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Abstract—While spectral clustering is usually an unsuper-
vised operation, there are circumstances in which we have prior
belief that pairs of samples should (or should not) be assigned
with the same cluster. Constrained spectral clustering aims to
exploit this prior belief as constraint (or weak supervision) to
influence the cluster formation so as to obtain a structure more
closely resembling human perception. Two important issues re-
main open: (1) how to propagate sparse constraints effectively,
(2) how to handle ill-conditioned/noisy constraints generated by
imperfect oracles. In this paper we present a unified framework
to address the above issues. Specifically, in contrast to existing
constrained spectral clustering approaches that blindly rely on
all features for constructing the spectral, our approach searches
for neighbours driven by discriminative feature selection for
more effective constraint diffusion. Crucially, we formulate
a novel data-driven filtering approach to handle the noisy
constraint problem, which has been unrealistically ignored in
constrained spectral clustering literature.

Keywords-Constrained clustering, constraint propagation,
feature selection, imperfect oracles, spectral clustering.

I. INTRODUCTION

Constrained clustering has been studied extensively [11],

[9]. The objective is to effectively exploit a small amount

of supervision to help finding data partitions that capture

consistent concepts as perceived by human. The supervision

by oracles is typically expressed in the form of pairwise

constraint, namely must-link - a pair of samples must be in
the same cluster, and cannot-link - a pair of samples belong
to different clusters. Though great strides have been made

in this field, two important and non-trivial questions remain

open.

(I) Effective sparse constraint propagation: Pairwise con-
straints are sparse in practice since exhaustive pairwise

labelling are laborious and/or may not be available in data.

Constraint propagation [9] is thus designed to propagate

pairwise constraints from labelled samples to unlabelled

samples for maximising the influence of constraints. Ef-

fective constraint propagation relies on robust identification

of unlabelled nearest neighbours (NN) around the labelled

samples in the feature space. Often, the NN search is

susceptible to noisy or ambiguous features, especially so on

image and video datasets. Trusting all the available features

blindly for NN search (as what most existing constrained

clustering approaches [11], [9] did) is likely to result in sub-

optimal constraint diffusion. It is challenging to determine

(a) Ground Truth (b) Spectral Clustering (c) Our Approach

Figure 1. (a) Ground truth cluster formation, with invalid pairwise
constraints highlighted in red colour; must- and cannot-links are represented
by solid and dashed lines respectively; (b) the clustering result obtained
using unsupervised clustering; (c) the result obtained using our method.

how to propagate their influence effectively to neighbouring

unlabelled points. In particular, it is non-trivial to reliably

identify the neighbouring unlabelled points for propagation.

(II) Noisy constraints from imperfect oracles: Human an-
notators (oracles) may provide invalid/mistaken constraints.

For instance, a portion of ‘must-links’ are actually ‘cannot-

links’ and vice versa. For example, annotations or constraints

obtained from online crowdsourcing services, e.g. Amazon

Mechanical Turk, are very likely to contain errors or noises

due to data ambiguity, unintentional human mistakes or even

intentional errors by malicious workers. Learning such con-

straints blindly may result in sub-optimal cluster formation.

Most existing methods make an unrealistic assumption that

constraints are acquired from perfect oracles thus they are

noise-free. It is non-trivial to quantify and determine which

constraints are noisy prior to clustering.

To address the above issues, we formulate a novel COn-

straint Propagation Random Forest (COP-RF), not only ca-

pable of effectively propagating sparse pairwise constraints,

but also able to identify and thus filter noisy constraints

produced by imperfect oracles. The COP-RF is flexible in

that it generates an affinity matrix that encodes the constraint

information for existing spectral clustering methods [10] for

the subsequent constrained clustering.

More precisely, the proposed model allows for effec-

tive sparse constraint propagation through using the NN

samples that are found in discriminative feature subspaces,

rather than those that found considering the whole feature

space, which can be suboptimal due to noisy and ambigu-

ous features. This is made possible by introducing a new

objective/split function into COP-RF, which searches for

discriminative features that induce the best data subspaces

while simultaneously considering the model parameters that

best satisfy the pairwise constraints imposed. To identify
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and filter noisy constraints generated from imperfect oracles,

we introduce a filtering mechanism to discover consistent

constraint subsets that incur less internal conflict with one
another and more coherent with the underlying data distri-
bution. This is achieved through quantifying the information

