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Abstract

Convolutional neural networks (CNNs) have achieved un-
precedented success in a variety of computer vision tasks.
However, they usually rely on supervised model learning with
the need for massive labelled training data, limiting dramati-
cally their usability and deployability in real-world scenarios
without any labelling budget. In this work, we introduce a
general-purpose unsupervised deep learning approach to de-
riving discriminative feature representations. It is based on
self-discovering semantically consistent groups of unlabelled
training samples with the same class concepts through a pro-
gressive affinity diffusion process. Extensive experiments on
object image classification and clustering show the perfor-
mance superiority of the proposed method over the state-
of-the-art unsupervised learning models using six common
image recognition benchmarks including MNIST, SVHN,
STL10, CIFAR10, CIFAR100 and ImageNet.

Introduction

Convolutional neural networks (CNNs) trained in a super-
vised fashion have significantly boosted the state-of-the-art
performance in computer vision (Krizhevsky, Sutskever, and
Hinton 2012; Girshick 2015; Long, Shelhamer, and Dar-
rell 2015). Moreover, the feature representations of a super-
vised CNN (e.g. trained for classification on ImageNet (Rus-
sakovsky et al. 2015)) generalise to new tasks. Despite
such remarkable success, this approach is limited due to a
number of stringent assumptions. First, supervised model
learning requires enormous labelled datasets to be collected
manually and exhaustively (Dong, Gong, and Zhu 2018;
Dong, Zhu, and Gong 2019). This does not always hold
valid due to high annotation costs. Besides, the benefits
of enlarging labelled datasets may have diminishing re-
turns (Sun et al. 2017). Second, transfer learning becomes
less effective when the target tasks significantly differ from
the source task (Goodfellow, Bengio, and Courville 2016;
Dong, Gong, and Zhu 2017). Due to the only need for access
of unlabelled data typically available at scale, unsupervised
deep learning provides a conceptually generic and scalable
solution to these limitations (Caron et al. 2018).
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There are an increasing number of recent attempts on
unsupervised deep learning (Wu et al. 2018; Huang et al.
2019; Xie, Girshick, and Farhadi 2016; Caron et al. 2018;
Ji, Henriques, and Vedaldi 2019; Haeusser et al. 2018;
Yang, Parikh, and Batra 2016; Yang et al. 2017; Gidaris,
Singh, and Komodakis 2018; Zhang, Isola, and Efros 2017;
Noroozi and Favaro 2016; Doersch, Gupta, and Efros 2015).
One intuitive strategy is joint learning of feature representa-
tions and data clustering (Xie, Girshick, and Farhadi 2016;
Ji, Henriques, and Vedaldi 2019; Caron et al. 2018; Yang et
al. 2017). It aims to automatically discover clustering solu-
tions during training, with each cluster hopefully capturing a
specific class concept. This objective is extremely hard due
to the numerous combinatorial configurations of unlabelled
data alongside highly complex inter-class decision bound-
aries. To avoid clustering errors as well as the following
propagation, instance learning is proposed (Wu et al. 2018;
Bojanowski and Joulin 2017) whereby every single sample
is treated as an independent class. However, this simplified
supervision is often rather ambiguous particularly around
class centres, therefore, leading to weak class discrimina-
tion. As an intermediate representation, tiny neighbourhoods
are leveraged for preserving the advantages of both data
clustering and instance learning (Huang et al. 2019). But this
method is restricted by the small size of local neighbour-
hoods. Another representative approach is designing effec-
tive pretext tasks with supervision labels produced automat-
ically from unlabelled data (Gidaris, Singh, and Komodakis
2018; Zhang, Isola, and Efros 2017; Noroozi and Favaro
2016; Doersch, Gupta, and Efros 2015). Due to insufficient
correlation with the target class supervision, these methods
often result in less competitive models.

In this work, we aim to solve the algorithmic limitations
of existing unsupervised deep learning methods. To that end,
we propose a general-purpose Progressive Affinity Diffu-
sion (PAD) method for training unsupervised models. Re-
quiring no prior knowledge of class number, PAD performs
model-matureness-adaptive data group inference in train-
ing for more reliably revealing the underlying sample-to-
class memberships. This is achieved by progressively self-
discovering strongly connected subgraphs on a neighbour-
hood affinity graph via faithful affinity diffusion and formu-



lating the group structure aware objective loss function.

