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Abstract
Existing person re-identification (re-id) methods
rely mostly on either localised or global feature rep-
resentation alone. This ignores their joint benefit
and mutual complementary effects. In this work,
we show the advantages of jointly learning local
and global features in a Convolutional Neural Net-
work (CNN) by aiming to discover correlated local
and global features in different context. Specifi-
cally, we formulate a method for joint learning of
local and global feature selection losses designed
to optimise person re-id when using only generic
matching metrics such as the L2 distance. We de-
sign a novel CNN architecture for Jointly Learning
Multi-Loss (JLML). Extensive comparative eval-
uations demonstrate the advantages of this new
JLML model for person re-id over a wide range of
state-of-the-art re-id methods on four benchmarks
(VIPeR, GRID, CUHK03, Market-1501).

1 Introduction
Person re-identification (re-id) is about matching identity
classes in detected person bounding box images from non-
overlapping camera views over distributed open spaces. This
is an inherently challenging task because person visual ap-
pearance may change dramatically in different camera views
due to unknown changes in illumination, occlusion, and back-
ground clutter [Gong et al., 2014]. Existing re-id studies
typically focus on either feature representation [Gray and
Tao, 2008; Farenzena et al., 2010; Kviatkovsky et al., 2013;
Zhao et al., 2013; Liao et al., 2015; Matsukawa et al., 2016a;
Ma et al., 2017] or matching distance metrics [Koestinger et
al., 2012; Xiong et al., 2014; Zheng et al., 2013; Paisitkri-
angkrai et al., 2015; Zhang et al., 2016; Wang et al., 2014b;
2016b; 2016c; Chen et al., 2017b] or their combination in
deep learning framework [Li et al., 2014; Ahmed et al., 2015;
Wang et al., 2016a; Xiao et al., 2016; Subramaniam et al.,
2016; Chen et al., 2017a]. Regardless, the overall objec-
tive is to obtain a view- and location-invariant representation.
We consider that learning any matching distance metric is in-
trinsically learning a global feature transformation across do-
mains (two disjoint cameras) thus obtaining a “normalised”
representation for matching.

Most re-id features are typically hand-crafted to encode
local topological and/or spatial structural information, by
different image decomposition schemes such as horizontal
stripes [Gray and Tao, 2008; Kviatkovsky et al., 2013], body
parts [Farenzena et al., 2010], and patches [Zhao et al., 2013;
Matsukawa et al., 2016a; Liao et al., 2015]. These lo-
calised features are effective for mitigating the person pose
and detection misalignment in re-id matching. More recent
deep re-id models [Xiao et al., 2016; Wang et al., 2016a;
Chen et al., 2017a; Ahmed et al., 2015] benefit from the
availability of larger scale datasets such as CUHK03 [Li et
al., 2014] and Market-1501 [Zheng et al., 2015] and from
lessons learned on other vision tasks [Krizhevsky et al., 2012;
Girshick et al., 2014]. In contrast to local hand-crafted fea-
tures, deep models, in particular Convolutional Neural Net-
works (CNN) [LeCun et al., 1998], favour intrinsically in
learning global feature representations with a few exceptions.
They have been shown to be effective for re-id.

We consider that either local or global feature learning
alone is suboptimal. This is motivated by the human vi-
sual system that leverages both global (contextual) and local
(saliency) information concurrently [Navon, 1977; Torralba
et al., 2006]. This intuition for joint learning aims to ex-
tract correlated complementary information in different con-
text whilst satisfying the same learning constraint therefore
achieving more reliable recognition. To that end, we need to
address a number of non-trivial problems: (i) the model learn-
ing behaviour in satisfying the same label constraint may be
different at the local and global levels; (ii) any complemen-
tary correlation between local and global features is unknown
and may vary among individual instances, therefore must be
learned and optimised consistently across data; (iii) people’s
appearance in public scenes is diverse in both pattens and
configurations. This makes it challenging to learn correla-
tions between local and global features for all appearances.

