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Abstract. Current person re-identification (re-id) methods assume that
(1) pre-labelled training data are available for every camera pair, (2)
the gallery size for re-identification is moderate. Both assumptions scale
poorly to real-world applications when camera network size increases
and gallery size becomes large. Human verification of automatic model
ranked re-id results becomes inevitable. In this work, a novel human-in-
the-loop re-id model based on Human Verification Incremental Learning
(HVIL) is formulated which does not require any pre-labelled training
data to learn a model, therefore readily scalable to new camera pairs.
This HVIL model learns cumulatively from human feedback to provide
instant improvement to re-id ranking of each probe on-the-fly enabling
the model scalable to large gallery sizes. We further formulate a Regu-
larised Metric Ensemble Learning (RMEL) model to combine a series of
incrementally learned HVIL models into a single ensemble model to be
used when human feedback becomes unavailable.

Keywords: Person re-identification; incremental learning; human-in-
the-loop; metric ensemble.

1 Introduction

State-of-the-art person re-identification (re-id) models are dominated by super-
vised learning approaches [1–12], which employ a train-once-and-deploy scheme
(Fig. 1(a)). That is, a pre-labelled training data set with given cross-view true-
matching identities is first collected and used to learn a model. The learned model
is then deployed to new data without any modification. Based on this approach,
the re-id community has witnessed over the past two years ever-increased re-id
matching accuracy on increasingly larger sized benchmarks with more identi-
ties. For instance, the CUHK03 benchmark [9] contains 13,164 images of 1,360
identities which is significantly larger than the early VIPeR [13] and iLIDS [14]
benchmarks. The state-of-the-art Rank-1 matching accuracy on CUHK03 is now
in 50-60% [12], doubling the best performance reported merely a year ago [9].

One inevitable question arises: Are we close to an automated re-id solution
capable of deployment in the real-world? The answer is no. This is because exist-
ing supervised learning based re-id methods make two critical assumptions, both
of which are invalid in the real-world (unscalable): (1) A manually pre-labelled
pairwise training data set is assumed available for every camera pair. Howev-
er, this is neither scalable (prohibitive to collect in the real-world as there are
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Fig. 1. (a) Conventional train-once-and-deploy re-id strategy requires pre-labelled training data
collection. (b) POP [15]: A recent human-in-the-loop re-id approach which optimises probe-specific
models in isolation. (c) HVIL: The proposed new incremental human-in-the-loop re-id model.

quadratic number of camera pairs), nor plausible (there may not exist sufficient-
ly large number of training people reappearing in every pair of camera views).
(2) The size of the training dataset is assumed either significantly greater or
no less than that of test gallery population on which the learned model will be
deployed. For instance, given the standard splits of the CUHK03 benchmark,
the training set consists of paired images of 1,260 person identities from six dif-
ferent camera views (on average 4.8 image samples per person per camera view),
whilst the test gallery set consists of only 100 identities each with a single image
(one-shot setting). The test set’s identity size is thus 10 times less than that of
the training set, and has approximately 50 times less images. In a real-world,
the size of any deployment gallery population is almost always much greater
than any pre-labelled training data size even if such training data were made
available. In a public space such as an underground station, there are easily
over 1,000 people passing through a camera network every hour, resulting in a
typical gallery population size of over 10,000 in a day. It was observed from our
experiments that a 10-fold increase in gallery size leads to a 10-fold decrease in
re-id Rank-1 performance, resulting in a single-digit Rank-1 score, even when the
state-of-the-art re-id models were trained from sufficiently sized labelled data.
Given such single-digit Rank-1 scores, human operators are required to verify
any true match given a probe from a rather large rank list.

To overcome the inherent limitations of the two aforementioned assumtions
from pre-labelling based supervised learning, an attractive alternative approach
is to explore human-in-the-loop for person re-identification (Fig. 1(b)). Such an
approach is inherently more scalable compared to conventional pre-trained re-id
models because it does not assume the collection of pre-labelled training data.
Human-in-the-loop verification can be considered as a form of “labelling effort”.
However, this on-the-fly verification approach has two significant advantages over
the conventional approach that requires pre-labelling data for training: (1) It re-
quires much less labelling-effort (the number of feedback from human verification
is typically in tens rather than thousands required for pre-labelling training da-
ta); (2) It focuses on optimising the re-id ranking of each probe directly in the
test gallery population, rather than learning a distance metric in a separate
training set and blindly assuming its adaptability to the test gallery population.
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In this work we develop a re-id model without the need for pre-labelled
training. Crucially, it can be improved incrementally by human verification and
benefits from more flexible human feedback (similar/dissimilar). As a result, it
enables a human to re-id rapidly a given probe image after only a handful of
feedback verifications even when the gallery size is large. More specifically, a Hu-
man Verification Incremental Learning (HVIL) model (Fig. 1(c)) is formulated
to maximise the effectiveness of human-in-the-loop feedback by incorporating:
(1) Flexible feedback - HVIL allows for weak human feedback (similar/dissimilar)
without the need for exhaustive user search in the ranked list, instead of being
restricted to only true/false verifications. (2) Immediate benefit - By introducing
a new online incremental distance metric learning model, HVIL enables real-time
response to human feedback by rapidly presenting a freshly optimised ranking
list. (3) The older the wiser - HVIL is updated cumulatively on-the-fly utilis-
ing multiple user feedback per probe and optimised incrementally for each new
probe given what been learned from all previous probes. (4) A strong ensemble
model - An additional Regularised Metric Ensemble Learning (RMEL) model
is introduced by taking all the incrementally optimised per-probe models as a
set of “weak” models [16, 17] and constructing a “strong” ensemble model for
performing re-id tasks when human feedback becomes unavailable.