The contributions of this work are summarised as the fol-
lowings. (1) We propose a novel idea of leveraging strongly
connected subgraphs as a self-supervision structure for more
reliable unsupervised deep learning. (2) We formulate a
Progressive Affinity Diffusion (PAD) method for model-
matureness-adaptive discovery of strongly connected sub-
graphs during training through affinity diffusion across ad-
jacent neighbourhoods. This strategy maximises the class
consistency of self-discovered subgraphs therefore enhanc-
ing unsupervised model learning capability. PAD is end-to-
end trainable. (3) We design a group structure aware ob-
jective loss formulation for more discriminative capitalis-
ing of strongly connected subgraphs in model representation
learning. Comparative experiments have been extensively
conducted on both image classification and image cluster-
ing tasks using popular benchmarks: MNIST (LeCun et al.
1998), SVHN (Netzer et al. 2011), STL10 (Coates, Ng, and
Lee 2011), CIFAR10 and CIFAR100 (Krizhevsky and Hin-
ton 2009) as well as ImageNet (Russakovsky et al. 2015).
The results show that our method outperforms a wide vari-
ety of existing state-of-the-art unsupervised learning mod-
els, often by large margins.

Related Work

In the literature, most existing unsupervised deep learning
methods fall generally into four groups: (i) joint cluster-
ing (Caron et al. 2018; Xie, Girshick, and Farhadi 2016;
Yang et al. 2017; Haeusser et al. 2018; Ji, Henriques,
and Vedaldi 2019; Huang et al. 2019), (ii) instance learn-
ing (Wu et al. 2018; Bojanowski and Joulin 2017), (iii) pre-
text task designing (Gidaris, Singh, and Komodakis 2018;
Zhang, Isola, and Efros 2017; Noroozi and Favaro 2016;
Wang, He, and Gupta 2017; Dahun Kim 2018; Doersch,
Gupta, and Efros 2015; Zhang, Isola, and Efros 2016),
and (iv) generative model formulation (Radford, Metz, and
Chintala 2016; Donahue, Kriahenbiihl, and Darrell 2016).

Joint clustering methods aim to integrate the classical
idea of data grouping (Aggarwal and Reddy 2013) into the
end-to-end optimisation of unsupervised learning models.
Often, the cluster labels self-formed are treated as concept
annotations and supervised learning techniques such as soft-
max cross-entropy criterion are then adopted for model op-
timisation. Typical methods require the access of ground-
truth class number which is usually unavailable in realistic
scenarios. The training process may involve multiple stages
continuously (Haeusser et al. 2018) or iteratively (Caron et
al. 2018; Xie, Girshick, and Farhadi 2016; 2016). This ap-
proach is rather challenging due to the error-prone division
of samples, especially when dealing with complex struc-
tures and distributions as typically encountered in images
and videos. Our PAD method also aims to discover label
consistent groups. However, unlike the clustering operation
that enforces each and every sample to be clustered with
a specific cluster, we take a more robust grouping scheme
which associates strongly similar samples alone so that er-
roneous memberships can be minimised.

Instance learning strategy leaps to the other extreme by
regarding every single sample as a unique class (Wu et al.

2018; Bojanowski and Joulin 2017). It is motivated by the
observation that supervised learning can naturally encode
global manifold information over different classes from end-
to-end optimisation. However, by assigning samples from
the same classes with different labels, this approach will
push their features away, therefore, tends to dilate per-class
regions and achieve less discriminative class boundaries. Ev-
idently, this problem is clearly solved in our method due to
the ability of searching label consistent groups of samples
with the same class concept. Besides, instance learning can
be considered as a special case of our method with the sub-
graph size as one.

