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Abstract

Knowledge distillation is effective to train the small and generalisable network
models for meeting the low-memory and fast running requirements. Existing
offline distillation methods rely on a strong pre-trained teacher, which enables
favourable knowledge discovery and transfer but requires a complex two-phase
training procedure. Online counterparts address this limitation at the price of
lacking a high-capacity teacher. In this work, we present an On-the-fly Native
Ensemble (ONE) learning strategy for one-stage online distillation. Specifically,
ONE only trains a single multi-branch network while simultaneously establishing
a strong teacher on-the-fly to enhance the learning of target network. Extensive
evaluations show that ONE improves the generalisation performance of a variety
of deep neural networks more significantly than alternative methods on four image
classification dataset: CIFAR10, CIFAR100, SVHN, and ImageNet, whilst having
the computational efficiency advantages.

1 Introduction

Deep neural networks have gained impressive success in many computer vision tasks [1; 2; 3; 4; 5; 6;
7; 8]. However, the performance advantages often come at the cost of training and deploying resource-
intensive networks with large depth and/or width [9; 4; 2]. This leads to the necessity of developing
compact yet discriminative models. Knowledge distillation [10] is one general meta-solution among
the others such as parameter binarisation [11; 12] and filter pruning [13]. The distillation process
begins with training a high-capacity teacher model (or an ensemble of models), followed by learning
a smaller student model which is encouraged to match the teacher’s predictions [10] or feature
representations [14; 15]. While promising the student model quality improvement from aligning
with a pre-trained teacher model, this strategy requires a longer training process, significant extra
computational cost and large memory (for a heavy teacher) in a more complex multi-phase training
procedure. These are commercially unattractive [16].

To simplify the distillation training process as above, simultaneous distillation algorithms [17; 16]
have been developed to perform knowledge online teaching in a one-phase training procedure. Instead
of pre-training a static teacher model, these methods train simultaneously a set of (typically two)
student models which learn from each other in a peer-teaching manner. This approach merges the
training processes of the teacher and student models, and uses the peer network to provide the teaching
knowledge. Beyond the original understanding of distillation that requires the teacher model larger
than the student, this online distilling strategy can improve the performance of any-capacity models,
leading to a more generically applicable technique. Such a peer-teaching strategy sometimes even
outperforms the teacher based offline distillation. The plausible reason is that the large teacher model
tends to overfit the training data therefore leading to less extra knowledge on top of the manually
labelled annotations [16].
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However, the existing online distillation methods have a number of drawbacks: (1) Each peer-student
model may only provide limited extra information, resulting in suboptimal distillation; (2) Training
multiple students causes a significant increase of computational cost and resource burdens; (3)
They require asynchronous model updating which has a notorious need of carefully ordering the
operations of label prediction and gradient back-propagation across networks. We consider that all
the weaknesses are due to the lack of an appropriate teacher role in the online distillation processing.

In this work, we propose a novel online knowledge distillation method that is not only more efficient
(lower training cost) but also more effective (higher model generalisation improvement) as compared
to previous alternative methods. In training, the proposed approach constructs a multi-branch
variant of a given target network by adding auxiliary branches, creates a native ensemble teacher
model from all branches on-the-fly, and learns simultaneously each branch plus the teacher model
subject to the same target label constraints. Each branch is trained with two objective loss terms:
a conventional softmax cross-entropy loss which matches with the ground-truth label distributions,
and a distillation loss which aligns to the teacher’s prediction distributions. Comparing with creating
a set of student networks, a multi-branch single model is more efficient to train whilst achieving
superior generalisation performance and avoiding asynchronous model update. In test, we simply
convert the trained multi-branch model back to the original (single-branch) network architecture
by removing the auxiliary branches, therefore not increasing test-time cost. In doing so, we derive
an On-the-Fly Native Ensemble (ONE) teacher based simultaneous distillation training approach
that not only eliminates the computationally expensive need for pre-training the teacher model in an
isolated stage as the offline counterparts, but also further improves the quality of online distillation.

Extensive experiments on four benchmarks (CIFAR10/100, SVHN, and ImageNet) show that the
proposed ONE distillation method enables to train more generalisable target models in an one-phase
process than the alternative strategies of offline learning a larger teacher network or simultaneously
distilling peer students, the previous state-of-the-art techniques for training small target models.

