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Abstract

Existing person search methods predominantly assume
the availability of at least one-shot imagery sample of the
queried person. This assumption is limited in circumstances
where only a brief textual (or verbal) description of the tar-
get person is available. In this work, we present a deep
learning method for text attribute description based per-
son search without any query imagery. Whilst conventional
cross-modality matching methods, such as global visual-
textual embedding based zero-shot learning and local in-
dividual attribute recognition, are functionally applicable,
they are limited by several assumptions invalid to person
search in deployment scale, data quality, and/or category
name semantics. We overcome these issues by formulating
an Attribute-Image Hierarchical Matching (AIHM) model.
It is able to more reliably match text attribute descrip-
tions with noisy surveillance person images by jointly learn-
ing global category-level and local attribute-level textual-
visual embedding as well as matching. Extensive evalua-
tions demonstrate the superiority of our AIHM model over
a wide variety of state-of-the-art methods on three pub-
licly available attribute labelled surveillance person search
benchmarks: Market-1501, DukeMTMC, and PA100K.

1. Introduction
Person search in large scale videos is a challenging prob-

lem with extensive applications in forensic video analysis
and live video surveillance [11]. From increasing numbers
of smart cities across the world equipped with tens to hun-
dreds of thousands of 24/7 surveillance cameras per city,
a massive quantity of raw video data is cumulatively pro-
duced daily. It is infeasible for human operators to manually
search people (e.g. criminal suspects or missing persons) in
such data. Automated person search becomes essential.

Most existing person search methods are based on im-
age queries (probes), also known as person re-identification
[11, 13, 21, 39, 40]. Given a query image, a system com-
putes pairwise visual similarity scores between the query
image and every gallery image in the test data. The top
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Figure 1: Person search by text attributes (keywords).

ranks with the highest similarity scores are considered as
possible matches. Such an operation assumes that at least
one image (one-shot) of the queried person is available for
initiating the search. This is limited when there is only ver-
bal or text description of the target persons.

There are a number of attempts on person search by text
queries, e.g. natural language descriptions [20, 19] or dis-
crete text attributes [37, 16, 32]. To learn such search sys-
tems, labelling a large training dataset across textual and
visual data modalities is necessary. Elaborative language
descriptions not only require more expensive training data
labelling, but also present significant computational chal-
lenges. This is due to ambiguities in interpretation between
language descriptions and image appearance such that: (1)
significant and/or subtle visual variations for the same lan-
guage description; (2) flexible sentence syntax in language
descriptions for the same image; and (3) modelling the se-
quential word dependence in a sentence is a difficult prob-
lem, particularly for long descriptions.

In contrast, text attribute descriptions are not only much
cheaper in collecting labelled training data, but also more
tractable in model optimisation. Importantly, they elimi-
nate the need for modelling complex sentence structures
and their correlations to the same visual appearance, and
vice versa. Whilst giving a compromise of weaker appear-
ance descriptive capacity, using text attributes favourably
enables a more robust and computationally tractable means
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Figure 2: Model architectures for attribute query person
search. (a) Individual attribute classification, i.e. local
attribute-level modelling. (b) Cross-modal matching, i.e.
global category-level modelling. (c) The proposed attribute-
image hierarchical matching (AIHM), integrating both local
and global modelling.

to text-query in person search without image probes.
Text attribute query person search is largely under-

studied in the literature. There exist very few attempts.
An intuitive approach is to estimate an attribute vector (text
description) of each person image, and then to match the
attribute vector of the query person with those of all the
gallery person images [16, 32] (Fig 2(a)). By treating the
attribute labels independently, this method scales flexibly to
handling the huge attribute combination space. However, it
suffers from lacking a supporting context that accounts for
a holistic interpretation of all the text attributes as a whole
which helps the text-image matching in person search. The
current state-of-the-art model, AAIPR [37] (Fig 2(b)), takes
the text-image matching strategy but loses the generalisa-
tion scalability of individual attribute modelling.

In this work, for the first time we formulate the problem
of text attribute query person search as a zero-shot learn-
ing (ZSL) problem [35, 10]. This is because the potential
test query categories (text attribute combinations) exist at
large scale in reality, but only a small proportion of them
can be available for model training due to the high cost
for exhaustively acquiring training data per category. This
raises the cross-category problem between model training
and test, i.e. zero-shot samples for unseen categories dur-
ing training. Such an understanding motivates us to design
a cross-modal matching method based on global category-
level visual-textual embedding, a common zero-shot learn-
ing approach (Fig 2(b)). AAIPR [37] also uses the global
embedding idea but totally ignores the zero-shot learning
challenge in model design.

As a type of solution for attribute query person search,
existing ZSL models are however suboptimal. First, un-
like the conventional ZSL settings that classify a test image
into a small number of categories, we match a text attribute
description against massive person images and much more
categories. This represents a larger scale more challeng-
ing zero-shot search problem. Existing state-of-the-art ZSL
methods are based on global category-level visual-textual

embedding but scale poorly to large tests [35]. A plausible
reason is due to insufficient local attribute-level discrimina-
tion for more fine-grained matching. Second, surveillance
images in person search present significantly more noise
and ambiguity, presenting a more difficult task. Third, lack-
ing semantically meaningful person category names pre-
vents exploiting inter-class relationships.