Related Work - Current best performing person re-id methods are fully super-
vised but they require a large number of pre-labelled training data from every
camera pair for building camera-pair specific distance metric models [18, 2–6,
10, 7–9, 19, 20, 11, 12]. Their usefulness and scalability are inherently limited in
real-world applications especially with large camera networks.This problem be-
comes more acute for the more recent deep learning based methods [21, 22, 19,
23, 9] which need more labelled training data to function. To relax this need
for labelling, existing attempts include semi-supervised [24, 25], unsupervised
[26–28], and transfer learning [29–32]. However, all of these strategies are weak
in performance compared to fully supervised learning - without labelled data,
they are unable to learn strong discriminative information for cross-view people
re-identification. In contrast, the proposed HVIL model learns discriminative-
ly from human feedback instead of pre-labelled image pairs, and is capable of
yielding much superior person re-id matching accuracy than the state-of-the-
art supervised re-id models, with added advantages of costing much less human
feedback as “labelling effort” and being more scalable to large test gallery sizes.

Very few human-in-the-loop re-id methods were reported before, nor received
much attention. Abir et al. [33] assumed a pre-labelled training set available per
person in addition to human-in-the-loop verification. Hirzer et al. [34] considered
a form of human feedback which is ill-posed: It only allows a user to verify
whether a true match is within the top-N ranking list. This limits significantly
the effectiveness of human feedback and can waste expensive human labour when
a true match cannot be found in the top-N ranks. More recently, Liu et al. [15]
proposed the POP model (Fig. 1(b)), which allows a user to identify correct
matches more rapidly and accurately by accommodating more flexible feedback
information. However, both [34, 15] are limited inherently due to the fact that
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they treat each probe as an independent retrieval task, i.e. the process of learning
a model for each probe does not benefit learning models for other probes. This
lack of improving model-learning cumulatively with increasing human feedback
is both suboptimal and in danger of disengaging the human in the loop. In
contrast, the proposed HVIL re-id framework (Fig. 1(c)) enables incremental
model improvement from cumulative human feedback. Moreover, the proposed
RMEL ensemble model further benefits from previous human verification effort
even when human feedback is no long available.
Contributions - (1) We formulate a new approach to person re-id for a model
to be optimised cumulatively by human feedback on-the-fly with each re-id task
at hand without pre-labelled training and being effective for large gallery sizes.
(2) A Human Verification Incremental Learning (HVIL) model is introduced for
distance metric optimisation by flexible human feedback continuously in real-
time and from cumulative feedback when more probe images are searched. (3) A
Regularised Metric Ensemble Learning (RMEL) model is constructed for a strong
ensemble model when human feedback becomes unavailable. The advantages of
the proposed approach is validated by extensive comparisons against contempo-
rary image retrieval methods and state-of-the-art supervised person re-id models
on two largest re-id benchmarks CUHK03 [9] and Market-1501 [35].

2 Human-in-the-Loop Incremental Learning

2.1 Problem Formulation

Suppose an image is denoted by a feature vector x ∈ Rd. The human-in-the-loop

re-id problem is formulated as: (1) For each image xp in a probe set P = {xpi }
Np

i=1,

xp is matched against a gallery set G = {xgi }
Ng

i=1 and an initial ranking list is
generated by a re-id ranking function f(·) : Rd → R, according to ranking
scores fxp(xgi ). (2) A human operator (user) browses the gallery ranking list to
verify the existence and the rank of any true match for xp. Human feedback
is generated when a ranked gallery image xg is selected by the user with a
label y ∈ {true,dissimilar, similar}. Once a feedback on probe xp is received,
parameters of f(·) are updated instantly to re-order the gallery ranking list and
give the user immediate reward for the feedback. (3) When either a true match
is found or a pre-determined maximum round of feedback is reached, the next
probe is presented for re-id in the gallery set. In contrast to pre-labelling training
data required by conventional train-once-and-deploy re-id schemes, human-in-
the-loop re-id has two unique characteristics: (a) Due to human patience and
limited labour budget [34], a user is only interested in the top ranked gallery
images, and a user’s feedback on each probe is limited. (b) Rather than verifying
only true (positive) matches in the gallery for each probe, which are inherently
very few if any among the top ranks1, it is a much easier and more rewarding task
for the user to give feedback on the many top ranked negative gallery instances:
strong-negative (dissimilar) - “definitely not the one I am looking for”, and weak-
negative (similar) - “looks similar but not the same person” [15].