gain induced by individual constraints during tree node

splitting in COP-RF. Figure 1 shows an example to illustrate

how a COP-RF is capable of discovering data partitions

close to the ground truth clusters despite it is provided only

with sparse and noisy constraints.
The sparse and noisy constraint issues are inextricably

linked but no existing constrained clustering methods, to

our knowledge, address them in a unified framework. This

is the very first study that proposes a principled data-driven

approach to address them jointly. In particular, our work

makes the following contributions: (I) We formulate a novel

discriminative-feature driven approach for effective sparse

constraint propagation. Existing methods fundamentally ig-

nore the role of feature selection in this problem. (II) We

propose a data-driven method to filter potentially noisy

constraints, a problem that is largely unaddressed by existing

constrained clustering algorithms. All these capabilities are

achieved using a single unified COF-RF model.
We evaluate the effectiveness of the proposed approach on

UCI and video datasets. We demonstrate that the COP-RF is

superior when compared to the state-of-the-art constrained

clustering algorithms [11], [5], [9] in exploiting sparse

constraints. In addition, we show that the proposed model,

unlike existing methods, is capable of performing robust

clustering even when noisy pairwise constraints are included

in the learning process.

II. EFFECTIVE CONSTRAINT PROPAGATION

A. Problem Formulation
Given a set of samples denoted as X = {xi}, i =

1, . . . , N , with N referring to the total number of samples,

and xi = (xi,1, . . . , xi,d) ∈ F , d the feature dimensionality
of the feature space F ⊂ R

d, the goal of unsupervised

clustering is to assign each sample xi with a cluster label

ci. In constrained clustering, additional pairwise constraints
are available to influence the cluster formation. There are

two typical types of pairwise constraints

Must-link : M = {(xi,xj) | ci = cj},
Cannot-link : C = {(xi,xj) | ci �= cj}. (1)

We denote the full constraint set as P = M ∪ C, and the
cardinality of P as |P|. The pairwise constraints may arise
from pairwise similarity as perceived by a human annotator

(oracle), temporal continuity, or prior knowledge on the

sample class label. Acquiring pairwise constraints from a

human annotator is expensive. In addition, owing to data

ambiguity and human unintentional mistakes, the pairwise

constraints are likely to be incorrect and inconsistent with

the underlying data distribution.

Features of data Pairwise constraints
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Figure 2. Overview of our approach.

We propose a model that can flexibly generate a

constraint-aware affinity matrix, which is directly employed

by existing spectral clustering methods as input for con-

strained clustering (Figure 2). Before detailing our model

we briefly describe the conventional random forests.

B. Conventional Random Forests

Classification forests - A general form of random forests

is the classification forests. A classification forest [2] is an

ensemble of Tclass binary decision trees T (x): F → R
K ,

with RK = [0, 1]K denoting the space of class probability

distribution over the label space L = {1, . . . ,K}.
Tree training: Decision trees are learned independently

from each other, each with a random training set Xt ⊂ X ,
i.e.bagging [2]. Growing a decision tree involves a recursive

node splitting procedure until some stopping criterion is

satisfied, e.g. the number of training samples arriving at a

node is equal to or smaller than a threshold φ, and leaf nodes
are then formed, and their class probability distributions are

estimated with the labels of the arrival samples as well.

The training of each internal (or split) node is a process

of optimising a binary split function defined as

h(x,Θ) =

{
0 if xϑ1 < ϑ2,
1 otherwise.

(2)

This split function is parameterised by two parameters: (i)

a feature dimension ϑ1 ∈ {1, . . . , d}, and (ii) a feature
threshold ϑ2 ∈ R. All arrival samples of a split node will be
channelled to either the left or right child node, according

to the output of Equation (2). The optimal split parameter

Θ∗ is chosen via

Θ∗ = argmax
{Θi}mtry

i=1

ΔIclass, (3)

where {Θi} represents the parameter space over mtry ran-

domly selected features. That is, multiple candidate data

splittings are performed on mtry random feature-dimensions

during the above optimisation process. Typically, a greedy

search strategy is exploited to identify Θ∗.
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The information gain ΔIclass is formulated as

ΔIclass = Is −
|L|
|S| Il −

|R|
|S| Ir, (4)

where s, l, r refer to a split node, the left and right child
node, respectively. The sets of data routed into l and r are
denoted as L and R, and S = L ∪ R as the sample set

residing at s. The I can be computed as either the entropy or
Gini impurity [2]. In this study we utilise the Gini impurity

due to its simplicity and efficiency.