Pretext task designing has been shown as strong alterna-
tive methods for unsupervised deep learning. In general, ex-
isting methods mainly differ in the auxiliary supervision for-
mulation, typically hand-crafted, in order to exploit informa-
tion intrinsic to training data. Representative examples in-
clude spatial context (Gidaris, Singh, and Komodakis 2018;
Doersch, Gupta, and Efros 2015; Noroozi and Favaro 2016),
spatio-temporal continuity (Wang, He, and Gupta 2017;
Dahun Kim 2018) and colour distributions (Zhang, Isola,
and Efros 2016; 2017). Conceptually, existing methods
present only weak linkages between auxiliary supervision
and class concepts, yielding inferior models. Whilst the po-
tential of this approach is great, how to design more discrim-
inating pretext task remains unsolved and lacks sufficient
guidance. In design, our method is highly complementary
as no pretext task is involved.

Generative model formulation is another important
approach in unsupervised learning. Fundamental methods
include Restricted Boltzmann Machines (RBMs) (Tang,
Salakhutdinov, and Hinton 2012; Lee et al. 2009), Autoen-
coder (Vincent et al. 2010; Ng 2011) and Generative Adver-
sarial Networks (GANs) (Radford, Metz, and Chintala 2016;
Donahue, Krihenbiihl, and Darrell 2016). As compared to
discriminative models like ours, generative methods gener-
ally present weaker discrimination power due to lack of class
discriminative learning. However, it is also this difference
that may make their representations potentially highly com-
plementary.

Progressive Affinity Diffusion

In unsupervised learning, we have access to a set of NV unla-
belled training image samples Z = {I1, Io, ..., I }. We aim
to train a CNN model fy for extracting class discriminative
features x, i.e. fy : I — x, where 6 denotes the model pa-
rameters. The key in unsupervised learning is to bridge the
semantic gap between low-level imagery appearance (e.g.
pixel intensity) and high-level semantic concepts (e.g. object
class). It is intrinsically challenging due to large intra-class
variety and inter-class similarity in addition to unknown
variations (e.g. background, pose, illumination) and high-
dimensional data representation. Besides, variation factors
are often confounding arbitrarily (Fig 2(b)), further increas-
ing the modelling difficulty drastically. This complexity ex-
hibited in typical image collections implies the necessity to
infer highly non-linear class decision boundaries in unsuper-
vised learning.
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Figure 1: Overview of our Progressive Affinity Diffusion (PAD) method. (a) Affinity graph construction by % nearest neighbour-
hoods. (b) Affinity diffusion across neighbourhoods to discover label consistent strongly connected subgraphs. (¢) Progressive
model update with self-discovered subgraphs, leading to (d) improved feature representations. The model is trained iteratively.

To overcome the challenges, we formulate Progressive
Affinity Diffusion (PAD). PAD aims to discover sample
groups each representing one of the underlying semantic
concepts as self-supervision, hence facilitating class bound-
ary inference. For avoiding clustering errors, it is particu-
larly designed to exploit individual pairwise relationships
with capricious variations in a purely data-driven manner.

Approach overview. An overview of our PAD method
is depicted in Fig 1. Specifically, PAD is an iterative un-
supervised model learning process including three com-
ponents: (1) Affinity graph construction for representing
the global structure of training data, (2) Affinity diffusion
across neighbourhoods for self-discovering groups of sam-
ples with the same semantics, (3) Progressive model update
by formulating group structure aware objective loss func-
tion. They are integrated into a multi-stage procedure. In
each stage the model mines only the reliable data groups
that have emerged thus far in the affinity graph (i.e. model-
matureness-adaptive) other than clustering all the samples,
which then feed into the subsequent model training stages
sequentially. We describe the model training details at the
end of this section.

Affinity Graph Construction

Progressive affinity diffusion is carried out through graphs
G of unlabelled training samples. To construct the graph, we
leverage per-sample k-nearest neighbourhoods N}, defined
as:

Ni(x) = {z; | S(z;, x) is ranked top-k among X} (1)

where X denotes the feature set of all training samples ex-
tracted by the up-to-date model and S represents the cosine
similarity function. The neighbourhoods represent a kind
of data grouping (Huang et al. 2019). However, without
class label supervision, such structures convey either lim-
ited (small k) or noisy (large k) affinity information between
training samples/vertices (Fig 2(a)). Using directly N}, for
self-supervision is therefore restricted.