This work aims to formulate a deep learning model for
jointly optimising local and global feature selections concur-
rently and to improve person re-id using only generic match-
ing metrics such as the L2 distance. We explore a deep learn-
ing approach for its potential superiority in learning from
large scale data [Xiao et al., 2016; Chen et al., 2017a]. For
the bounding box image based person re-id, we consider the
entire person in the image as a global scene context and body
parts of the person as local information sources, both are



subject to the surrounding background clutter within an im-
age, and potentially also misalignment and partial occlusion
from poor detection. In this setting, we wish to discover and
optimise jointly correlated complementary feature selections
in the local and global representations, both subject to the
same label constraint concurrently. Whilst the former aims
to address detection misalignment and occlusion by localised
fine-grained saliency information, the latter exploits holistic
coarse-grained context for more robust global matching.

Our contributions are: (I) We propose the idea of learning
concurrently both local and global feature selections for op-
timising feature discriminative capabilities in different con-
text whilst performing the same person re-id tasks. This is
currently under-studied in the person re-id literature to our
best knowledge. (II) We formulate a novel Joint Learning
Multi-Loss (JLML) CNN model for not only learning both
global and local discriminative features in different context
by optimising multiple classification losses on the same per-
son label information concurrently, but also utilising their
complementary advantages jointly in coping with local mis-
alignment and optimising holistic matching criteria for per-
son re-id. This is achieved with a deep two-branch CNN ar-
chitecture by imposing inter-branch interaction between the
local and global branches, and enforcing a separate learning
objective loss function to each branch for learning indepen-
dent discriminative capabilities. (III) We introduce a struc-
tured sparsity based feature selection learning mechanism for
improving multi-loss joint feature learning robustness w.r.t.
noise and data covariance between local and global represen-
tations. Extensive evaluations demonstrate the superiority of
the proposed JLML model over a wide range of existing state-
of-the-art re-id models on four benchmark datasets.
Related Works. The JLML method is related to the saliency
learning based models [Zhao et al., 2013; Wang et al., 2014a]
in terms of modelling localised part importance. However,
these existing methods consider only the patch appearance
statistics within individual locations but no global feature rep-
resentation learning, let alone the correlation and comple-
mentary information discovery between local and global fea-
tures as modelled by the JLML. Whilst the more recent SCS
[Chen et al., 2016] and MCP [Cheng et al., 2016] consider
both levels of representation, the JLML model differs signifi-
cantly from them: (i) The SCS method focuses on supervised
metric learning, whilst the JLML aims at joint discrimina-
tive feature learning and needs only generic metrics for re-
id matching. (ii) The local and global branches of the MCP
model are supervised and optimised by a triplet ranking loss,
in contrast to the proposed multiple classification loss design.
(iii) The JLML is uniquely capable of performing structured
feature sparsity regularisation.

2 Model Design
2.1 Problem Definition
We assume a set of n training images I = {Ii}ni=1 with
the corresponding identity labels as Y = {yi}ni=1. These
training images capture the visual appearance of nid (where
yi ∈ [1, · · · , nid]) different people under non-overlapping
camera views. We formulate a Joint Learning Multi-Loss

(JLML) CNN model that aims to discover and capture con-
currently complementary discriminative information about a
person image from both local and global visual features of
the image in order to optimise person re-id under significant
viewing condition changes across locations. This is in con-
trast to most existing re-id methods typically depending only
on either local or global features alone.

2.2 Joint Learning Multi-Loss
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Figure 1: The Joint Learning Multi-Loss (JLML) CNN model.