1 In a large size gallery set, true matches are often scarce (only one-shot) and over-
whelmed (appear in low-ranks) by false matches of high-ranks in the rank list.
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2.2 Modelling Human Feedback as a Loss Function

Formally, we wish to construct an incrementally optimised ranking function,
fxp(xgi ) : Rd → R, where f(·) can be estimated by three types of human feedback
y ∈ L = {m, s,w} as true-match, strong-negative, and weak-negative respectively.
Inspired by [36–38], we define a ranking error (Loss) function for a feedback y
on a human selected gallery sample xg given a probe xp as:

err(fxp(xg), y) = Ly(rank(fxp(xg))), (1)

where rank(fxp(xg)) denotes the rank of xg given by fxp(·), defined as:

rank(fxp(xg)) =
∑

xg
i∈G\xg

I(fxp(xgi ) > fxp(xg)), (2)

where I(·) is the indicator function. The loss function Ly(·) : Z+ → R+ trans-
forms a rank into a loss. We introduce a novel re-id ranking loss defined as:

Ly(k) =

{∑k
i=1 αi, if y ∈ {m,w}∑ng

i=k+1 αi, if y ∈ {s}
, with α1 > α2 > · · · > 0. (3)

Note, different choices of αi lead to specific model responses to human feedback.
We set αi = 1

i (large penalty with steep slope) when y indicates a true-match,
and αi = 1

ng−1 with ng the gallery size (small penalty with gentle slope) when y

represents a weak-negative or strong-negative. Such a ranking loss is designed to
favour a model update behaviour so that: (1) true-matches are quickly pushed up
to the top ranks, whilst (2) weak-/strong-negatives are mildly moved towards the
top/bottom rank direction. Our experiments (Sec. 4.1) show that such a ranking
loss criterion boosts very effectively the Rank-1 matching rate and pushes quickly
true-matches to the top ranks at each iteration of human feedback.

2.3 Real-time Model Update for Instant Feedback Reward

Given the re-id ranking loss function defined in Eqn. (3), we wish to have real-
time model update to human feedback therefore providing instant reward to user
labour effort. To that end, we consider the re-id ranking model f(·) as a negative
Mahalanobis distance metric:

fxp(xg) = −
[
(xp − xg)>M(xp − xg)

]
, M ∈ Sd+. (4)

The positive semi-definite matrix M consists of model parameters to be learned.

Knowledge cumulation by online learning - In previous works [34, 15], f(·)
is only optimised in isolation for each probe without benefiting from previous
feedback on other probes. To overcome this limitation, we wish to optimise
f(·) incrementally in an online manner [39] for maximising the value of limited
human feedback labour budget. Moreover, to achieve real-time human-in-the-
loop feedback and reward, f(·) needs be estimated on each human feedback.
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Formally, given a new probe xpt at time step t ∈ {1, · · · , τ} (τ the pre-defined
budget), a user is presented with a gallery rank list computed by the previously
estimated model Mt−1 instead of re-initialising a new ranking function from
scratch for this new probe. The user then verifies a gallery image xgt in the top
ranks with a label yt, generating a labelled triplet (xpt ,x

g
t , yt). Given Eqn. (3),

this triplet has a corresponding loss as L(t) = Lyt(rank(fxp
t
(xgt ))). We update

the ranking model by minimising the following object function:

Mt = argmin
M∈Sd

+

∆F (M ,Mt−1) + ηL(t), (5)

where ∆F is a Bregman divergence measure, defined by an arbitrary differen-
tiable convex function F , for regularising the discrepancy between M and Mt−1.
The set Sd+ defines a PSD cone, and the tradeoff parameter η > 0 balances the
model update divergence and empirical loss. This optimisation updates incre-
mentally the ranking model adopted from the previous probe by encoding user
feedback on the current probe.

Loss approximation for real-time optimisation - In order to encourage
and maintain user engagement in verification feedback, real-time online incre-
mental metric learning is required. However, as L(t) is discontinuous, the overall
objective function cannot be optimised efficiently by gradient-based methods.
We thus approximate the loss function by a continuous upper bound [36] so that
it is differentiable w.r.t. M :

L̃(t) =
1

N−t

∑
x
g
i ∈G\x

g
t

Lyt
(
rank

(
fxp

t
(xgt |Mt−1)

))
hyt

(
fxp

t
(xgt |Mt)− fxp(xgi |Mt)

)2
,

(6)

where fxp
t
(xgt |Mt−1) denotes the function value of fxp

t
(xgt ) parametrised by

Mt−1, and hyt(·) represents a hinge loss function defined as:

hyt(fxp
t
(xgt )− fxp

t
(xgi )) =

{
max(0, 1− fxp

t
(xgt ) + fxp

t
(xgi )), if yt ∈ {m,w}

max(0, 1− fxp
t
(xgi ) + fxp

t
(xgt )), if yt ∈ {s}

. (7)

The normaliser N−t in Eqn. (6) is the amount of violators, i.e. the gallery in-
stances that generate non-zero hinge loss in Eqn. (7) w.r.t. triplet (xpt ,x

g
t , yt).