Affinity Diffusion across Neighbourhoods

To address the aforementioned problem, we propose affin-
ity diffusion across neighbourhoods. This aims to model the
correlation of different Ay in order to break through their

High Similarity Low High Similarity Low

(a) k-nearest neighbours (b) strongly connected subgraph
Figure 2: (a) k-nearest neighbours vs. (b) strongly connected
subgraph. Blue box: the anchor. Green box: with the same
class as the anchor. Red box: with a different class against
the anchor.
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Figure 3: Illustration of searching strongly connected sub-
graphs in an neighbourhood affinity graph. In this example,
the scale threshold s is set to 3.

barriers and spread the class identity of one sample through.
Conceptually, this leverages global data manifold (Belkin,
Niyogi, and Sindhwani 2006) formed collectively by all
neighbourhoods. As each neighbourhood may encode vi-
sual affinity information in a distinct perspective, linking
them is equivalent to joining different types of variations of a
concept, therefore enabling model learning to capture more
comprehensive concept boundaries.

For discriminative diffusion, it is critical that error in-
troduction and propagation are minimised. To this end,
motivated by graph theory (Duda, Hart, and Stork 2012;
Raghavan and Yu 1981) we propose to search strongly con-
nected subgraphs (SCS) of the affinity graph G for reveal-
ing underlying semantic concepts. A SCS structure is de-
fined as a set of vertices (images) where each vertex can be
reached from any others through neighbouring edges. This



means that all vertices of a SCS are highly similar w.r.t. some
variation criteria.

SCS structures are formed as shown in Fig 3. Starting with
arandom vertex ax,, we construct a tree-like structure based
on the edges. Then, we traverse the vertices along edges in
a depth-first search strategy. We assign nearest neighbours
with the highest priority for maximising the average pair-
wise affinity of a SCS. Depth-first search can easily achieve
this condition. It is constrained that each vertex can be vis-
ited only one time to avoid repeated traversing. To ensure
reachability of any two vertices, we enforce a cyclic con-
straint (Fig 2(b)). In the tree-like structure, one cycle that
loops back to the start vertex xs is necessary, whilst any
other cycles allow to exclude x as long as partly overlapped
with the former. In the search process, we aim to find dis-
joint SCS structures. Hence, we remove all the vertices of a
SCS once found from G to simplify and accelerate the sub-
sequent searching. This process repeats until no SCS exists.
Note that at the end, a number of isolated vertices are likely
left (outside any SCS).

With the above search method, however, we find that the
resulting SCS tends to be over large even when the graph
is not dense. This ends up with mixed samples of differ-
ent class concepts. To address this issue, we further impose
an operational size (scale) threshold s on SCS. This sim-
ple constraint works in our case considering that we are not
seeking a complete group of samples per class which can be
extremely challenging and risky as in clustering methods,
due to complex observation variations. Even splitting a sin-
gle class into multiple SCS structures, we are still able to
obtain a large amount of intra-class variation information,
whereas the risk of class mixture is significantly reduced.

Progressive Model Updating

Next, we describe how the self-discovered SCS structures
can be used for progressive model update. For formulation
ease, we treat individual samples as special SCS structures
each with one sample. We propose to further convert affinity
measurements into probability distributions, so that maxi-
mum likelihood-based learning objective functions (Good-
fellow, Bengio, and Courville 2016) can be adopted. In-
spired by (Huang et al. 2019; Wu et al. 2018), we define
the probability that any two samples x; and x; are drawn
from the same class as:

__ exp(xx;/7)
>oisy exp(@] @ /7)

where 7 is a temperature parameter controlling the dis-
tribution concentration degree (Hinton, Vinyals, and Dean
2014). This quantity is naturally compatible with SCS for-
mation, both relying on pairwise affinity. To reinforce the
SCS structural information into model learning, we max-
imise the same-class possibility of samples per SCS. We
therefore formulate a group (subgraph) structure aware ob-
jective function as:

Dij )

1 Nbs

L= log( > i) 3

i=1 JEC(x;)

where n;s specifies the mini-batch size and C(x;) the sam-
ples of the SCS structure including «;. This encourages
affinity maximisation of samples within SCS. For isolated
samples, C(x;) = {x;}, L turns to the instance loss func-
tion (Wu et al. 2018). Eq (3) is also analogous to Neighbour-
hood Component Analysis (NCA) (Goldberger et al. 2005)
when C(x;) is replaced with labelled sets.