2 Related Work

Knowledge Distillation. There are existing attempts at knowledge transfer between varying-capacity
network models [18; 10; 14; 15]. Hinton et al. [10] distilled knowledge from a large teacher model
to improve a small target net. The rationale behind is taking advantage of extra supervision provided
by the teacher model during training the target model, beyond a conventional supervised learning
objective such as the cross-entropy loss subject to the training data labels. The extra supervision is
typically extracted from a pre-trained powerful teacher model in form of class posterior probabilities
[10], feature representations [14; 15], or inter-layer flow (the inner product of feature maps) [19].

Recently, knowledge distillation has been exploited to distil easy-to-train large networks into harder-
to-train small networks [15], to transfer knowledge within the same network [20; 21], and to transfer
high-level semantics across layers [8]. Earlier distillation methods often take an offline learning
strategy, requiring at least two phases of training. The more recently proposed deep mutual learning
[17] overcomes this limitation by conducting an online distillation in one-phase training between two
peer student models. Anil et al. [16] further extended this idea to accelerate the training of large scale
distributed neural networks.

However, the existing online distillation methods lack a strong “teacher” model which limits the
efficacy of knowledge discovery. As the offline counterpart, multiple nets are needed to be trained
therefore computationally expensive. We overcome both limitations by designing a new online
distillation training algorithm characterised by simultaneously learning a teacher on-the-fly and the
target net as well as performing batch-wise knowledge transfer in an one-phase training procedure.

Multi-branch Architectures. Multi-branch based neural networks have been widely exploited
in computer vision tasks [3; 22; 4]. For example, ResNet [4] can be thought of as a category of
two-branch networks where one branch is the identity mapping. Recently, “grouped convolution”
[23; 24] has been used as a replacement of standard convolution in constructing multi-branch net
architectures. These building blocks are usually utilised as templates to build deeper networks to
gain stronger model capacities. Despite sharing the multi-branch principle, our ONE method is
fundamentally different from such existing methods since our objective is to improve the training
quality of any target network, but not to propose a new multi-branch building block. In other words,
our method is a meta network learning algorithm, independent of the network architecture design.
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Figure 1: Overview of online distillation training of ResNet-110 by the proposed On-the-fly Native
Ensemble (ONE). With ONE, we start by reconfiguring the target network by adding m auxiliary

branches on shared low-level layers. All branches together with shared layers make individual
models, all of which are then used to construct a stronger teacher model. During the mini-batch

training process, we employ the teacher to assemble knowledge of branch models on-the-fly, which is
in turn distilled back to all branches to enhance the model learning in a closed-loop form. In test,

auxiliary branches are discarded or kept according to the deployment efficiency requirement.

3 Knowledge Distillation by On-the-Fly Native Ensemble

We formulate an online distillation training method based on a concept of On-the-fly Native Ensemble
(ONE). For understanding convenience, we take ResNet-110 [4] as an example. It is straightforward
to apply ONE to other network architectures. For model training, we often have access to n labelled
training samples D = {(xi, yi)}ni with each belonging to one of C classes yi ∈ Y = {1, 2, · · · , C}.
The network θ outputs a probabilistic class posterior p(c|x,θ) for a sample x over a class c as:

p(c|x,θ) = fsm(z) =
exp(zc)∑C
j=1 exp(z

j)
, c ∈ Y (1)

where z is the logits or unnormalised log probability outputted by the network θ. To train a multi-class
classification model, we typically adopt the Cross-Entropy (CE) measurement between the predicted
and ground-truth label distributions as the objective loss function:

Lce = −
C∑

c=1

δc,y log
(
p(c|x,θ)

)
(2)

where δc,y is Dirac delta which returns 1 if c is the ground-truth label, and 0 otherwise. With the CE
loss, the network is trained to predict the correct class label in a principle of maximum likelihood. To
further enhance the model generalisation, we concurrently distil extra knowledge from an on-the-fly
native ensemble (ONE) teacher to each branch in training.

On-the-Fly Native Ensemble. An overview of the ONE architecture is depicted in Fig 1. The ONE
consists of two components: (1) m auxiliary branches with the same configuration (Res4X block and
an individual classifier), each of which serves as an independent classification model with shared
low-level stages/layers. This is because low-level features are largely shared across different network
instances and sharing them allows to reduce the training cost. (2) A gating component which learns
to ensemble all (m+1) branches to build a stronger teacher model. It is constructed by one fully
connected (FC) layer followed by batch normalisation, ReLU activation, and softmax, using the same
input features as the branches.
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Our ONE method is established based on a multi-branch design specially for model training with
several merits: (1) Enable the possibility of creating a strong teacher model without training a set of
networks at a high computational cost; (2) Introduce a multi-branch simultaneous learning regulari-
sation which benefits model generalisation (Fig 3(a)); (3) Avoid the tedious need for asynchronous
update between multiple networks.