Learning speed-up by most violator update - Given the approximation in
Eqn. (6), we can exploit the stochastic gradient descent (SGD) algorithm [40]
for optimising Eqn. (5) by iteratively updating on sub-sampled batches of all
violators. However, the computational overhead of iterative updates can be large
due to possibly many violators, and thus not meeting the real-time requirement.
To address this problem, we explore a most violator update strategy, that is,
to perform metric updates using only the violator xgv with the most violation
(Eqn. (7)). The final approximated empirical loss is then estimated as:

L̃(t)
v = Lyt

(
rank

(
fxp

t
(xgt |Mt−1)

))
hyt

(
fxp

t
(xgt |Mt)− fxp(xgv|Mt)

)2
. (8)
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By replacing L(t) in Eqn. (5) with L̃(t)
v , and setting the gradient of Eqn. (5) to

zero, we yield the following ranking metric online update criterion:

Mt = g−1
(
g(Mt−1)− η∇M L̃(t)

v

)
, (9)

where g(·) denotes the derivative of F (Eqn. (5)) w.r.t. M [41]. For the form of
F , we adopt Burg matrix divergence [42]:

∆F (M ,Mt−1) = tr
(
MM−1

t−1

)
− logdet

(
MM−1

t−1

)
. (10)

Eqn. (9) can be readily optimised by any gradient-based update schemes [43, 41].
We adopted the LogDet Exact Gradient Online (LEGO) algorithm [44]. This is
desirable because Eqn. (9) is solved with a computational complexity of O(d2)
where d is the feature vector dimension. This avoids eigenvector computation
with a cost of O(d3) required by most other schemes. Given all the components
described above, our final model for Human Verification Incremental Learning
(HVIL) enables real-time incremental person re-id model learning with human-
in-the-loop feedback. Our extensive experiments (Sec. 4.1) show that this HVIL
model provides the fastest human-in-the-loop feedback-reward cycle over other
competitors. An overview of the HVIL model is given in Algorithm 1.

Algorithm 1: Human Verification Incremental Learning (HVIL)

Data: Unlabelled probe set P and gallery set G;
Result: Per probe optimised ranking lists; re-id models {Mt}τt=1;
Initialisation: M0 = I (identity matrix, equivalent to L2 distance)
while t < τ do

Present the next probe xpt ∈ P;
for iter = 1 : maxIter do

// maxIter: maximum interaction rounds per probe

Rank G with Mt−1 against xpt (Eqn. (4));
Collect human feedback (xgt , yt);

Locate the most violator xgv and calculate L̃(t)
v (Eqn. (7) and

Eqn. (8));

Mt = update(Mt−1, L̃(t)
v ) (Eqn. (9)), t = t+ 1;

end

end
Return {Mt}τt=1.

3 Metric Ensemble Learning for Automated Re-id

Finally, we consider a situation when limited human labour budget is exhausted
at time τ and an automated re-id strategy is required for any further probes.
In this case, as the HVIL re-id model is optimised incrementally, the model
Mτ optimised by the human verified probe at time τ can be directly deployed.
However, it is desirable to construct an even “stronger” model based on metric
ensemble learning. Specifically, a side-product of HVIL is a series of models
incrementally optimised locally for a set of probes with human feedback. We
consider them as a set of globally “weak” models {Mj}τj=1, and wish to construct
a single globally strong model for re-id further probes without human feedback.
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Regularised Metric Ensemble Learning - Given weak models {Mj}τj=1,
we compute a distance vector dij ∈ Rτ for any probe-gallery pair (xgj , x

p
i ):

dij = −
[
fxp

i
(xgj |M1), · · · , fxp

i
(xgj |Mt), · · · , fxp

i
(xgj |Mτ )

]>
. (11)

The objective of metric ensemble learning is to obtain an optimal combination of
these distances for producing a single globally optimal distance. Here we consider
the ensemble ranking function fens

xp
i

(xgj ) in a bi-linear form (shortened as fensij ):

fensij = fensxp
i

(xgj ) = −d>ijWdij , s.t. W ∈ Sτ+, (12)

with W being the model parameters capturing the correlations among all the
weak model metrics. In this context, previous work such as [20] is a special case
of our model when W is restricted to be diagonal only.
Objective function - To estimate an optimal ensemble weights W with
most identity-discriminative power, we re-use the true matching pairs verified
during the human verification procedure (Sec. 2) as “training data”: Xtr =
{(xpi ,x

g
i )}

Nl
i=1, and their corresponding person identities are denoted by C =

{ci}Nl
i=1. Note, “training data” here are only for estimating ensemble weights,

not for learning a distance metric. Since the ranking score fensij in Eqn. (12) is
either negative or zero, we consider that in the extreme case, an ideal ensemble
function f∗ should provide the following ranking scores : f∗ij = 0 for ci = cj , and
f∗ij = −1 for ci 6= cj . Using F ∗ to denote such an ideal ranking score matrix and
F ens to denote an estimated score matrix by a given W with Eqn. (12), our
proposed objective function for metric ensemble learning is then defined as:

min
W
‖F ens − F ∗‖2F + νR(W ), s.t. W ∈ Sτ+, (13)

where ‖ · ‖F denotes a Frobenius norm, and R(W ) a regulariser on W with
parameter ν controlling the regularisation strength. Whilst common choices of
R(W ) include L1, Frobenius norm, or matrix trace, we introduce the following
regularisation for a Regularised Metric Ensemble Learning (RMEL) re-id model:

R(W ) = −
∑
i,j

fensij , for ci = cj . (14)

Our intuition is to impose severe penalties for true match pairs with low rank-
ing scores since they deliver the most informative discriminative information
for cross-view person re-id, whilst false match pairs are either less informative
(strong-negative) or non-discriminative (weak-negative).
Optimisation - Eqn. (13) is strictly convex with a guaranteed global optimal
so it can be optimised by any off-the-shelf toolboxes [45]. We adopt the standard
first-order projected gradient descent algorithm [46]. Given the estimated opti-
mal ensemble weight matrix W and the weak models {Mj}τj=1, a single strong
ensemble model (Eqn. (12)) is made available for performing automated re-id of
any further probes on the gallery population. Our experiments (Sec. 4.2) show
that the proposed RMEL algorithm achieves superior performance compared to
state-of-the-arts supervised re-id models given the same amount of labelled data.
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4 Experiments

Two experiments were conducted: (1) The proposed HVIL model was evaluated
under a human-in-the-loop re-id setting and an enlarged test gallery population
was used to reflect real-world use-cases. (2) In the event of limited human labour
budget being exhausted and human feedback becoming unavailable, the proposed
HVIL-RMEL model was evaluated under an automated re-id setting.
Datasets - Two largest person re-id benchmarks: CUHK03 [9] and Market-
1501 [35] were chosen for evaluation due to the need for large test gallery size.
CUHK03 contains 13,164 automatically detected bounding boxes of 1,360 people;
Market-1501 consists of 32,668 detections of 1,501 people. Both datasets cover 6
outdoor surveillance cameras with severely divergent and unknown viewpoints,
illumination conditions, (self)-occlusion and background clutter.
Data partitions - For each dataset, we randomly selected 1,000 identities Dp1

(p stands for population) as the partition to perform human-in-the-loop re-id
experiments. The remaining partition of people Dp2 (360 on CUHK03, and 501
on Market-1501) were separated for evaluating the proposed model against state-
of-the-art supervised re-id methods for automated re-id (see details in Sec. 4.1
and Sec. 4.2). To obtain statistical reliability, we generated 6 different trials
{Di

p1, D
i
p2}6i=1 for experiments and reported their averaged results.

Visual features - The descriptor of [47] was adopted for person image repre-
sentation. The feature vector (5,138 dimensions) was a concatenation of colour,
HOG [48] and LBP [49] histograms extracted from horizontal rectangular stripes.

4.1 Evaluation on Human-in-the-Loop Person Re-Id

We evaluated the performance of our HVIL model in human-in-the-loop re-id
setting, along with detailed human feedback statistics analysis.
Human feedback protocol - Human feedback were collected on all 6 trials of
Di
p1 partitions in 6 independent sessions by 2 volunteers as users, i.e. each trial

for one different session. The human labour budget in each session was limited to
the maximum of 300 probes. For testing, the standard single-shot re-id scheme
[1] is considered, i.e. from the partition Di

p1 we selected randomly a single image

per identity to form a 300 people/image probe set Pi and crucially, a much
larger 1,000 people/image gallery set Gi (Pi and Gi are from different camera
views). During each session, a user was asked to perform human-in-the-loop re-id
on probes in probe set Pi against gallery set Gi. For each probe, a maximum of
3 rounds of user interaction are allowed. We limited the users to verify only the
top-50 in the rank list (5% of 1,000 gallery set). During each interaction: (1) A
user selects one gallery image as either strong-negative, weak-negative, or true-
match; and (2) the system takes the feedback, updates the ranking function and
returns the re-ordered ranking list, all in real-time (Sec. 2). The HVIL model
was evaluated against six existing models for human-in-the-loop re-id as follows.
Competitors A - Three existing human-in-the-loop models were compared:
(1) POP [15]: The current state-of-the-art human-in-the-loop re-id method based
on Laplacian SVMs and graph label propagation; (2) Rocchio [50]: A probe
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Dataset CUHK03 [9] (Ng = 1000) Market-1501 [35] (Ng = 1000)

Rank (%) 1 50 100 200 1 50 100 200

L2 2.9 31.1 43.2 58.2 16.1 66.6 76.6 85.0

kLFDA [10] 5.9 47.3 60.1 75.0 21.8 85.8 91.5 96.3

XQDA [11] 3.7 40.2 53.6 68.5 18.3 75.1 83.5 91.1

MLAPG [12] 4.2 39.5 52.4 66.7 24.1 84.5 91.2 95.7

EMR [52] 46.0 47.3 51.3 60.0 53.3 64.3 75.7 85.0

Rocchio [50] 43.1 49.9 57.3 65.1 52.7 69.6 77.6 87.3

POP [15] 46.3 55.7 64.0 74.3 56.0 72.7 80.6 86.3

HVIL (Ours) 56.1 64.7 75.7 87.4 78.0 86.0 90.3 93.4

Table 1. Evaluating human-in-the-loop person re-id with CMC performances.

vector modification model updates iteratively the probe’s feature vector based
on human feedback, widely used for image retrieval tasks [51]; (3) EMR [52]: A
graph-based ranking model that optimises the ranking function by least square
regression. For a fair comparison of all four human-in-the-loop models, the users
were asked to verify the same probe and gallery data (Pi,Gi) with three-types
of feedback given the ranking-list generated by each model.