Clustering forests - In contrast to classification forests,
clustering forests [8], [7] require no ground truth information

during the training phase. A clustering forest consists of

Tclust binary decision trees. The leaf nodes in each tree
define a spatial partitioning of the training data. Interestingly,

the training of a clustering forest can be performed using

the classification forest optimisation approach by adopting

the pseudo two-class algorithm [2], [7]. Specifically, we add

N uniformly distributed pseudo samples x̄ = {x̄1, . . . , x̄d},
with x̄i ∼ U (xi|min (xi) ,max (xi)) into the original data
space X . With this strategy, the clustering problem becomes
a canonical classification problem that can be solved by the

classification forest training method as discussed above.

C. Our Model: Constraint Propagation Random Forest

To address the issues of sparse and noisy constraints, we

formulate a novel COnstraint Propagation Random Forest

(COP-RF) (see Figure 2). We consider using a random

forest, particularly a clustering forest [2], [7] as the basis to

derive our new model for two main reasons: (I) It has been

shown that random forest has a close connection with adap-

tive k-nearest neighbour methods, as a forest model adapts
neighbourhood shape according to the local importance of

different input variables [6]. This motivates us to exploit

the adaptive neighbourhood shape1 for effective constraint

propagation. (II) The forest model also offers a way to

evaluate information gain of the underlying data distribution.

We can build upon it to quantify the consistency between

constraints and the data distribution effectively, which could

be useful in identifying noisy constraints.

The proposed COP-RF differs significantly from the con-

ventional random forests in that the COP-RF is formulated

with a new split function, which considers not only the

bottom-up data information gain maximisation, but also the

joint satisfaction of top-down pairwise constraints. Next, we

discuss the mechanism to achieve effective sparse constraint

propagation though discriminative feature subspaces.

Propagation via discriminative feature subspaces - We
construct a COP-RF through learning a collection of Tc

constraint-aware COP-trees. Similar to the training of an

ordinary decision tree, to train a COP-tree we optimise the

split function (Equation (2)) by finding Θ∗ with both the best

1The neighbours of a data x in forest interpretation are the points which
fall into the same child node.

feature dimension and cut-point to partition its node training

samples S. The difference is that the term ‘best’ or ‘optimal’
is no longer defined only as to maximising the bottom-up

information gain, but also simultaneously satisfying the im-

posed top-down pairwise constraints. More precisely, at the

t-th COP-tree, its training set Xt only encompasses a subset

of the full constraint set P , i.e. Pt = {Mt ∪ Ct} ⊂ P.
Instead of using the information gain in Equation (4), we

optimise each internal node s in a COP-tree via Equation (3)
with the information gain ΔI defined as follow

maximise ΔI = Is −
|L|
|S| Il −

|R|
|S| Ir,

s.t. ∀(xi,xj) ∈ Mt ⇒ ci = cj ∈ {l, r},
∀(xi,xj) ∈ Ct ⇒ ci �= cj ,

where xi,xj ∈ S, Pt = Mt ∪ Ct. (5)

Equation (5) differs significantly from the conventional

information gain function [2], [7] as the maximisation is

bounded by the constraint set Pt. More specifically, it au-

tomatically selects discriminative features and their optimal

cut-point via information-based energy optimisation, whilst

at the same time fulfilling the guiding conditions imposed by

pairwise constraints. Algorithm 1 summarises the split func-

tion optimisation procedure in a COP-tree. Effective con-

straint propagation occurs when we construct a constraint-

aware data affinity matrix for spectral clustering [10], taking

into account the discriminative neighbourhoods induced by

individual COP-trees.

Combining with spectral clustering - Conventionally, an
affinity matrix is constructed by computing pairwise distance

with some Euclidean-based measure. It is however observed

in some studies that the Euclidean distance is often not an

accurate representation of the underlying shape of data [3].

In addition, defining data neighbourhoods via the whole

feature space can be susceptible to noisy features.

The learned COP-RF offers an effective way to derive

a more meaningful affinity matrix, which not only defines

data similarity through discriminative feature subspaces, but

also encodes the pairwise constraint information. Note that

the t-th COP-tree only considers a subset of constraints Pt

but not the full constraint P . Nevertheless, since a different
tree considers a random set of Pt (due to the random set

Xt), a good coverage of all constraints can be achieved by

averaging many trees’ statistics.

Formally, each individual tree within a COP-RF partitions

the training samples at its leaves �(x): Rd → L ⊂ N, where

� represents a leaf index and L refers to the set of all leaves
in a given tree. For each COP-tree, we first compute a tree-

level N × N affinity matrix At with elements defined as

At
i,j = exp

−distt(xi,xj) with

distt(xi,xj) =

{
0 if �(xi) = �(xj),
+∞ otherwise.