With summation } - ; cC(w;) Pi.j» One possible weakness of
Eq (3) is that less similar neighbours can be overwhelmed
due to over small quantity. To calibrate their importance, we
introduce a hard positive enhancement strategy. Given a
SCS, for a sample x; we define its hard positive sample as
the one xy, with the smallest affinity. In the case of isolated
sample, we use a randomly transformed variant as its hard
positive. For calibration, we minimise the Kullback-Leibler
(KL) divergence of model predictions of x; and x,, as:

Nps N

Lipe = % 3N pijlog 2L @)

$ =1 j=1 Phyp.j

We obtain the final loss function of our model by weighted
summation as:
Epad = Lgs + )\Ehpe (5)

where the weight A modulates their importance balance.

Model Training

PAD starts with a randomly initialised CNN. For efficiency,
we update the affinity graph and SCS per epoch, and use
a memory to keep track of per-sample representations re-
quired by loss computation (Eq (2)). The memory is updated
for mini-batch samples by exponential moving average (Lu-
cas and Saccucci 1990):

Zi=(1—-n)-2;+n-x (6)

where 71 denotes the update momentum, x; and x; the up-to-
date and memory feature vectors respectively. This can sum-
marise the historical knowledge, learned in the past training
iterations, to solve the incomplete memory limitation of neu-
ral networks (Weston, Chopra, and Bordes 2014). The whole
model training procedure is summarised in Algorithm 1.

Algorithm 1 Unsupervised deep learning via progressive
affinity diffusion.
Input: Training data Z, training epochs N, iterations per
epoch Ny
Output: A class discriminative CNN feature representation
model;
for epoch = 1 to N, do
Construct the kNN based affinity graph (Eq (1));
Search strongly connected subgraphs (Fig 3);
for iter = 1 to IV;; do
Mini-batch feed-forward through the network;
Objective loss computation (Eq (5));
Network back-propagation and model weights update;
Memory feature refreshing (Eq (6)).
end for
end for




Experiments

Datasets. CIFAR10(/100): A natural image dataset con-
taining 50,000/10,000 train/test images from 10 (/100) ob-
ject classes. ImageNet: A large scale 1,000 classes object
dataset with 1.2 million images for training and 50,000
for test. SVHN: A Street View House Numbers dataset in-
cluding 10 classes of digit images. STL10: An ImageNet
adapted dataset containing 500/800 train/test samples from
10 classes as well as 100,000 unlabelled images from auxil-
iary unknown classes. MNIST: A hand-written digits dataset
with 60,000/10,000 train/test images from 10 digit classes.
Evaluation protocol. We considered two test protocols for
unsupervised learning of discriminative representations.

(1) Image classification (Caron et al. 2018; Wu et al.
2018), where the ground-truth class labels of the training im-
ages are used after unsupervised model learning for enabling
image categorisation. We tested two classification models,
Linear Classifier (LC) with conv5 features and Weighted
kNN with FC features. LC was realised by a fully connected
layer. The kNN classifier is based on weighted voting of top-
k neighbours Ny, as s, = Zz‘e/\/@ d(c, ¢;) - w; where 6(c, ¢;)
is a Dirac function returning 1 1if label ¢ = ¢;, and O oth-
erwise. We computed the weight w; as w; = exp(s;/7)
with 7 = 0.1 the temperature parameter and s; the cosine
similarity. Without an extra classifier learning post-process
involved, kNN reflects directly the discriminative capability
of the learned feature representations.