The overall design of the proposed JLML model is de-
picted in Figure 1. This JLML model consists of a two-
branches CNN network: (1) One local branch of m streams
of an identical structure with each stream learning the most
discriminative local visual features for one of m local im-
age regions of a person bounding box image; (2) Another
global branch responsible for learning the most discrimi-
native global level features from the entire person image.
For concurrently optimising per-branch discriminative fea-
ture representations and discovering correlated complemen-
tary information between local and global feature selections,
a joint learning scheme that subjects both local and global
branches to the same identity label supervision is formulated
with two underlying principles:
(I) Shared low-level features. We construct the global and lo-
cal branches on a shared lower conv layer, in particular the
first conv layer, for facilitating inter-branch common learn-
ing. The intuition is that, the lower conv layers capture low-
level features such as edges and corners which are common
to all patterns in the same images. This shared learning is
similar in spirit to multi-task learning [Argyriou et al., 2007],
where the local and global feature learning branches are two
related learning tasks. Sharing the low-level conv layer re-
duces the model parameter size therefore model overfitting
risks. This is especially critical in learning person re-id mod-
els when labelled training data is limited.
(II) Multi-task independent learning. To maximise the learn-
ing of complementary discriminative features from local
and global representations, the remaining layers of the two
branches are learned independently subject to given identity
labels. That is, the JLML model aims to learn concurrently
multiple identity feature representations for different local
image regions and the entire image, all of which aim to max-
imise the same identity matching both individually and col-
lectively at the same time. Independent multi-task learning
aims to preserve both local saliency in feature selection and



global robustness in image representation. To that end, the
JLML model is designed to perform multi-task independent
learning subject to shared identity label constraints by allo-
cating each branch with a separate objective loss function. By
doing so, the per-branch learning behaviour is conditioned in-
dependently on the respective feature representation. We call
this branch-wise loss formulation as the MultiLoss design.

Table 1: JLML-ResNet39 model (1.5 billion FLOPs). MP: Max-
Pooling; AP: Average-Pooling; S: Stride; SL: Slice; CA: Concate-
nation; G: Global; L: Local.

Layer # Layer Output Size Global Branch Local Branch

1 conv1 112×112 3×3, 32, S-2

9 conv2 x
G: 56×56

3×3 MP, S-2 SL-4, 2×2 MP, S-1

L: 28×56

1×1, 32

3×3, 32

1×1, 64

×3

1×1, 16

3×3, 16

1×1, 32

×3

9 conv3 x
G: 28×28

 1×1, 64

3×3, 64

1×1, 128

×3

1×1, 32

3×3, 32

1×1, 64

×3
L: 14×28

9 conv4 x
G: 14×14

1×1, 128

3×3, 128

1×1, 256

×3

 1×1, 64

3×3, 64

1×1, 128

×3
L: 7×14

9 conv5 x
G: 7×7

1×1, 256

3×3, 256

1×1, 512

×3

1×1, 128

3×3, 128

1×1, 256

×3
L: 4×7

1 fc 1×1
7×7 AP 4×7 AP, CA-4[
1×1, 512

] [
1×1, 512

]
1 fc 1×1 ID # ID #

Network Construction. We adopt the Residual CNN unit
[He et al., 2016] as the JLML’s building blocks due to
its capacity for deeper model design whilst retaining a
smaller model parameter size. Specifically, we customise the
ResNet50 architecture in both layer and filter numbers and
design the JLML model as a 39 layers 2-branches ResNet
(JLML-ResNet39) tailored for re-id tasks. The configuration
of JLML-ResNet39 is given in Table 1. Note that, the ReLU
rectification non-linearity [Krizhevsky et al., 2012] after each
conv layer is omitted for brevity.
Feature Selection. To optimise JLML model learning ro-
bustness against noise and diverse data source, we introduce
a feature selection capability in JLML by a structure spar-
sity induced regularization [Kong et al., 2014; Wang et al.,
2013]. Our idea is to have a competing-to-survive mecha-
nism in feature learning that discourages irrelevant features
whilst encourages discriminative features concurrently in dif-
ferent local and global context to maximise a shared identity
matching objective. To that end, we sparsify the global fea-
ture representation with a group LASSO [Wang et al., 2013]:

`2,1 = ‖WG‖2,1 =

dg∑
i=1

‖wi
g‖2 (1)

where WG = [w1
g , · · · ,w

dg
g ] ∈ Rcg×dg is the parameter

matrix of the global branch feature layer taking as input dg
dimensional vectors from the previous layer and outputting
cg dimensional (512-D) feature representation. Specifically,
with the `1 norm applied on the `2 norm of wi

g , our aim is to
learn selectively feature importance subject to both the spar-

sity principle and the identity label constraint simultaneously.
Similarly, we also enforce a local feature sparsity constraint
by an exclusive group LASSO [Kong et al., 2014]:

`1,2 = ‖WL‖1,2 =

cl∑
i=1

m∑
j=1

‖wi
l,j‖21 (2)

where WL is the parameter matrix of the local branch feature
layer with m × dl and cl (512) as the input and output di-
mensions (m the image stripe number), and wi

l,j ∈ Rdl×1

defines the parameter vector for contributing the i-th out-
put feature dimension from the j-th local input feature vec-
tor, j ∈ [1, 2, · · · ,m]. This `1,2 regularisor performs sparse
feature selection for individual image regions in conjunction
with the global feature selection learning.
Loss Function. For model training, we utilise the cross-
entropy classification loss function for both global and local
branches so to optimise person identity classification given
training labels of multiple person classes extracted from pair-
wise labelled re-id dataset. Formally, we predict the posterior
probability ỹi of image Ii over the given identity label yi:

p(ỹi = yi|Ii) =
exp(w>

yi
xi)∑|nid|

k=1 exp(w
>
k xi)

(3)

where xi refers to the feature vector of Ii from the corre-
sponding branch, and wk the prediction function parameter
of training identity class k. The training loss on a batch of
nbs images is computed as:

l = − 1

nbs

nbs∑
i=1

log
(
p(ỹi = yi|Ii)

)
(4)

Combined with the group sparsity based feature selection reg-
ularisations, we have the final loss function for the global and
local branch sub-networks as:

lglobal = l+λglobal‖WG‖2,1, llocal = l+λlocal‖WL‖1,2 (5)

where λglobal and λlocal control the balance between the iden-
tity label loss and the feature selection sparsity regularisation.
We empirically set λlocal = λglobal = 5×10−4.
Choice of Loss Function. Our JLML model learning deploys
a classification loss function. This differs significantly from
the contrastive loss functions used by most existing deep
re-id methods designed to exploit pairwise re-id labels de-
fined by both positive and negative pairs, such as the pairwise
verification [Varior et al., 2016; Subramaniam et al., 2016;
Ahmed et al., 2015; Li et al., 2014], triplet ranking [Cheng et
al., 2016], or both [Wang et al., 2016a; Chen et al., 2017a].
Our JLML model training does not use any labelled nega-
tive pairs inherent to all person re-id training data, and we
extract identity class labels from only positive pairs. The mo-
tivations for our JLML classification loss based learning are:
(i) Significantly simplified training data batch construction,
e.g. random sampling with no notorious tricks required, as
shown by other deep classification methods [Krizhevsky et
al., 2012]. This makes our JLML model more scalable in
real-world applications with very large training population
sizes when available and/or imbalanced training data sam-
pling from different camera views. This also eliminates the



undesirable need for carefully forming pairs and/or triplets in
preparing re-id training splits, as in most existing methods,
due to the inherent imbalanced negative and positive pair size
distributions. (ii) Visual psychophysical findings suggest that
representations optimised for classification tasks generalise
well to novel categories [Edelman, 1998]. We consider that
re-id tasks are about model generalisation to unseen test iden-
tity classes given training data on independent seen identity
classes. Our JLML model learning exploits this general clas-
sification learning principle beyond the strict pairwise relative
verification loss in existing re-id models.
Model Training. We adopt the Stochastic Gradient De-
scent (SGD) optimisation algorithm [Krizhevsky et al., 2012]
to perform the batch-wise joint learning of local and global
branches. Note that, with SGD we can naturally synchronise
the optimisation processes of the two branches by constrain-
ing their learning behaviours subject to the same identity la-
bel information at each update. This is likely to avoid repre-
sentation learning divergence between two branches and help
enhance the correlated complementary learning capability.

2.3 Person Re-Id by Generic Distance Metrics
Once the JLML model is learned, we obtain a 1,024-D joint
representation by concatenating the local (512-D) and global
(512-D) feature vectors (the fc layers in Table 1). For per-
son re-id, we deploy this 1,024-D deep feature representation
using only a generic distance metric without camera-pair spe-
cific distance metric learning, e.g. the L2 distance.