In this study, we formulate a novel Attribute-Image Hier-
archical Matching (AIHM) method (Fig 2(c)). It performs
attribute and image matching for person search at multi-
ple hierarchical levels, including both global category-level
visual-textual embedding and local attribute-level feature
embedding. This method aims to overcome the limitations
of conventional ZSL models and existing text-based per-
son search methods, by benefiting from the generalisation
scalability of conventional attribute classification methods.
Importantly, cross-modal matching can be end-to-end opti-
mised across all different levels jointly.

Our contributions are: (I) We formulate for the first time
an extended ZSL approach to solving a text attribute query
person search problem. Our model aims to solve the intrin-
sic challenge of limited training category data in surveil-
lance videos. (II) We propose a novel Attribute-Image Hi-
erarchical Matching (AIHM) method. AIHM is able to
match more reliably sparse attribute descriptions with noisy
surveillance person images at global category and local at-
tribute levels concurrently. This goes beyond the common
ZSL nearest neighbour search. (III) We further introduce
a quality-aware fusion scheme for resolving any visual am-
biguity problem. Extensive experiments show the superior-
ity of AIHM over the state-of-the-art methods for attribute
query person search on three benchmarks: Market-1501
[39], DukeMTMC [27, 23], and PA100K [24].

2. Related Work
Person Search. The most common person search approach
is based on taking bounding box images as probes (queries),
framed as an extension of the person re-identification prob-
lem [11, 21, 39, 17, 22, 7]. However, image queries are not
always available in practice. Recently, text query person
search has gained increasing attention with search queries
as natural language descriptions [20, 19, 4, 3] or short text
keywords (text attributes) [37, 16, 32]. These models enable
person search on images by verbal or written text descrip-
tions. Using natural language sentences for person search is
attractive due to its natural human user friendliness. How-
ever, this imposes extra challenges in computational mod-
elling because (1) accurate and rich training data is expen-
sive to obtain, and (2) modelling consistently and reliably
rich and complex sentence syntax and its interpretation to
arbitrary images is non-trivial, with added difficulties from
poor-quality surveillance images. In contrast, short text at-
tribute descriptions offer a more cost-effective and compu-
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Figure 3: An overview of the proposed Attribute-Image Hierarchical Matching (AIHM) model. AIHM is composited of hi-
erarchical visual-textual embedding and cross-modality hierarchical matching. To overcome the one-shot learning challenge
in textual embedding, we introduce a simple and effective negative category augmentation strategy in our matching context
that allows for enriching the training text data and reducing the model over-fitting risk.

tationally more tractable approach to solving this problem.

Visual Attributes. Computing visual attributes has been
extensively used for person search [15, 16, 17, 28, 26, 33,
6]. The idea is to exploit the visual representation of a
person by attributes as the mid-level descriptions, which
are semantically meaningful and more reliable than low-
level pixel feature representations. For example, Peng et
al. [26] mine unlabelled latent visual attributes in a limited
attribute label space for enriching the appearance represen-
tation. Considered as a more domain-invariant or domain
adaptive visual feature representation, Wang et al. [33]
exploit visual attribute learning for unsupervised identity
knowledge transfer across surveillance domains. All these
existing methods are focused on visual attribute representa-
tions to facilitate image query person search. On the con-
trary, the focus of this work is on text query person search.

Text Attributes. A few attempts for text attribute query
person search have been proposed [32, 16, 37]. In particu-
lar, Vaquero et al. [32] and Layne et al. [16] propose the
first studies that treat the problem as a multi-label classifi-
cation learning task. Whilst allowing to flexibly model ar-
bitrary attribute combinations, this strategy has no capacity
of modelling the holistic person category information and
is therefore suboptimal for processing ambiguous surveil-
lance data. More recently, Yin et al. [37] exploit the idea of
cross-modal data alignment. This captures the holistic ap-
pearance information of persons, but suffers from a cross-
category domain gap problem between the training and test
data. In contrast, we uniquely consider the problem from a
zero-shot learning perspective and formulate a novel AIHM
model. Critically, our model not only addresses the limita-
tion of existing solutions but also combines their modelling
merits for enabling extra complementary benefits.

