

Video Synopsis by Heterogeneous Multi-Source Correlation

Xiatian Zhu

Queen Mary, University of London xiatian.zhu@qmul.ac.uk

Chen Change Loy The Chinese University of Hong Kong

ccloy@ie.cuhk.edu.hk

Shaogang Gong Queen Mary, University of London sgg@eecs.qmul.ac.uk

Problem:

How to generate **semantic** synopsis given long video streams by exploiting information beyond low-level visual features?

Existing video synopsis methods:

- × typically rely on visual cues alone, this is inherently unreliable
- imes difficult to bridge the semantic gap between low-level visual features and high-level semantic content interpretation required for better summarisation

Contributions:

- ✓ Generate semantic video synopsis by jointly learning heterogeneous. data sources in an unsupervised manner
- ✓ Handle missing non-visual data

Motivation

Non-trivial problem that requires joint learning to discover latent associations between heterogeneous multiple data sources:

- ➤ Heteroscedasticity problem, e.g. very different representations
- ➤ Individual data sources can be inaccurate and incomplete
- ➤ Non-visual data is not always available, nor synchronised with visual data

Learning a multi-source video synopsis model

Handle missing non-visual data

An adaptive source weighting method:

- Reweight the i-th non-visual source as: $\alpha_i - \delta_i \alpha_i$ with δ_i the missing ratio
- Renormalise all source weights to ensure: $\alpha_v + \sum_{i=1}^m \alpha_i + \alpha_t = 1$

where

 $\Lambda \mathcal{T}$: the total information gain

 $\Delta \mathcal{I}_v, \ \Delta \mathcal{I}_i, \ \Delta \mathcal{I}_t$: gain in individual sources $\mathcal{I}_{v0},\,\mathcal{I}_{i0},\,\mathcal{I}_{t0}$: inherent source impurity $\alpha_v, \alpha_i, \alpha_t$: source weights, with

$$\alpha_v + \sum_{i=1}^m \alpha_i + \alpha_t = 1$$

Merits of the proposed CC-Forest:

- ✓ Joint optimisation of individual information gain
- ✓ Isolate different characteristics of different sources
- ✓ Accommodate partial or completely missing non-visual data

Step (b-c): Multi-Source Latent Cluster Discovery

- (1) Derive a multi-source-aware affinity matrix A from a learned CC-Forest:
 - $A = \frac{1}{T_c} \sum_{t=1}^{T_c} A^t$ where A^t is a tree-level affinity, with element defined as:

$$A_{i,j}^t = \exp^{-\operatorname{dist}^t(\mathbf{x}_i, \mathbf{x}_j)} \text{ with } \operatorname{dist}^t(\mathbf{x}_i, \mathbf{x}_j) = \begin{cases} 0 & \text{if } l(\mathbf{x}_i) = l(\mathbf{x}_j), \\ +\infty & \text{otherwise.} \end{cases}$$

- (2) Symmetrically normalise the affinity matrix, obtain
- $S=D^{-rac{1}{2}}AD^{-rac{1}{2}}$ where D denotes a diagonal matrix with elements $D_{i,i}=\sum_j A_{i,j}$
- (3) Perform spectral clustering [3] on S, with automatically estimated cluster number Each training sample x_i is then assigned to a cluster c_i
- (4) Predict a unique distribution of each non-visual data for a cluster c
- $p(y_i|c) \propto \sum_{\mathbf{x}_j \in \mathbf{X}_c} p(y_i|\mathbf{x}_j)$ where \mathbf{X}_c refers to the training sample set in c

Structure-driven tag inference

Infer non-visual tag of a test sample x

Step (a): trace the target leaf of tree

- search for the leaf of each tree \mathbf{x}^* falls into

Step (b): retrieve leaf level clusters

- derived from training samples sharing the same leaf node
- search for nearest clusters whose tag distribution is used as tree-level prediction

Step (c): average tree-level predictions - yield a smooth prediction

Datasets

Two datasets collected from publicly available webcams: Time Square Intersection (TISI) and **Educational Resource** Centre (ERCe) dataset

Non-visual auxiliary data:

TISI: weather, traffic speed ERCe: campus event calendar

Clustering evaluation

Table 1. Mean entropy of cluster NV tag distribution (Red: the best)

Dataset	TIS	ERCe	
Method	traffic speed	weather	event
VO-Forest [1]	0.8675	1.0676	0.0616
VNV-Kmeans	0.9197	1.4994	1.2519
VNV-AASC [2]	0.7217	0.7039	0.0691
VNV-CC-Forest*	0.7262	0.6071	0.0024
VPNV10-CC-Forest*	0.7190	0.6261	0.0024
VPNV20-CC-Forest*	0.7283	0.6497	0.0090

TISI: cluster purity example – sunny (Red box: errors)

* Our methods; VO = visual only; VNV = visual + non-visual; VPNVxx = xx% missing ratio of the training non-visual data

Tag inference evaluation

Table 2. TISI: tag inference accuracy comparison (Red: the best)

Method	VO- Forest [1]	VNV- Kmeans	VNV- AASC [2]	VNV-CC- Forest	VPNV10- CC-Forest	VPNV20- CC-Forest
traffic speed	27.62	37.80	36.13	35.77	37.99	38.05
weather	50.65	43.14	44.37	61.05	55.99	54.97

Table 3. ERCe: tag inference accuracy comparison (Red: the best)

Method	VO- Forest [1]	VNV- Kmeans	VNV- AASC [2]	VNV-CC- Forest	VPNV10- CC-Forest	VPNV20- CC-Forest
No Schd. Event	79.48	87.91	48.51	55.98	47.96	55.57
Cleaning	39.50	19.33	45.80	41.28	46.64	46.22
Career Fair	94.41	59.38	79.77	100.0	100.0	100.0
Gun Forum	74.82	44.30	84.93	83.82	85.29	85.29
Group Studying	92.97	46.25	96.88	97.66	97.66	95.78
Schlr Comp.	82.74	16.71	89.40	99.46	99.73	99.59
Accom. Service	00.00	00.00	21.15	37.26	37.26	37.02
Stud. Orient.	60.94	9.77	38.87	88.09	92.38	88.09
Λνατασα	65 61	25 //5	62 16	75 60	75 97	75.05

TISI: tag inference confusion matrices comparison

Semantic video synopsis

ERCe: summarisation of some key events

Source association

TISI: discovered latent correlations among visual and non-visual sources

Vehicle detection and traffic speed

[1] L. Breiman. Random forests. ML, 2001

[2] H.-C. Huang, Y.-Y. Chuang, C.-S. Chen. Affinity aggregation for spectral clustering. CVPR, 2012

[3] L. Zelnik-manor and P. Perona. Self-tuning spectral clustering. NIPS, 2004

Project page:

http://www.eecs.qmul.ac.uk/~xz303/