Competitors B - In addition, three state-of-the-art conventional supervised
person re-id models were also compared: (4) kLFDA [10], (5) XQDA [11], and
(6) MLAPG [12]. These supervised re-id methods were trained using fully pre-
labelled data in the separate partition Di

p2 (CUHK03: averagely 3,483 images of
360 identities; Market-1501: averagely 7,737 images of 501 identities) before be-
ing deployed to Pi (300) and Gi (1,000) for testing. Note, the underlying human
labour effort for pre-labelling the training data to learn these supervised models
was significantly greater – exhaustively searching 3,483 and 7,737 true matched
images respectively for CUHK03 and Market-1501, than that required by the
human-in-the-loop methods – between 300 to 900 indicative verification (simi-
lar, dissimilar, or true) given a maximum of 300 probes on both CUHK03 and
Market-1501, so only 1/10th of and weaker user input than supervised models.

Implementation details - For implementing the HVIL model (Sec. 2), the
only hyper-parameter η (Eqn. (5)) was set to 0.5 on both datasets. We found that
HVIL is insensitive to η with a wide satisfiable range from 10−1 to 101. For POP,
EMR, and Rocchio, we adopted the authors’ recommended parameter settings
as in [15, 50]. For all methods above, we applied L2 distance as the initial ranking
function f0(·) without loss of generalisation2. Note that for HVIL, once f0(·) was
initialised for only the very first probe, it was then optimised incrementally across
different probes. In contrast, for POP and EMR and Rocchio, each probe had its
own f0(·) initialised as L2 since the models are not cumulative across different
probes. For supervised methods kLFDA, XQDA and MLAPG, the parameters
were determined by cross-validation on Dp2 with the authors’ published codes.
All models adopted the same feature descriptor [47].

Evaluation metrics - Cumulative Match Characteristic (CMC) curves were
adopted for performance evaluation. Specifically, we calculated the cumulative
recognition rate at each rank position. Expected Rank (ER) is also used for
evaluation, defined as the average rank of all true matches. For all human-in-

2 No limitation on considering any distance/similarity metrics, either learned or not.
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Fig. 2. Comparing Rank-1 score and Expected Rank (ER) on human feedback rounds.

the-loop models, we used the ranking result after the final interaction on each
probe for CMC evaluation. The averaged results over all 6 trials are reported.

Comparative results - The person re-id performance of all methods on Pi
and Gi is shown in Table 1. First, it is evident that when the testing gallery
size was enlarged from their standard settings (100 identities for CUHK03 and
751 for Market-1501) to 1,000 identities, all conventional supervised re-id models
suffered severely, e.g. a 10-fold drop at Rank-1 for XQDA on CUHK03. More
importantly, even though the supervised models were trained on a large-sized
pre-labelled data in Dp2 with an average of 3,483 cross-view images of 360 identi-
ties on CUHK03, and 7,737 images of 501 identities on Market-1501, their re-id
performance was still significantly outperformed by human-in-the-loop models
with 10-fold less human verification effort. This suggests the necessity of human-
in-the-loop in real-world person re-id applications when the gallery population
size becomes inevitably large. Moreover, to learn functionable supervised mod-
els, substantially more exhaustive pre-labelled training data are required. Such
results suggest that human-in-the-loop re-id is a much better strategy for more
efficiently exploiting human labour in real-world applications.

Second, HVIL improves significantly over the state-of-the-art human-in-the-
loop model POP on Rank-1 score: from 46.3% to 56.1% on CUHK03 (∼10%
in absolute terms) and from 56.0% to 78.0% on Market-1501 (over 20% in ab-
solute terms). HVIL’s advantage continues over all ranks. This demonstrates
compellingly the advantages of the HVIL model in cumulatively exploiting hu-
man verification feedback, whilst the existing human-in-the-loop models have no
mechanisms for sharing human feedback knowledge among different probes.

Statistics analysis on human verification - Fig. 2 shows the comparisons
of Rank-1 and Expected Rank (ER) on the 4 human-in-the-loop models over
three verification feedback rounds. It is evident that the proposed HVIL model
is more effective than the other three models in boosting Rank-1 scores and
pushing up true matches’ ranking orders. The reasons are: (1) Given a large
gallery population with potentially complex manifold structure, it is difficult to
perform accurately graph label propagation for graph-based methods like POP
and EMR. (2) Unlike POP/EMR/Rocchio, the proposed HVIL model optimises
on re-id ranking losses (Eqn. (3)) specifically designed to maximise the three
types of human verification feedback. (3) The HVIL model enables knowledge
cumulation (Eqn. (5)). This is evident in Fig. 2 where HVIL yields notably
better (lower) Expected Ranks (ER), even for the initial ER before verification
feedback takes place on a probe (due to benefiting cumulative effect from other
probes). In contrast, other models do not improve initial ER on each probe due
to the lack of a mechanism to cumulate experience.
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Fig. 3. Search time from differen-
t human-in-the-loop models on the
same 25 randomly selected probes.