3 Experiments
Datasets. For evaluation, we used four benchmarking re-id
datasets, VIPeR [Gray and Tao, 2008], GRID [Loy et al.,
2009], CUHK03 [Li et al., 2014], and Market-1501 [Zheng et
al., 2015]. These datasets present a wide range of re-id evalu-
ation scenarios with different population sizes under different
challenging viewing conditions (Figure 2 and Table 2).

(a) VIPeR (b) GRID (c) CUHK03 (d) Market
Figure 2: Example cross-view image pairs from four re-id datasets.

Table 2: Settings of person re-id datasets. TS: Test Setting; SS:
Single-Shot; SQ: Single-Query; MQ: Multi-Query.

Dataset Cams IDs Train IDs Test IDs Labelled Detected TS
VIPeR 2 632 316 316 1,264 0 SS
GRID 8 250 125 125 1,275 0 SS

CUHK03 6 1,467 1,367 100 14,097 14,097 SS
Market 6 1,501 751 750 0 32,668 SQ/MQ

Evaluation Protocol. We adopted the standard supervised
re-id setting to evaluate the proposed JLML model (Sec. 3.1).
The training and test data splits and the test settings of each
dataset is given in Table 2. Specifically, on VIPeR, we split
randomly the whole population (632 people) into two halves:
One for training (316) and another for testing (316). We re-
peated 10 trials of random people splits and used the averaged
results. On GRID, the training/test split was 125/125 with

775 distractor people included in the test gallery. We used the
benchmarking 10 people splits [Loy et al., 2009] and the av-
eraged performance. On CUHK03, following [Li et al., 2014]
we repeated 20 times of random 1260/100 training/test splits
and reported the averaged accuracies under the single-shot
evaluation setting. On Market-1501, we used the standard
training/test split (750/751) [Zheng et al., 2015]. We used the
cumulative matching characteristic (CMC) to measure re-id
accuracy on all benchmarks, except on Market-1501 we also
used the recall measure by mean Average Precision (mAP).

Table 3: Person re-id method categorisation by features and metrics.
Cat: Category; DL: Deep Learning; CPSL: Camera-Pair Specific
Learning; DVM: Deep Verification Metric; DVM, L2: Ensemble of
DVM and L2; CHS: Fusion of Colour, HOG, SILPT features.

Cat Method Feature Metric
Hand-Crafted DL CPSL Generic

A

XQDA [Liao et al., 2015] LOMO - XQDA -
GOG [Matsukawa et al., 2016b] GOG - XQDA -

NFST [Zhang et al., 2016] LOMO, KCCA - NSFT -
SCS [Chen et al., 2016] CHS - SCS -

B

DCNN+ [Ahmed et al., 2015] - DCNN+ DVM -
X-Corr [Subramaniam et al., 2016] - X-Corr DVM -

MTDnet [Chen et al., 2017a] - MTDnet DVM, L2 -

C

S-CNN [Varior et al., 2016] - S-CNN - L2
DGD [Xiao et al., 2016] - DGD - L2

MCP [Cheng et al., 2016] - MCP - L2
JLML (Ours) - JLML - L2

Competitors. We compared the JLML model against 10 ex-
isting state-of-the-art methods as listed in Table 3. They range
from hand-crafted and deep learning features to domain-
specific distance metric learning methods. We summarise
them into three categories: (A) Hand-crafted (feature) with
domain-specific distance learning (metric); (B) Deep learn-
ing (feature) with domain-specific deep verification (met-
ric) learning; (C) Deep learning (feature) with generic non-
learning L2 distance (metric).

Table 4: JLML training parameters. BLR: base learning rate; LRP:
learning rate policy; MOT: momentum; IT: iteration; BS: batch size.