Under the reconfiguration of network, we add a separate CE loss Li
ce to each branch which simul-

taneously learns to predict the same ground-truth class label of a training sample. While sharing
the most layers, each branch can be considered as an independent multi-class classifier in that all of
them independently learn high-level semantic representations. Consequently, taking the ensemble
of all branches (classifiers) can make a stronger teacher model. One common way of ensembling
models is to average individual predictions. This may ignore the diversity and importance variety of
the member models of an ensemble. We therefore learn to ensemble by a gating component as:

ze =

m∑
i=0

gi · zi (3)

where gi is the importance score of the i-th branch’s logits zi, and ze is the logits of the ONE teacher.
In particular, we denote the original branch as i = 0 for indexing convenience. We train the ONE
teacher model with the CE loss Le

ce (Eq (2)) the same as the branches.

Knowledge Distillation. Given the teacher’s logits of each training sample, we distil this knowledge
back into all branches in a closed-loop form. For facilitating knowledge transfer, we compute soft
probability distributions at a temperature of T for individual branches and the ONE teacher as:

p̃i(c|x,θi) =
exp(zci /T )∑C
j=1 exp(z

j
i /T )

, c ∈ Y (4)

p̃e(c|x,θe) =
exp(zce/T )∑C
j=1 exp(z

j
e/T )

, c ∈ Y (5)

where i denotes the branch index, i=0, · · · ,m, θi and θe the parameters of the branch and teacher
models respectively. Higher values of T lead to more softened distributions.

To quantify the alignment between individual branches and the teacher in their predictions, we use
the Kullback Leibler divergence from branches to the teacher written as:

Lkl =

m∑
i=0

C∑
j=1

p̃e(j|x,θe) log
p̃e(j|x,θe)
p̃i(j|x,θi)

. (6)

Overall Loss Function. We obtain the overall loss function for online distillation training by the
proposed ONE as:

L =

m∑
i=0

Li
ce + Le

ce + T 2 ∗ Lkl (7)

where Li
ce and Le

ce are the conventional CE loss terms associated with the i-th branch and the ONE
teacher, respectively. The gradient magnitudes produced by the soft targets p̃ are scaled by 1

T 2 ,
so we multiply the distillation loss term by a factor T 2 to ensure that the relative contributions of
ground-truth and teacher probability distributions remain roughly unchanged. Note, the entire ONE
objective function of ONE is not an ensemble learning since (1) these loss functions corresponding to
the models with different roles, and (2) the conventional ensemble learning often takes independent
training of member models.

Model Training and Deployment. The model optimisation and deployment details are summarised
in Alg 1. Unlike the two-phase offline distillation training, the target network and the ONE teacher
are trained simultaneously and collaboratively, with the knowledge distillation from the teacher to
the target being conducted in each mini-batch and throughout the whole training procedure. Since
there is one multi-branch network rather than multiple networks, we only need to carry out the
same stochastic gradient descent through (m + 1) branches, and training the whole network until
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Algorithm 1 Knowledge Distillation by On-the-Fly Native Ensemble
1: Input: Labelled training data D; Training epoch number τ ; Auxiliary branch number m;
2: Output: Trained target CNN model θ0, and auxiliary models {θi}mi=1;
3: /* Training */
4: Initialisation: t=1; Randomly initialise {θi}mi=0;
5: while t ≤ τ do
6: Compute predictions of all individual branches {pi}mi=0 (Eq (1));
7: Compute the teacher logits (Eq (3));
8: Compute the soft targets of all the branch and teacher models (Eq (4));
9: Distil knowledge from the teacher back to all the branch models (Eq (6));

10: Compute the final ONE loss function (Eq (7));
11: Update the model parameters {θi}mi=0 by a SGD algorithm.
12: end
13: /* Testing */
14: Single model deployment: Use θ0;
15: Ensemble deployment (ONE-E): Use {θi}mi=0.

converging, as the standard single-model incremental batch-wise training. There is no complexity of
asynchronously updating among different networks which is required in deep mutual learning [17].