(6)
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We assign the maximum affinity (affinity=1, distance=0) to

points xi and xj if they fall into the same leaf, and the

minimum affinity (affinity=0, distance=+∞) otherwise. By
averaging all the tree-level affinity matrices we obtain a

smooth matrix as A = 1
Tc

∑Tc

t=1A
t. with Ai,i = 0. We

then construct a sparse k-NN graph, whose edge weights

are defined by A (Figure 2-c). Since the affinity matrix A is
constraint-encoded, using the k-NN graph as input readily

transforms the conventional spectral clustering methods [10]

for constrained clustering.

Filtering noisy constraints from imperfect oracles -
Constraint propagation should be reinforced by noisy con-

straint filtering to avoid error propagation to neighbouring

unlabelled points. To this end, we formulate a novel method

to identify noisy constraints through quantifying constraint

inconsistency by the information gain criterion. Specifically,

an inconsistent constraint is likely to

• Conflict with the majority of other constraints, assum-

ing that most constraints are valid.

• Disagree with the underlying data distribution.

During the tree node splitting, we observe that satisfying

constraints that disagree with the underlying data distribu-

tion would incur sub-optimal data partition, leading to low

data information gain. Motivated by this observation, we

exploit the information gain measure to filter possibly noisy

constraints from the set Pt. The filtering process does not

physically remove the suspected noisy constraints. But it

is a process that is conducted at the root node of each

COP-tree t, so that only selected constraints St ⊂ Pt

will be used to perform the root data partition {L0, R0}.
This partition would ‘set a good starting point’ for the

subsequent data splittings in tree branches. As compared

to physically removing suspected constraints, this scheme is

more conservative but empirically gives better results.

Next, we describe the steps to estimate the consistency of

a pairwise constraint and subsequently the way to determine

St. A conflict will only occur when we consider multiple

constraints together. Hence, to better quantify the degree to

which a constraint conflicts with other randomly selected

constraints and the underlying data distribution, we repeat

the following steps for f repetitions. For a repetition i

1) Randomly sample a temporary subset of constraints Q
from Pt, Q ⊂ Pt, where |Q| = α|Pt| and 0 < α < 1.

2) Compute the information gain δI following Algo-

rithm 1 by using Q as the constraint set2. For any

j-th constraint in the set Pt, we assign its induced

information gain δIi
j as

δIi
j =

{
δI the j-th constraint ∈ Q,
0 otherwise.

(7)

2δI is computed in a similar way ofΔI in Equation 5. We use a different
symbol for clarity.

Algorithm 1: Split function optimisation in a COP-tree.
Input: At a split node s of a COP-tree t:
- Training samples available to s: S;
- Pairwise constraints: Pt = Mt ∪ Ct;

Output:
- The best feature cut-point Θ∗ and;
- The associated child node partition {L,R};

1 Optimisation:
2 Initialise L = R = ∅ and ΔI = 0;
3 for var ← 1 to mtry do
4 Select a feature fvar ∈ {1, . . . , d};
5 for each possible cut-point of the feature fvar do
6 Split S into a candidate partition {L̂, R̂};
7 dec = respect all constraints({L̂, R̂},{Mt, Ct

}
);

8 if dec is true then
9 Compute information gain ΔÎ following Equation (5);

10 if ΔÎ > ΔI then
11 Update Θ∗;
12 Update ΔI = ΔÎ, L = L̂, and R = R̂.
13 end
14 end
15 else
16 Ignore the current splitting.
17 end
18 end
19 end
20 if No valid splitting found then
21 A leaf is formed.
22 end
23 function respect all constraints({L,R}, {M, C})
24 {
25 ∀(xi,xj) ∈ M,
26 if (xi ∈ L and xj ∈ R, or vice versa), return false.
27 ∀(xi,xj) ∈ C,
28 if (xi,xj ∈ L, or xi,xj ∈ R), return false.
29 Otherwise, return true.
30 }

Each repetition employs a different random subset sampled

from Pt. Now the consistency of the j-th constraint in the
set Pt can be quantified by the corresponding information

gain averaged across f repetitions, i.e.