Parameter BLR LRP MOT IT # BS
Pre-train 0.01 step (0.1, 100K) 0.9 300K 32

Train 0.01 step (0.1, 20K) 0.9 50K 32

Implementation. We used the Caffe framework [Jia et al.,
2014] for our JLML model implementation. We started by
pre-training the JLML model on ImageNet (ILSVRC2012).
Subsequently, for CUHK03 or Market, we used only their
own training data for model fine-tuning, i.e. ImageNet
→ CUHK03/Market; For VIPeR or GRID, we pre-trained
JLML on CUHK03+Market (whole datasets), and then fine-
tuned on their respective training images, i.e. ImageNet →
CUHK03+Market → VIPeR/GRID. All person images were
resized to 224×224 in pixel. For local branch, according to
a coarse body part layout we evenly decomposed the whole
shared conv feature maps (i.e. the entire image) into four
(m = 4) horizontal strip-regions. We used the same parame-
ter settings (summarised in Table 4) for pre-training and train-
ing the JLML model on all datasets. We also adopted the
stepped learning rate policy, e.g. dropping the learning rate
by a factor of 10 every 100K iterations for JLML pre-training
and every 20K iterations for JLML training. We utilised the
L2 distance as the default matching metric.



Table 5: CUHK03 evaluation. 1st/2nd best in red/blue.

Cat Annotation Labelled Detected
Rank (%) R1 R5 R10 R20 R1 R5 R10 R20

A
XQDA 55.2 77.1 86.8 83.1 46.3 78.9 83.5 93.2
GOG 67.3 91.0 96.0 - 65.5 88.4 93.7 -
NSFT 62.5 90.0 94.8 98.1 54.7 84.7 94.8 95.2

B

DCNN+ 54.7 86.5 93.9 98.1 44.9 76.0 83.5 93.2
X-Corr 72.4 95.5 - 98.4 72.0 96.0 - 98.2

MTDnet 74.7 96.0 97.5 - - - - -

C
S-CNN - - - - 68.1 88.1 94.6 -
DGD 75.3 - - - - - - -

JLML 83.2 98.0 99.4 99.8 80.6 96.9 98.7 99.2

3.1 Comparisons to State-Of-The-Arts
(I) Evaluation on CUHK03. Table 5 shows the com-
parisons of JLML against 8 existing methods on CUHK03.
It is evident that JLML outperforms existing methods
in all categories on both labelled and detected bounding
boxes, surpassing the 2nd best performers DGD and X-Corr
on corresponding labelled and detected images in Rank-1
by 7.9%(83.2-75.3) and 8.6%(80.6-72.0) respectively. X-
Corr/GOG/JLML also suffer the least from auto-detection
misalignment, indicating the robustness of the joint learning
approach to mining complementary local and global discrim-
inative features.
Table 6: Market-1501 evaluation. 1st/2nd best in red/blue. All per-
son bounding box images were auto-detected.

Cat Query Type Single-Query Multi-Query
Measure (%) R1 mAP R1 mAP

A
XQDA 43.8 22.2 54.1 28.4

SCS 51.9 26.3 - -
NFST 61.0 35.6 71.5 46.0

C S-CNN 65.8 39.5 76.0 48.4
JLML 85.1 65.5 89.7 74.5

(II) Evaluation on Market-1501. We evaluated the JLML
against four existing models on Market-1501. Table 6 shows
the clear performance superiority of JLML over all state-of-
the-arts with more significant Rank-1 advantages over other
methods compared to CUHK03, giving 19.3%(85.1-65.8)
(SQ) and 13.7%(89.7-76.0) (MQ) gains over the 2nd best S-
CNN. This further validates the advantages of our joint learn-
ing of multi-loss classification for optimising re-id especially
when the re-id test population size increases (750 people on
Market-1501 vs. 100 people on CUHK03).

Table 7: VIPeR evaluation. 1st/2nd best in red/blue.