(2) Image clustering (Ji, Henriques, and Vedaldi 2019;
Xie, Girshick, and Farhadi 2016) where k-means is applied
if needed for clustering the samples represented by any un-
supervised model into the ground-truth number of clusters.
To measure the accuracy, we adopted the clustering accu-
racy (Xie, Girshick, and Farhadi 2016) which measures the
proportion of samples correctly grouped. Note that both the
training and test datasets are utilised for model learning in
the standard clustering setting, unlike the standard classifi-
cation setting where only the training dataset is used.
Implementation details. We used AlexNet as the backbone
(Krizhevsky, Sutskever, and Hinton 2012). We adopted SGD
with Nesterov momentum at 0.9, the epoch number at 200,
the initial learning rate at 0.03 with a decay of 0.1 every
40 epochs after the first 80 ones. We set £ = 5 (Eq (1)) for
graph construction. The maximum size s of SCS is set to 10.
We set the weight A = 0.8 (Eq (5)) and the memory update
rate 7 = 0.5 (Eq (6)). Data augmentation includes horizontal
flipping, cropping and colour jittering. In practice, the SCS
searching is conducted on memory features for efficiency
concern and the memory bank takes around 600MB for Ima-
geNet. Implemented in Tarjan framework (Tarjan 1972), the
worst-case time complexity of our SCS searching is O(N?).
All the experiments run on Tesla P100 GPU.
Hyper-parameters selection. All our parameters are tuned
on CIFAR10 and applied to all the other datasets. There
is no per-dataset tuning. In particular, due to no valida-
tion set for cross-validation, we used common parame-
ter settings: (1) we set k£ (Eq (1)) and s (maximum SCS
size) so that there are neither too many isolated samples
nor too large SCS units for error control; set A (Weight
of hard positive enhancement) so that no loss dominates;

and set 7 (memory update rate) following (Wu et al. 2018;
Huang et al. 2019). (2) For the SGD optimiser, we set the
parameters so that the training loss can drop properly. This
tuning process is easy to conduct in practice. Instead of ex-
haustively tuning the parameters, we used a single setting for
all the experiments to test its scalability and generalisation.

Image Classification

In Table 1, we compared our PAD method with the represen-
tative works of clustering analysis (DeepCluster (Caron et
al. 2018), AND (Huang et al. 2019)), self-supervised learn-
ing (RotNet (Gidaris, Singh, and Komodakis 2018)), and
sample specificity learning (Instance (Wu et al. 2018)) on
four benchmarks. We make three observations:

(1) PAD surpasses all competitors under either classifica-
tion model, often by a large margin. This suggests the per-
formance superiority of our method thanks to its strong ca-
pability of discovering underlying semantic boundaries.

(2) When compared with £NN classifier, linear classifier
tends to yield better results due to using extra parameters.
This is particularly so for the pretext task based model Rot-
Net. This is because the pretext task is less relevant to clas-
sification, leading to weaker representation as compared to
grouping based methods like AND and PAD.

(3) As an intermediate representation between clusters
and instances, tiny neighbourhoods are exploited in AND
for revealing class boundaries and improves the results in
most cases. However, this method is restricted by the small
size of neighbourhoods. PAD addresses this limitation by
affinity diffusion across adjacent neighbourhoods.

[ Dataset [ CIFAR10 [CIFARI00 [ SVHN [ImageNet |
Classifier/Feature Weighted kNN / FC
Random 34.5 12.1 56.8 3.5
DeepCluster 62.3 22.7 84.9 26.8
Instance 60.3 32.7 79.8 313
RotNet 72.5 32.1 717.5 9.2
AND 74.8 41.5 90.9 313
PAD 81.5 48.7 91.2 35.1
Classifier/Feature Linear Classifier / conv5
Random 67.3 32.7 79.2 14.1
DeepCluster 77.9 41.9 92.0 38.2
Instance 70.1 394 89.3 35.6
RotNet 84.1 57.4 92.3 36.5
AND 77.6 47.9 93.7 37.8
PAD 84.7 58.6 93.2 38.6

Table 1: Image classification results of unsupervised learn-
ing models. The 1%/2" best results are indicated in
bold/underline.

We examined the training dynamics of SCS size and pre-
cision. Fig 4 shows that PAD starts with finding small SCS
structures due to weak representation power, then explores
larger ones at decreasing precision, and finally converges
the size whilst increases the precision before both levels off.
High precision of SCS is a key for enabling more discrimi-
native unsupervised learning by PAD.
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Figure 4: Statistics dynamics of SCS during training on CI-
FAR10: average size and precision.