Once the model is trained, we simply remove all the auxiliary branches and obtain the original
network architecture for deployment. Hence, our ONE method does not increase the test-time cost.
However, if there is less constraint on the computation budget and the model performance is more
important, we can deploy it as an ensemble model with all trained branches, denoted as “ONE-E”.

4 Experiments

Datasets. We used four multi-class categorisation benchmark datasets in our evaluations (Fig 2). (1)
CIFAR10 [25]: A natural images dataset that contains 50,000/10,000 training/test samples drawn
from 10 object classes (in total 60,000 images). Each class has 6,000 images sized at 32×32 pixels.
(2) CIFAR100 [25]: A similar dataset as CIFAR10 that also contains 50,000/10,000 training/test
images but covering 100 fine-grained classes. Each class has 600 images. (3) SVHN: The Street View
House Numbers (SVHN) dataset consists of 73,257/26,032 standard training/text images and an extra
set of 531,131 training images. We used all the training data without using data augmentation as
[26; 27]. (4) ImageNet: The 1,000-class dataset from ILSVRC 2012 [28] provides 1.2 million images
for training, and 50,000 for validation.

(c)(b)(a)

Figure 2: Example images from (a) CIFAR, (b) SVHN, and (c) ImageNet.

Performance Metrics. We adopted the common top-n (n=1, 5) classification error rate. To measure
the computational cost of model training and test, we used the criterion of floating point operations
(FLOPs). For any network trained by ONE, we reported the average performance of all branch
outputs with standard deviation.

Experiment Setup. We implemented all networks and model training procedures in Pytorch. For all
datasets, we adopted the same experimental settings as [29; 23] for making fair comparisons. We
used the SGD with Nesterov momentum and set the momentum to 0.9. We deployed a standard
learning rate schedule that drops from 0.1 to 0.01 at 50% training and to 0.001 at 75%. For the
training budget, we set 300/40/90 epochs for CIFAR/SVHN/ImageNet, respectively. We adopted a
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Method CIFAR10 CIFAR100 SVHN Params
ResNet-32 [4] 6.93 31.18 2.11 0.5M
ResNet-32 + ONE 5.99±0.05 26.61±0.06 1.83±0.05 0.5M
ResNet-110 [4] 5.56 25.33 2.00 1.7M
ResNet-110 + ONE 5.17±0.07 21.62±0.26 1.76±0.07 1.7M
ResNeXt-29(8×64d) [23] 3.69 17.77 1.83 34.4M
ResNeXt-29(8×64d) + ONE 3.45±0.04 16.07±0.08 1.70±0.03 34.4M
DenseNet-BC(L=190, k=40) [30] 3.32 17.53 1.73 25.6M
DenseNet-BC(L=190, k=40) + ONE 3.13±0.07 16.35±0.05 1.63±0.05 25.6M

Table 1: Evaluation of our ONE method on CIFAR and SVHN. Metric: Error rate (%).

3-branch ONE (m=2) design unless stated otherwise. We separated the last block of each backbone
net from the parameter sharing (except on ImageNet we separated the last 2 blocks to give more
learning capacity to branches) without extra structural optimisation (see ResNet-110 for example in
Fig 1). Following [10], we set T = 3 in all the experiments. Cross-validation of this parameter T
may give better performance but at the cost of extra model tuning.

4.1 Evaluation of On-the-Fly Native Ensemble

Results on CIFAR and SVHN. Table 1 compares top-1 error rate performances of four varying-
capacity state-of-the-art network models trained by the conventional and our ONE learning algorithms.
We have these observations: (1) All different networks benefit from the ONE training algorithm,
particularly with small models achieving larger performance gains. This suggests a generic superiority
of our method for online knowledge distillation from the on-the-fly teacher to the target student model.
(2) All individual branches have similar performances, indicating that they have made sufficient
agreement and exchanged respective knowledge to each other well through the proposed ONE teacher
model during training.

Method Top-1 Top-5
ResNet-18 [4] 30.48 10.98
ResNet-18 + ONE 29.45±0.23 10.41±0.12
ResNeXt-50 [23] 22.62 6.29
ResNeXt-50 + ONE 21.85±0.07 5.90±0.05
SeNet-ResNet-18 [31] 29.85 10.72
SeNet-ResNet-18 + ONE 29.02±0.17 10.13±0.12

Table 2: Evaluation of our ONE method on ImageNet. Metric: Error rate (%).