δ̂Ij =
1

r

∑f

i=1
δIi

j , (8)

where r is the number of times the j-th constraint is selected
within the f repetitions. A noisy constraint would have a low
value in δ̂I. Consequently, the optimal constraint subset St

is selected as the top α × |Pt| constraints that achieve the
highest values in δ̂I. In this study we set α = 0.5 and
f = 500 so that each individual constraint has a fair chance
to be paired with other constraints.

III. EXPERIMENTAL SETTINGS

Datasets - To evaluate the effectiveness of our method in
coping with data of varying numbers of dimensions and

clusters, we select five diverse UCI benchmark datasets [1].

We also collect an intrinsically noisy video dataset from

a publicly available web-camera deployed in a university’s

Educational Resource Center (ERCe). This dataset consists

of 600 video clips with six possible clusters of events (see

Figure 3 for example images). The details of all datasets are

summarised in Table I.
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Table I
THE DETAILS OF DATASETS.

Dataset # Clusters # Features # Instances
Ionosphere (Iono.) 2 34 351

Iris 3 4 150
Segmentation (Seg. ) 7 19 210
Parkinsons (Park.) 2 22 195

Glass 6 10 214
ERCe 6 2672 600

(a) (b) (c)

(d) (e) (f)

Figure 3. Example images from the ERCe video dataset. It contains six
events including (a) Student Orientation, (b) Cleaning, (c) Career Fair, (d)
Group Study, (e) Gun Forum, and (f) Scholarship Competition.

Features - For the UCI datasets, we use the original features
provided. As for the ERCe video data, we segment a long

video into non-overlapping clips, from which a number of

visual features are then extracted, including colour, local

texture, optical flow, holistic image features and object

detections. We perform PCA on the resulting 2672-D feature

vectors of video clips, and use the first 30 PCA components

as the final representation. All raw features are scaled to the

range of [-1,1].

Baselines - For comparison, we present the results of (1)
Spectral Clustering (SPClust) [10], which does not exploit
any pairwise constraint; (2) COP-Kmeans [11], a popu-
lar constrained clustering method based on k-means; (3)
Spectral Learning (SL) [5], a constrained spectral clustering
method without constraint propagation. It extends SPClust

by trivially adjusting the elements in a data affinity matrix

with 1 and 0 to satisfy must-link and cannot-link constraints,

respectively; (4) a state-of-the-art constrained spectral clus-

tering approach E2CP [9], in which constraint propagation
is achieved by manifold diffusion [12]; and (5) Forest +
E2CP – we modify E2CP [9], i.e. instead of generating the
data affinity matrix with Euclidean-based measure, we use a

conventional clustering forest to generate the affinity matrix.

This allows E2CP to enjoy a limited capability of feature

selection using a random forest model.

Evaluation metrics - We use the widely adopted adjusted
Rand Index (ARI) [4] as the evaluation metric. Throughout

all the experiments, we report the ARI values averaged

over 10 trials. In each trial we generate a random pairwise

constraint set from the ground truth cluster labels.

Implementation details - The number of trees, Tc, in a

COP-RF is set to 1000. Each Xt is obtained by perform-

ing N times of random selection with replacement (see

Section II-B). The depth of each COP-tree is governed by

either constraint satisfaction, i.e. a node will stop growing

if during any attempted data partition some constraints are

violated (see Algorithm 1), or the size of a node equals

to 1 (i.e. φ = 1). We set mtry (see Equation (3)) to
√
d

with d the feature dimensionality of the input data and
employ a linear data separation as the split function (see

Equation (2)). We set k ≈ N/10 for the k-nearest neighbour
graph construction.

IV. EVALUATIONS

We conduct comparative experiments to (1) evaluate the

effectiveness of different clustering methods in exploiting

sparse but perfect pairwise constraints (Section IV-A), and

(2) compare their clustering performances in the case of

having imperfect oracles to provide ill-conditioned pairwise

constraints (Section IV-B).

A. Evaluation of Sparse Constraint Propagation

In this experiment, we assume perfect oracles thus all

the pairwise constraints agree with the ground truth cluster

labels. Figure 4 reports the ARI curves of different methods

along with varying numbers of pairwise constraints from 20

to 100. The overall performance of various methods can be

quantified by the area under the ARI curve and the results are

reported in Table II. It is evident from the results (Figure 4

and Table II) that on most datasets, the proposed COP-RF

outperforms other baselines, by as much as >300% against

COP-Kmeans3 and >30% against the state-of-the-art E2CP

in averaged area under the ARI curve.

Table II
COMPARING DIFFERENT METHODS BY THE AREA UNDER THE ARI
CURVE. PERFECT ORACLES ARE ASSUMED. HIGHER IS BETTER.