Image Clustering

Apart from sample-wise image classification, we further
tested the performance of our model on image clustering
which reflects the representation quality in describing global
data structures. We compared PAD with two groups of al-
ternative methods, (1) Clustering methods: JULE (Yang,
Parikh, and Batra 2016), DEC (Xie, Girshick, and Farhadi
2016), DAC (Chang et al. 2017), ADC (Haeusser et al.
2018) and IIC (Ji, Henriques, and Vedaldi 2019); (2) Generic
representation learning methods: Triplets (Schultz and
Joachims 2004), AE (Bengio et al. 2007), Sparse AE (Ng
2011), Denoising AE (Vincent et al. 2010), Variational
Bayes AE (Kingma and Welling 2013), SWWAE (Zhao et
al. 2015), DCGAN (Radford, Metz, and Chintala 2016) and
DeepCluster (Caron et al. 2018). For the latter group includ-
ing PAD, we further applied k-means to generate their clus-
tering solutions. For PAD, we reported the average result
over 10 runs. For competitors, we used the results from (Ji,
Henriques, and Vedaldi 2019). Despite different modelling
purposes, we performed both within and cross group com-
parisons. We made a couple of observations from Table 2:

(1) The first group of methods tends to produce higher
clustering results, thanks to their joint learning of feature
representations and clustering by using the ground-truth
class number prior in end-to-end model training, i.e. con-
sistent between training and test objectives. Among them,
IIC achieves the best results.

(2) Without taking clustering as objective, the second
group of methods is relatively inferior in modelling data
group structures. However, PAD again reaches the best per-
formance consistently in this group. Crucially, our model is
on par with all the dedicated clustering methods and even
surpasses them on CIFAR10/100 with significant margins,
regardless of the disadvantage on STL10 which, we conju-
gate, is due to some distracting impact from auxiliary un-
known categories. This indicates the efficacy of our unsuper-
vised learning method in capturing the holistic data distribu-
tion. We attribute this advantage to the favourable ability of
our method in seeking the latent class consistent groups with
high variations of individual concepts.

Component Evaluations and Further Analysis

To provide insights into our model, we conducted a sequence
of detailed component evaluations and performance analysis
on the image classification task with kNN as classifier.

Effect of affinity diffusion. To investigate the effect of affin-
ity diffusion, we tested the performance of models in which
C(x) for each sample was replaced by its k-nearest neigh-

[Methods [[MNIST[STL10]CIFARI0] CIFARI00]
JULE 96.4 | 27.7 27.2 13.7
DEC 84.3 35.9 30.1 18.5
DAC 97.8 | 47.0 52.2 23.8
ADC 99.2 | 53.0 32.5 16.0
Ic 984 | 59.8 57.6 25.5
Random CNN 7 48.1 20.1 18.6 10.3
Triplets t 52.5 24.4 20.5 9.9
AE 81.2 | 30.3 314 16.5
Sparse AE 82.7 32.0 29.7 15.7
Denoising AE 83.2 30.2 29.7 15.1
Variational Bayes AE 7| 83.2 | 28.2 29.1 15.2
SWWAE 82.5 27.0 28.4 14.7
DCGAN t 82.8 29.8 31.5 15.1
DeepCluster T 65.6 334 374 18.9
PAD (Ours) { 98.2 | 46.5 62.6 28.8

Table 2: Comparing image clustering results of unsupervised
learning methods. {: Used k-means. The results of existing
methods are adopted from (Ji, Henriques, and Vedaldi 2019).

bours Ny (x) as shown in Fig 2(a) and the size k was set
to 10. According to Table 3, discovering consistent sam-
ple groups according to affinity diffusion across adjacent
neighbourhoods with necessary constraints clearly benefits
the discriminative learning of models in all cases.

Diffusion CIFAR10 CIFAR100 SVHN
X 71.5 34.5 89.5
v 81.5 48.7 91.2

Table 3: Effect of affinity diffusion.

Cyclic and scale constraints. We examined the effect of
cyclic and scale constraints and observed from Table 4 that:
(1) Cyclic constraint brings consistently performance gain,
particularly in the most challenging CIFAR100 test. This
is because of the presence of subtle visual discrepancy be-
tween fine-grained classes, which leads to more wrong as-
sociation in affinity diffusion. (2) Scale constraint is clearly
necessary for ensuring the effectiveness of our model in all
cases. Without it, different classes would be mixed up in dif-
fusion due to complex visual patterns exhibited in images.