Dataset CUHK03 [9] Market-1501 [35]

Method HVIL POP ES HVIL POP ES

Found-matches(%) ↑ 56.1 46.3 100 78.0 56.0 100

Browsed-images ↓ 32.9 42.1 234.1 19.5 38.3 108.7

Feedback ↓ 2.1 2.3 - 1.6 1.9 -

Search-time(sec.) ↓ 31.7 58.1 172.8 28.1 49.8 106.2

Table 2. Human verification effort vs. benefit.
All measures are from averaging over all probes.
↓: lower better; ↑: higher better.

We further evaluated the human verification effort in relation to re-id per-
formance benefit, collected from the human-in-the-loop re-id evaluation experi-
ments reported above. We compared the HVIL model with the POP model and
Exhaustive Search (ES) where a user performs exhaustive visual searching over
the whole gallery ranking list (1,000) until finding a true match. The averaged s-
tatistics over all 6 trials were compared in Table 2. It is evident that though ES is
guaranteed to locate a true match for every probe if it existed, it is much more
expensive than POP (3×) and HVIL (5×) in search time given a 1,000-sized
gallery. This difference will increase further on larger galleries. Comparing HVIL
and POP, it is evident that HVIL is both more cost-effective (less Search-time,
Browsed-images and Feedback) and more accurate (more Found-matches).

To better understand model convergence given human feedback, we conduct-
ed a separate experiment to measure the search time by different human-in-the-
loop models given the initial rank lists on 25 randomly selected probes verified
by multiple users. This experiment was evaluated by 10 independent sessions
with the same set of 25 probes provided. In each session, the users were required
to find a true match for all 25 probes. Specifically, for HVIL and POP, if a true
match was not identified after 3 (maximum) feedback, the users then performed
an exhaustive searching until it was found. The search time statistics for all 25
probes are shown in Fig. 3, where a bar shows the variance between 10 differ-
ent sessions. It is unsurprising that ES is the least efficient whilst HVIL is the
quickest in finding a true match, i.e. the data points of HVIL are much lower in
search time. Moreover, it is evident that HVIL yields much better initial ranks,
i.e. the data points of HVIL are more centred towards the bottom-left corner.
This further shows the benefit of cumulative learning in HVIL (Sec. 2.3). Fig.
4 shows two visual examples of the HVIL model in action, where user feedback
efficiently push true matches to top ranks within 2 rounds of interactions.

Probe Top 10 Matching Results 

Initial 
R = 149 

Round-1 
R = 47 

Round-2 
R = 4 

Probe Top 10 Matching Results 

Initial 
R = 123 

Round-1 
R = 57 

Round-2 
R = 8 

(a) (b) 

strong- 
negative 

weak- 
negative 

true- 
match 

Human  
feedback 

Fig. 4. HVIL re-id examples on CUHK03 (a) and Market-1501 (b). The ranks of true
matches before user feedback are shown.
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Dataset CUHK03 [9] (Ng = 360) Market-1501 [35] (Ng = 501) VIPeR (Ng = 316)

Rank (%) 1 5 10 20 1 5 10 20 1 5 10 20

L2 4.6 14.0 21.1 28.7 23.0 44.0 55.1 65.7 14.7 28.0 40.6 52.1

kLFDA [10] 6.2 19.0 28.3 39.1 29.1 58.9 71.2 82.2 32.3 65.8 79.7 90.9

XQDA [11] 5.3 14.2 21.1 30.0 28.7 54.5 65.6 75.3 40.0 68.1 80.5 91.1

MLAPG [12] 5.3 15.2 23.5 33.9 25.2 51.4 65.3 77.4 40.7 69.9 82.3 92.4

HVIL - Mavg 5.8 17.6 26.3 36.3 27.3 56.7 68.2 80.1 21.8 51.0 66.3 82.4

HVIL - Mτ 6.5 19.0 27.4 37.6 31.6 60.1 72.7 83.5 34.7 63.2 78.0 90.3

HVIL - RMEL 9.3 20.7 29.0 39.5 33.8 61.0 73.6 83.5 42.4 72.6 83.0 90.4

Table 3. Evaluating automated person re-id with CMC performances.

4.2 Evaluation on Automated Person Re-Id

The proposed RMEL model was evaluated for automated person re-id against
both state-of-the-art supervised models and baseline ensemble models as follows.

