R20
	Single-Shot Testing Setting								
Α	GOG	-	-	-	-	57.8	79.1	86.2	92.1
	DCNN+	65.0	-	-	-	47.5	71.6	80.3	87.5
B	X-Corr	81.2	97.3	-	98.6	65.0	89.7	-	94.4
	MTDnet	78.5	96.5	97.5	-	-	-	-	-
	DGD	-	-	-	-	66.6	-	-	-
C	MCP	-	-	-	-	53.7	84.3	91.0	96.3
	JLML	87.0	97.2	98.6	99.4	69.8	88.4	93.3	96.3

		Multi-Shot Testing Setting							
	XQDA	-	-	-		63.2			
A	GOG	-	-	-	-	67.3	86.9	91.8	95.9
	NFST	-	-	-	-	69.1	86.9	91.8	95.4
C	JLML	91.2	98.4	99.2	99.8	76.7	92.6	95.6	98.1

Table 5: CUHK03 evaluation. $1^{st}/2^{nd}$ best in red/blue.

Cat	Annotation		Labe	elled			Dete	ected	
	Rank (%)	R1	R5	R10	R20	R1	R5	R10	R20
	XQDA	55.2	77.1	86.8	83.1	46.3	78.9	83.5	93.2
A	GOG	67.3	91.0	96.0	-	65.5	88.4	93.7	-
	NSFT	62.5	90.0	94.8	98.1	54.7	84.7	94.8	95.2
	DCNN+	54.7	86.5	93.9	98.1	44.9	76.0	83.5	93.2
B	X-Corr	72.4	95.5	-	98.4	72.0	96.0	-	98.2
	MTDnet	74.7	96.0	97.5	-	_	-	-	-
	S-CNN	-	-	-	-	68.1	88.1	94.6	-
C	DGD	75.3	-	-	-	_	-	-	-
	JLML	83.2	98.0	99.4	99.8	80.6	96.9	98.7	99.2

State-of-the-art re-id results on GRID and Market-1501

Table 9: GRID evaluation. $1^{st}/2^{nd}$ best in red/blue.

Cat	Rank (%)	R1	R5	R10	R20
	XQDA	16.6	33.8	41.8	52.4
A	GOG	24.7	47.0	58.4	69.0
	SCS	24.2	44.6	54.1	65.2
В	X-Corr	19.2	38.4	53.6	66.4
С	JLML	37.5	61.4	69.4	77.4

Table 6: Market-1501 evaluation. $1^{st}/2^{nd}$ best in red/blue. All person bounding box images were auto-detected.

Cat	Query Type	Single	-Query	Multi-Query	
Cat	Measure (%)	R1	mAP	R1	mAP
	XQDA	43.8	22.2	54.1	28.4
A	SCS	51.9	26.3	_	-
	NFST	61.0	35.6	71.5	46.0
С	S-CNN	65.8	39.5	76.0	48.4
	JLML	85.1	65.5	89.7	74.5

Ablation Study

16

Loss	Query Type	Single	-Query	Multi-Query	
LOSS	Measure (%)	R1	mAP	R1	mAP
	Global Feature	58.3	31.7	70.4	43.2
UniLoss	Local Feature	46.3	26.3	58.0	34.0
	Full	76.1	52.2	83.7	62.8
	Global Feature	77.4	56.0	85.0	66.0
MultiLoss	Local Feature	78.9	57.8	86.4	68.4
	Full	85.1	65.5	89.7	74.5

- ✓ Importance of branch independence (Multi-loss matters).
- ✓ Complementary benefits of global and local features.

Ablation Study

Query Type	Single-Query		Multi-Query	
Measure (%)	R1	mAP	R1	mAP
Without Shared Feature	83.2	63.1	88.3	72.1
With Shared Feature	85.1	65.5	89.7	74.5

✓ Benefits from shared low-level features.

Query Type	Single-Query		Multi-Query	
Measure (%)	R1 mAP		R1	mAP
Without SFL	83.4	63.8	88.7	72.9
With SFL	85.1	65.5	89.7	74.5

✓ Effects of selective feature learning (SFL).

Further Analysis

Query-Type	Single	-Query	Multi-Query		
Measure (%)	R1	mAP	R1	mAP	
KISSME	82.1	61.4	87.5	70.2	
XQDA	82.6	63.2	88.2	72.4	
CRAFT	77.9	56.4	_	-	
L2	85.1	65.5	89.7	74.5	

✓ Complementary of JLML features and metric learning.

Model	FLOPs	PN (million)	Depth	Stream #
AlexNet	7.25×10^{8}	58.3	7	1
VGG16	1.55×10^{10}	134.2	16	1
ResNet50	3.80×10^9	23.5	50	1
GoogLeNet	1.57×10^9	6.0	22	1
JLML-ResNet39	1.54×10^9	7.2	39	5

✓ Comparisons of model size and complexity.

Further Analysis

Query-Type	Single-Query		Multi-Query	
Measure (%)	R1	mAP	R1	mAP
2	83.9	64.4	88.8	72.9
4	85.1	65.5	89.7	74.5
6	83.4	62.6	88.5	71.8
8	82.3	61.3	87.4	70.7
10	81.7	60.4	87.2	69.8

✓ Effect of body parts.

✓ 4 body-parts: head + shoulder, upper-body, upper-leg and lower-leg.

20

Introduction

Model Design

Experiments

- ✓ An idea of learning concurrently both local and global discriminative feature selections in different context;
- ✓ A novel Joint Learning Multi-Loss (JLML) CNN model by optimising multiple classification losses;
- ✓ A structured sparsity based **feature selection** learning mechanism for improving JLML robustness w.r.t noise and data co-variance.

Thanks

Person Re-ID 22