Cyclic CIFAR10 CIFAR100 SVHN
X 73.3 30.6 91.1
4 81.5 48.7 91.2

Scale CIFARI10 CIFAR100 SVHN
X 20.2 1.8 20.3
v 81.5 48.7 91.2

Table 4: Effect of (Top) cyclic and (Bottom) scale con-
straints in forming SCS structures.

To provide visual interpretation, we conducted a case
study of affinity diffusion on STL10. Fig 5 shows that when
the model is immature, wrong cross-class diffusion may
happen frequently; the cyclic constraint can help detect this
and early stop error accumulation. Besides, it is shown that
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Figure 5: Case study on STL10. (a) vs. (b): Cyclic constraint helps detect erroneous affinity diffusion. (¢) Extremely hard
positive pairs undiscovered by PAD. Red solid box: with a different class as the anchor; Green solid box: with the same class as
the anchor. The numbers above arrows are the corresponding pairwise affinity scores.

SCS can better capture semantic similarity beyond pairwise
affinity measurements (see dashed curve). However, as ex-
pected not all the hard positive pairs are discovered due to
extreme viewing condition discrepancy as shown in Fig 5(c).
Hard positive enhancement. Table 5 (top) shows that con-
straining the prediction between hard positive pairs is clearly
beneficial for model discriminative learning. This confirms
the overwhelming effect among within-SCS samples when
using normalised affinity measurements (Eq (2)) to quan-
tify loss function (Eq (3)), and suggests the efficacy of our
enhancement strategy. We also compared two loss designs:
feature cosine similarity (FCS) vs. Kullback-Leibler (KL)
divergence. Table 5 (bottom) suggests the superiority of KL
over FCS. A plausible explanation is that KL can integrate
with SCS loss L (Eq (3)) in a more harmonious manner, as
both are based on class posterior probability measurements.

HPE CIFARI10 CIFAR100 SVHN
X 69.8 30.9 80.9
v 81.5 48.7 91.2
Design CIFARI0 CIFAR100 SVHN
FCS 72.7 39.1 90.4
KL 81.5 48.7 91.2

Table 5: (Top) Effect of hard positive enhancement (HPE)
and (Bottom) the HPE loss design comparison of feature co-
sine similarity (FCS) and Kullback-Leibler (KL) divergence.

Parameter analysis. We evaluated 3 parameters of PAD on
CIFAR10: (1) Affinity graph density k, (2) SCS scale thresh-
old s, and (3) weight A of hard positive enhancement loss.
Table 6 shows that the parameters are insensitive with a wide
range of good values, indicating training robustness.
Computation cost of SCS searching. To validate the com-
plexity of SCS searching, we tested the searching time on
ImageNet: 4 minutes per epoch, i.e. 800 minutes among the
overall 6 days training.

Conclusion

In this work, we presented a novel Progressive Affinity Dif-
fusion (PAD) method for discriminative unsupervised deep

k 1 3 5 10
Accuracy 78.3 79.3 81.5 79.7

S 5 10 50 100
Accuracy 80.2 81.5 80.7 73.5

A 0.2 0.5 0.8 1.0
Accuracy 78.4 78.5 81.5 78.9

Table 6: Model parameter analysis on CIFAR10. Top: Affin-
ity graph sparsity k; Middle: SCS scale threshold s; Bot-
tom: Weight ) of hard positive enhancement (HPE) loss.

learning. It is achieved by self-discovering class consis-
tent strongly connected subgraphs in neighbourhood affin-
ity graphs and formulating group structure aware objective
loss function. This model can be trained end-to-end in a pro-
gressive multi-stage manner. Critically, PAD overcomes the
notorious error propagation of clustering and the small lo-
cality limitation of neighbourhoods, whilst preserving and
integrating their intrinsic strengths for more effective dis-
criminative learning. Extensive experiments on image clas-
sification and image clustering tasks validate the superiority
of PAD over a wide spectrum of state-of-the-art unsuper-
vised deep learning methods.
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