Training/testing protocol - In each of the overall 6 trials, we employed the
human verified true matches on Di

p1 (168 pairs on CUHK03 and 234 pairs on
Market-1501 in average, as not all probe images found their true matches with
a maximum of three feedback) to learn the weights for constructing a strong
ensemble model using all the verified weak models {Mj}τj=1 collected from our
previous experiments on human-in-the-loop re-id. The strong ensemble model
was then deployed for testing on the separate partition Di

p2 with the gallery
size of 360 and 501 for CUHK03 and Market-1501 respectively. For performance
evaluation, we adopted the standard single-shot test setting, i.e. randomly sam-
pling 360 cross-camera person image pairs from CUHK03 and 501 pairs from
Market-1501 on {Di

p2}6i=1 to construct the test gallery and probe sets over six
trials. The averaged CMC performance over all trials was reported.

Competitors A - Three state-of-the-art supervised re-id models are compared:
kLFDA [10], XQDA [11], and MLAPG [12] were trained using 300 ground-truth
labelled data from Pi (300) and Gi (1,000) of Di

p1, for both CUHK03 and Market-

1501. The trained models were tested on the separate partition Di
p2 with same

testing protocol as above.

Competitors B - For fully evaluating the effect of the HVIL-RMEL model, two
more ensemble baseline models are compared: (1) HVIL - Mτ : The incrementally
optimised re-id model Mτ obtained by HVIL from the last probe image at time
τ during the human-in-the-loop process. (2) HVIL - Mavg: An naive approach to
ensemble weak models, that is, simply taking an average weighting of all weak
models {Mj}τj=1 as the ensemble re-id model.

Results on CUHK03 and Market-1501 - Table 3 reports the result. For
CUHK03, there is insufficient labelled data for all camera pairs during train-
ing, given only one pair of randomly selected single-shot images per identity.
All models including HVIL-RMEL generated poor re-id performances (Rank-1
< 10%), much less than state-of-the-art reported in the literature. For Market-
1501, a similar problem exists although less pronounced. Note, the results in
Table 3 are based on a single-shot test setting. This is a much harder problem
than the multi-shot test setting [35] where on average 14.8 true matches ex-
ist in the gallery for each probe. When HVIL-RMEL was evaluated under the
same multi-shot setting on Market-1501, it yields 53.5%, 83.0%, 89.0%, 94.1%
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for Rank-1/5/10/20 respectively, significantly outperforms [35]. Given the exper-
imental results above, it is evident that: Due to (1) a much larger unlabelled test
gallery population than the labelled training set, (2) a lack of sufficient multi-
shot training/testing data in many camera pairs, human-in-the-loop approach to
re-id is not only desirable, but essential for re-id in real world applications.

Nevertheless, for automated person re-id, the proposed HVIL-RMEL stil-
l achieves the best performance among all models with a Rank-1 of 9.3% on
CUHK03 and 33.8% on Market-1501. More importantly, even though less true-
match data (168 pairs for CUHK03 and 234 pairs for Market-1501) were used to
learn the ensemble weighting for the RMEL model as compared to the ground-
truth data (300 pairs for both benchmarks) used to train kLFDA, XQDA and
MLAPG, it is evident that the human verification feedback process yields more
discriminative information for optimising probe re-id directly in the gallery pop-
ulation, resulting in a more optimal ensemble model. It is also evident that
naively taking an average ensemble model (HVIL - Mavg) gives even poorer
performance than the cumulatively learned single model (HVIL - Mτ ).
Results on VIPeR - To compare HVIL-RMEL in a more comparable context
defined in the literature on automated person re-id, we tested the HVIL-RMEL
model on the VIPeR [13] benchmark under the exact setting of the established
protocol: splitting the 632 identities into 50−50% partitions for training and test-
ing sets. For obtaining weak re-id models, we simulated HVIL feedback update by
simply giving the ground-true matching pairs instead of weak/strong-negatives
(Eqn. (9)); therefore each weak model was obtained by a true-match, using the
same information as training a conventional supervised model. The last/right
panel of Table 3 compares the performance of such a HVIL-RMEL model a-
gainst the published results of kLFDA, XQDA and MLAPG3. It is evident that
the proposed model yields state-of-the-art performance under the same conven-
tional re-id settings, with Rank-1 score of 42.4%, slightly better, by 2.4% and
1.7% respectively, than the current state-of-the-art XQDA and MLAPG.

5 Conclusions
We formulated a novel approach to human-in-the-loop person re-id by intro-
ducing a Human Verification Incremental Learning (HVIL) model, designed to
overcome two unrealistic assumptions adopted by existing re-id models that pre-
vent them to be scalable to real world applications. In particular, the proposed
HVIL model avoids the need for collecting off-line pre-labelled training data and
is scalable to re-id tasks in large gallery sizes. The advantage of HVIL over other
human-in-the-loop models is its ability to learn cumulatively from human feed-
back on more probe images when available. We further developed a regularised
metric ensemble learning (RMEL) method to explore HVIL for automated re-
id tasks when human feedback is unavailable. Extensive comparisons on the
CUHK03 [9] and the Market-1501 [35] benchmarks show the potentials of the
proposed HVIL-RMEL model for real-world re-id deployments.

3 A different 26,960-dim LOMO feature [11] were used for the published XQDA and
MLAPG results [12, 11] shown in Table 3. They were worsened using the 5,138-dim
feature [47] adopted in our experiments, not shown here due to space limitation.
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