Cat Rank (%) R1 R5 R10 R20

A

XQDA 40.0 68.1 80.5 91.1
GOG 49.7 - 88.7 94.5
NFST 51.1 82.1 90.5 95.9
SCS 53.5 82.6 91.5 96.7

B DCNN+ 34.8 63.6 75.6 84.5
MTDnet 47.5 73.1 82.6 -

C
MCP 47.8 74.7 84.8 91.1
DGD 38.6 - - -

JLML 50.2 74.2 84.3 91.6

(III) Evaluation on VIPeR. We evaluated the performance
of JLML against 8 strong competitors on VIPeR, a more chal-
lenging test scenario with fewer training classes (316 people)

and lower image resolution. On this dataset, the best perform-
ers are hand-crafted feature methods (SCS and NFST) rather
than deep models. This is in contrast to the tests on CUHK03
and Market-1501. Nevertheless, the JLML model remains
the best among all deep methods with or without deep ver-
ification metric learning. This validates the superiority and
robustness of our deep joint global and local representation
learning of multi-loss classification given sparse training data.
We attribute this property to the JLML’s capability of mining
complementary features in different context for both handling
local misalignment and optimising global matching.

Table 8: GRID evaluation. 1st/2nd best in red/blue.
Cat Rank (%) R1 R5 R10 R20

A
XQDA 16.6 33.8 41.8 52.4
GOG 24.7 47.0 58.4 69.0
SCS 24.2 44.6 54.1 65.2

B X-Corr 19.2 38.4 53.6 66.4
C JLML 37.5 61.4 69.4 77.4

(IV) Evaluation on GRID. We compared JLML against
4 competing methods on GRID. In addition to poor image
resolution, poor lighting and a small training size (125 peo-
ple), GRID also has extra distractors in the testing population
therefore presenting a very challenging but realistic re-id sce-
nario. Table 8 shows a significant superiority of JLML over
existing state-of-the-arts, with Rank-1 12.8%(37.5-24.7) bet-
ter than the 2nd best method GOG, a 51.8% relative improve-
ment. This demonstrates the unique and practically desirable
advantage of JLML in handling more realistically challeng-
ing open-world re-id matching where large numbers of dis-
tractors are usually present.

3.2 Further Analysis and Discussions
We further examined the component effects of our JLML
model on the Market-1501 dataset in the following aspects.

Table 9: Complementary benefits of global and local features.
Query Type Single-Query Multi-Query
Measure (%) R1 mAP R1 mAP

JLML (Global) 77.4 56.0 85.0 66.0
JLML (Local) 78.9 57.8 86.4 68.4
JLML (joint) 85.1 65.5 89.7 74.5

(I) Complementary of Global and Local Features. We
evaluated the complementary effects of our jointly learned
local and global features by comparing their individual re-
id performance against that of the joint features. Table 9
shows that: (i) Any of the two feature representations alone
is competitive for re-id, e.g. the local JLML feature sur-
passes S-CNN (Table 6) by Rank-1 13.1%(78.9-65.8) (SQ)
and 10.4%(86.4-76.0) (MQ); and by mAP 18.3%(57.8-39.5)
(SQ) and 20.0%(68.4-48.4) (MQ). (ii) A further perfor-
mance gain is obtained from the joint feature representation,
yielding further 6.2%(85.1-78.9) (SQ) and 3.3%(89.7-86.4)
(MQ) in Rank-1 increase, and 7.7%(65.5-57.8) (SQ) and
6.1%(74.5-68.4) (MQ) in mAP boost. These results show the
complementary advantages of jointly learning the local and
global features in different context using the JLML model.
(II) Importance of Branch Independence. We evaluated
the importance of branch independence by comparing our
MultiLoss design with a UniLoss design that merges two



Table 10: Importance of branch independence.

Loss Query Type Single-Query Multi-Query
Measure (%) R1 mAP R1 mAP

UniLoss
Global Feature 58.3 31.7 70.4 43.2
Local Feature 46.3 26.3 58.0 34.0

Full 76.1 52.2 83.7 62.8

MultiLoss
Global Feature 77.4 56.0 85.0 66.0
Local Feature 78.9 57.8 86.4 68.4

Full 85.1 65.5 89.7 74.5

branches into a single loss [Cheng et al., 2016]. Table
10 shows that the proposed MultiLoss model significantly
improves the discriminative power of global and local re-
id features, e.g. with Rank-1 increase of 9.0%(85.1-76.1)
(SQ) and 6.0%(89.7-83.7) (MQ); and mAP improvement of
13.3%(65.5-52.2) (SQ) and 11.7%(74.5-62.8) (MQ). This
shows that branch independence plays a critical role in joint
learning of multi-loss classification for effective feature opti-
misation. One plausible reason is due to the negative effect
of a single loss imposed on the learning behaviour of both
branches, caused by the potential divergence in discriminative
features in different context (local and global). This is shown
by the significant performance degradation of both global and
local features when the UniLoss model is imposed.