Dataset SPClust COP-
Kmeans

SL E2CP Forest +
E2CP

COP-RF

Iono. 0.43 0.65 0.23 0.37 2.48 2.15

Iris 3.47 0.55 3.53 3.54 3.49 3.51

Seg. 1.96 0.36 1.96 1.99 2.20 2.19

Park. 0.78 0.21 0.83 1.06 1.35 1.45
Glass 1.14 0.62 1.21 1.36 1.67 2.22
ERCe 2.76 0.84 2.74 2.40 3.01 3.06
Average 1.76 0.54 1.75 1.79 2.37 2.43

It is worth pointing out that although the state-of-the-

art E2CP performs generally better than other baselines,

it is inferior to the proposed COP-RF, since its manifold

construction still considers the full feature space, which may

be corrupted by noisy features. We observe in some cases,

such as the challenging ERCe dataset, the performance of

E2CP is worse than the naive SL method that comes without

constraint propagation. This result suggests that propagation

could be harmful when the feature space is noisy. The variant
modified by us, i.e. Forest + E2CP, employs a conventional

clustering forest ([2], [7]) to generate the data affinity

matrix. This allows E2CP to take advantage of a limited

capability of forest-based feature selection, and better results

are obtained compared with the pure E2CP. Nevertheless,

3COP-Kmeans fails to converge (early termination without a solution)
on datasets Iris, Segmentation, and Glass.
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Figure 4. ARI comparison: comparison of clustering performance between
different methods given a varying number of perfect pairwise constraints.

Forest + E2CP’s performance is generally poorer than COP-

RF’s (see Table II). This is because the feature selection of

the ordinary forest model is less effective than that of COP-

RF, which jointly considers information gain maximisation

and constraint satisfaction.

B. Evaluation on Filtering Noisy Constraints

In this experiment, we assume imperfect oracles thus pair-

wise constraints are noisy. We deliberately prepare constraint

sets that are mixed with a fixed ratio (15%) of random

invalid constraints that disagree with the ground truth. This

is to simulate the annotation behaviour of imperfect oracles

for the comparison of our approach with existing models.

We repeat the same experimental protocol as discussed in

Section IV-A. It is observed from Table III that in spite of the

imperfect oracle assumption, COP-RF again achieves better

results than other constrained clustering models on most

datasets as well as the best average clustering performance

across datasets, e.g. >300% increase against COP-Kmeans

and >35% increase against E2CP. Furthermore, Table III

also shows that COP-RF maintains encouraging performance

given noisy constraints, in some cases such as the chal-

lenging ERCe video dataset even larger improvements are

obtained over E2CP and other models, than that when

perfect constraints are provided. The results suggest the

effectiveness of the proposed constraint filtering algorithm

in coping with noisy constraints.

Table III
COMPARING DIFFERENT METHODS BY THE AREA UNDER THE ARI
CURVE. IMPERFECT ORACLES ARE ASSUMED. HIGHER IS BETTER.

Datasets SPClust COP-
Kmeans

SL E2CP Forest +
E2CP

COP-RF

Iono. 0.43 0.59 0.22 0.23 1.56 1.38

Iris 3.47 0.52 3.52 3.51 3.13 3.39

Seg. 1.96 0.64 1.96 1.97 2.02 2.11
Park. 0.78 0.14 0.82 0.94 1.05 1.11
Glass 1.14 0.21 1.15 1.31 1.35 1.68
ERCe 2.76 0.79 1.21 1.19 2.31 2.81
Average 1.76 0.48 1.47 1.52 1.90 2.08

V. CONCLUSION

We have presented a unified constrained spectral cluster-

ing framework to (1) propagate sparse constraints effectively,

and (2) handle noisy constraints generated by imperfect

oracles. The proposed COP-RF model is novel in that it

propagates constraints more effectively via discriminative

feature subspaces. This is in contrast to existing methods

that perform propagation considering the whole feature

space, which may be corrupted by noisy features. Effective

propagation regardless of the constraint quality could lead

to poor clustering results. Our work addresses this crucial

issue by formulating a way to quantify the inconsistency of

constraints and effectively filter potentially noisy ones before

propagation takes place. The model is flexible in that it

generates a constraint-aware affinity matrix that can be used

by the popular spectral clustering methods for constrained

clustering. Experimental results on various datasets have

demonstrated the advantages of the proposed approach over

the state-of-the-art constrained clustering methods.
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