Results on ImageNet. Table 2 shows the comparative performances on the 1000-classes ImageNet.
It is shown that the proposed ONE learning algorithm again yields more effective training and more
generalisable models in comparison to the vanilla SGD. This indicates that our method is generically
applicable in large scale image classification settings.

Target Network ResNet-32 ResNet-110
Metric Error (%) TrCost TeCost Error (%) TrCost TeCost
KD [10] 28.83 6.43 1.38 N/A N/A N/A
DML [17] 29.03±0.22∗ 2.76 1.38 24.10±0.72 10.10 5.05
ONE 26.61±0.06 2.28 1.38 21.62±0.26 8.29 5.05

Table 3: Comparison with knowledge distillation methods on CIFAR100. “*”: Reported results.
TrCost/TeCost: Training/test cost, in unit of 108 FLOPs. Red/Blue: Best and second best results.
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Network ResNet-32 ResNet-110
Metric Error (%) TrCost TeCost Error (%) TrCost TeCost
Snopshot Ensemble [32] 27.12 1.38 6.90 23.09∗ 5.05 25.25
2-Net Ensemble 26.75 2.76 2.76 22.47 10.10 10.10
3-Net Ensemble 25.14 4.14 4.14 21.25 15.15 15.15
ONE-E 24.63 2.28 2.28 21.03 8.29 8.29
ONE 26.61 2.28 1.38 21.62 8.29 5.05

Table 4: Comparison with ensembling methods on CIFAR100. “*”: Reported results. TrCost/TeCost:
Training/test cost, in unit of 108 FLOPs. Red/Blue: Best and second best results.

4.2 Comparison with Distillation Methods

We compared our ONE method with two representative distillation methods: Knowledge Distillation
(KD) [10] and Deep Mutual Learning (DML) [17]. For the offline competitor KD, we used a large
network ResNet-110 as the teacher and a small network ResNet-32 as the student. For the online
methods DML and ONE, we evaluated their performances using either ResNet-32 or ResNet-110 as
the target student model. We observed from Table 3 that: (1) ONE outperforms both KD (offline) and
DML (online) distillation methods in error rate, validating the performance advantages of our method
over alternative algorithms when applied to different CNN models. (2) ONE takes the least model
training cost and the same test cost as others, therefore giving the most cost-effective solution.

4.3 Comparison with Ensembling Methods

Table 4 compares the performances of our multi-branch (3 branches) based model ONE-E and
standard ensembling methods. It is shown that ONE-E yields not only the best test error but also
enables most efficient deployment with the lowest test cost. These advantages are achieved at the
second lowest training cost. Whilst Snapshot Ensemble takes the least training cost, its generalisation
capability is unsatisfied with a notorious drawback of much higher deployment cost.

It is worth noting that ONE (without branch ensemble) already outperforms comprehensively a 2-Net
Ensemble in terms of error rate, training and test cost. Comparing a 3-Net Ensemble, ONE approaches
the generalisation capability whilst having larger model training and test efficiency advantages.

Configuration Full W/O Online Distillation W/O Sharing Layers W/O Gating
ONE 21.62±0.26 24.73±0.20 22.45±0.52 22.26±0.23
ONE-E 21.03 21.84 20.57 21.79

Table 5: Model component analysis on CIFAR100. Network: ResNet-110.

4.4 Model Component Analysis

Table 5 shows the benefits of individual ONE components on CIFAR100 using ResNet-110. We have
these observations: (1) Without online distillation (Eq (6)), the target network suffers a performance
drop of 3.11% (24.73-21.62) in test error rate. This performance drop validates the efficacy and
quality of the ONE teacher in terms of performance superiority over individual branch models. This
can be more clearly seen in Fig 3 that the ONE teacher fits better to training data and generalises
better to test data. Due to the closed-loop design, the ONE teacher also mutually benefits from
distillation, reducing its error rate from 21.84% to 21.03%. With distillation, the target model
effectively approaches the ONE teacher (Fig 3(a) vs 3(b)) on both training and test error performance,
indicating the success of teacher knowledge transfer. Interestingly, even without distillation, ONE still
achieves better generalisation than the vanilla algorithm. This suggests that our multi-branch design
brings some positive regularisation effect by concurrently and jointly learning the shared low-level
layers subject to more diverse high-level representation knowledge. (2) Without sharing the low-
level layers not only increases the training cost (83% increase), but also leads to weaker performance
(0.83% error rate increase). The plausible reason is a lack of multi-branch regularisation effect as
indicated in Fig 3(a). (3) Using average ensemble of branches without gating (Eq (3)) causes a
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Branch # 1 2 3 4 5
Error (%) 31.18 27.38 26.68 26.58 26.52

Table 6: Benefit of adding branches to ONE on CIFAR100. Network: ResNet-32.

performance decrease of 0.64%(22.26-21.62). This suggests the benefit of adaptively exploiting the
branch diversity in forming the ONE teacher.