Table 11: Benefits from shared low-level features.
Query Type Single-Query Multi-Query
Measure (%) R1 mAP R1 mAP

Without Shared Feature 83.2 63.1 88.3 72.1
With Shared Feature 85.1 65.5 89.7 74.5

(III) Benefits from Shared Low-Level Features. We eval-
uated the effects of interaction between global and local
branches introduced by the shared conv layer (common
ground) by deliberately removing it and then comparing the
re-id performance. Table 11 shows the benefits from jointly
learning low-level features in the common conv layers, e.g.
improving Rank-1 by 1.9%(85.1-83.2) / 1.4%(89.7-88.3) and
mAP by 2.4%(65.5-63.1) / 2.4%(74.5-72.1) for single-/multi-
query re-id. This confirms a similar finding as in multi-task
learning study [Argyriou et al., 2007].

Table 12: Effects of selective feature learning (SFL).
Query Type Single-Query Multi-Query
Measure (%) R1 mAP R1 mAP
Without SFL 83.4 63.8 88.7 72.9

With SFL 85.1 65.5 89.7 74.5

(IV) Effects of Selective Feature Learning. We eval-
uated the contribution of our structured sparsity based Se-
lective Feature Learning (SFL) (Eqs. (1) and (2)). Ta-
ble 12 shows that our SFL mechanism can bring additional
re-id matching benefits, e.g. improving Rank-1 rate by
1.7%(85.1-83.4) (SQ) and 1.0%(89.7-88.7) (MQ); and mAP
by 1.7%(65.5-63.8) (SQ) and 1.6%(74.5-72.9) (MQ).
Table 13: Comparisons of model size and complexity. FLOPs: the
number of FLoating-point OPerations; PN: Parameter Number.

Model FLOPs PN (million) Depth Stream #
AlexNet 7.25×108 58.3 7 1
VGG16 1.55×1010 134.2 16 1

ResNet50 3.80×109 23.5 50 1
GoogLeNet 1.57×109 6.0 22 1

JLML-ResNet39 1.54×109 7.2 39 5

(V) Comparisons of Model Size and Complexity. We com-
pared the proposed JLML-ResNet39 model with four sem-
inal classification CNN architectures (Alexnet [Krizhevsky

et al., 2012], VGG16 [Simonyan and Zisserman, 2015],
GoogLeNet [Szegedy et al., 2015], and ResNet50 [He et al.,
2016]) in model size and complexity. Table 13 shows that the
JLML has both the 2nd smallest model size (7.2 million pa-
rameters) and the 2nd smallest FLOPs (1.54×109), although
containing more streams (5 vs. 1 in all other CNNs) and more
layers (39, more than all except ResNet50).

4 Conclusion
We presented a novel Joint Learning of Multi-Loss (JLML)
CNN model (JLML-ResNet39) for person re-identification
feature learning. In contrast to existing re-id approaches
that employ either global or local appearance features alone,
the proposed model is capable of extracting and exploiting
both and maximising their correlated complementary effects
by learning discriminative feature representations in differ-
ent context subject to multi-loss classification objective func-
tions in a unified framework. This is made possible by the
proposed JLML-ResNet39 architecture design. Moreover,
we introduce a structured sparsity based feature selective
learning mechanism to further improve joint feature learn-
ing. Extensive comparative evaluations on four re-id bench-
mark datasets were conducted to validate the advantages of
the proposed JLML model over a wide range of the state-
of-the-art methods on both manually labelled and more chal-
lenging auto-detected person images. We also provided com-
ponent evaluations and analysis of the model performance in
order to give insights on the JLML model design.
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