The main experiments use 3 branches in ONE. Table 6 shows that ONE scales well with more branches
and the ResNet-32 model generalisation improves on CIFAR100 with the number of branches added
during training hence its performance advantage over the independently trained network (31.18%
error rate).
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Figure 3: Effect of online distillation. Network: ResNet-110.

4.5 Model Generalisation Analysis

We aim to give insights on why an ONE trained network yields a better generalisation capability. A
few previous studies [33; 34] demonstrate that the width of a local optimum is related to the model
generalisation. A general understanding is that, the surfaces of training and test error largely mirror
to each other and it is favourable to converge the models to broader optima in training. As such,
a trained model remains approximately optimal even under small perturbations at test time. Next,
we exploited this criterion to examine the quality of model solutions θv, θm, θo discovered by the
vanilla, DML and ONE training algorithms respectively. This analysis was conducted on CIFAR100
using ResNet-110.

Specifically, to test the width of local optimum, we added small perturbations to the solutions as
θ∗(d,v) = θ∗+d · v, ∗ ∈ {v,m, o} where v is a uniform distributed direction vector with a unit
length, and d∈ [0, 5] controls the change magnitude. At each magnitude scale, we further sampled
randomly 5 different direction vectors to disturb the solutions. We then tested the robustness of all
perturbed models in training and test error rates. The training error was quantified as the cross-entropy
measurement between the predicted and ground-truth label distributions.

We observed in Fig 4 that: (1) The robustness of each solution against parameter perturbation appears
to indicate the width of local optima as: θv<θm<θo. That is, ONE seems to find the widest local
minimum among the three therefore more likely to generalise better than others.

(2) Comparing with DML, vanilla and ONE found deeper local optima with lower training errors. This
indicates that DML may probably get stuck in training, therefore scarifying the vanilla’s exploring
capability for more generalisable solutions to exchange the ability of identifying wider optima. In
contrast, our method further improves the capability of identifying wider minima over DML whilst
maintaining the original exploring quality.
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Figure 4: Robustness test of ResNet-110 solutions found by ONE, DML, and vanilla training
algorithms on CIFAR100. Each curve corresponds to a specific perturbation direction v.

4.6 Variance Analysis on ONE’s Branches
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Figure 5: Model variance during training.

We analysed the variance of ONE’s branches over the
training epochs in comparison to the conventional en-
semble method. We used ResNet-32 as the base net and
tested CIFAR100. We quantified the model variance
by the average prediction differences on training sam-
ples between every two models/branches in Euclidean
space. Figure 5 shows that a 3-Net Ensemble involves
larger inter-model variances than ONE with 3 branches
throughout the training process. This means that the
branches of ONE have higher correlations, due to the
proposed learning constraint from the distillation loss
that enforces them align to the same teacher predic-
tion, which probably hurts the ensemble performance.
However, in the mean generalisation capability (another fundamental aspect in ensemble learning),
ONE’s branches (the average error rate 26.61±0.06%) are much superior to individual models of a
conventional ensemble (31.07±0.41%), leading to a stronger ensembling performance.

5 Conclusion

In this work, we presented a novel On-the-fly Native Ensemble (ONE) strategy for improving deep
network learning through online knowledge distillation in a one-stage training procedure. With
ONE, we can more discriminatively learn both small and large networks with less computational
cost, beyond the conventional offline alternatives that are typically formulated to learn better small
models alone. Our method is also superior over existing online counterparts due to the unique
capability of constructing a high-capacity online teacher to more effectively mine knowledge from
the training data and supervise the target network concurrently. Extensive experiments on four image
classification benchmarks show that a variety of deep networks can all benefit from the ONE approach.
Significantly, smaller networks obtain more performance gains, making our method specially good
for low-memory and fast execution scenarios.
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