Zero-Shot Learning. Attribute query person search can be
understood from zero-shot learning (ZSL) [14, 1, 35, 30,
38], due to the need for generalising to unseen categories
in test. But there are several significant differences. First of
all, most ZSL methods are designed for image classification
other than search/retrieval. The latter is often more chal-
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ondly, ”unknown” attribute is embedded to zero. Thirdly,
for attributes with manifold such as “Holdobjectsinfront”
and“upperblack”, and we dispel all semantic components
and add their individual embedding to represent this at-
tribute. For example, “Holdobjectsinfront” is embedded by
sum of “Hold”+“objects”+“front”.1

1The sum of multiple words is prone to make word2vector embedding
collapse, but considering that per single attribute can be decomposed into
at quite few words (at most 3 in our experiments), word2vector collapse is

Next, we further embed tj by one layer Fully connected
layer (FC) with a embedding dimension D1 output (in our
experiment, D1 = 512) and created embedding text feature
is Tij 2 R1⇥D1 , and thus for one person category i, Ti is
k ⇥ D1. For learning discriminative text embedding t, we
add k independent attribute classifiers to individual attribute
category j and sum all attribute category loss as overall text
attribute embedding loss LTextEmb:

LTextEmb(t, y) = �
kX

j=1

yj log(
eptj,l

P|tj,l|
u=1 eptj,u

) (1)

Here ptj,l
is the prediction probability of text embedding

feature tj on attribute value l and yj is the groundtruth label
of attribute category j and |tj,l| is the number of possible
values of attribute tj,l. Attri

For the global text attribute embedding, we use Inner-
modal fusion to summarise individual word embedding to a
global word embedding, which will be illustrated in Section
??.
Text attributes augmentation. In close-set person search
datasets, it is hard to include person images with all com-

often avoided in attribute embedding.
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ondly, ”unknown” attribute is embedded to zero. Thirdly,
for attributes with manifold such as “Holdobjectsinfront”
and“upperblack”, and we dispel all semantic components
and add their individual embedding to represent this at-
tribute. For example, “Holdobjectsinfront” is embedded by
sum of “Hold”+“objects”+“front”.1

1The sum of multiple words is prone to make word2vector embedding
collapse, but considering that per single attribute can be decomposed into
at quite few words (at most 3 in our experiments), word2vector collapse is

Next, we further embed tj by one layer Fully connected
layer (FC) with a embedding dimension D1 output (in our
experiment, D1 = 512) and created embedding text feature
is Tij 2 R1⇥D1 , and thus for one person category i, Ti is
k ⇥ D1. For learning discriminative text embedding t, we
add k independent attribute classifiers to individual attribute
category j and sum all attribute category loss as overall text
attribute embedding loss LTextEmb:

LTextEmb(t, y) = �
kX

j=1

yj log(
eptj,l

P|tj,l|
u=1 eptj,u

) (1)

Here ptj,l
is the prediction probability of text embedding

feature tj on attribute value l and yj is the groundtruth label
of attribute category j and |tj,l| is the number of possible
values of attribute tj,l. Attri+1

For the global text attribute embedding, we use Inner-
modal fusion to summarise individual word embedding to a
global word embedding, which will be illustrated in Section
??.
Text attributes augmentation. In close-set person search
datasets, it is hard to include person images with all com-

often avoided in attribute embedding.
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ondly, ”unknown” attribute is embedded to zero. Thirdly,
for attributes with manifold such as “Holdobjectsinfront”
and“upperblack”, and we dispel all semantic components
and add their individual embedding to represent this at-
tribute. For example, “Holdobjectsinfront” is embedded by
sum of “Hold”+“objects”+“front”.1

1The sum of multiple words is prone to make word2vector embedding
collapse, but considering that per single attribute can be decomposed into
at quite few words (at most 3 in our experiments), word2vector collapse is

Next, we further embed tj by one layer Fully connected
layer (FC) with a embedding dimension D1 output (in our
experiment, D1 = 512) and created embedding text feature
is Tij 2 R1⇥D1 , and thus for one person category i, Ti is
k ⇥ D1. For learning discriminative text embedding t, we
add k independent attribute classifiers to individual attribute
category j and sum all attribute category loss as overall text
attribute embedding loss LTextEmb:

LTextEmb(t, y) = �
kX

j=1

yj log(
eptj,l

P|tj,l|
u=1 eptj,u

) (1)

Here ptj,l
is the prediction probability of text embedding

feature tj on attribute value l and yj is the groundtruth label
of attribute category j and |tj,l| is the number of possible
values of attribute tj,l. Attri

For the global text attribute embedding, we use Inner-
modal fusion to summarise individual word embedding to a
global word embedding, which will be illustrated in Section
??.
Text attributes augmentation. In close-set person search
datasets, it is hard to include person images with all com-

often avoided in attribute embedding.
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for attributes with manifold such as “Holdobjectsinfront”
and“upperblack”, and we dispel all semantic components
and add their individual embedding to represent this at-
tribute. For example, “Holdobjectsinfront” is embedded by
sum of “Hold”+“objects”+“front”.1

1The sum of multiple words is prone to make word2vector embedding
collapse, but considering that per single attribute can be decomposed into
at quite few words (at most 3 in our experiments), word2vector collapse is

Next, we further embed tj by one layer Fully connected
layer (FC) with a embedding dimension D1 output (in our
experiment, D1 = 512) and created embedding text feature
is Tij 2 R1⇥D1 , and thus for one person category i, Ti is
k ⇥ D1. For learning discriminative text embedding t, we
add k independent attribute classifiers to individual attribute
category j and sum all attribute category loss as overall text
attribute embedding loss LTextEmb:

LTextEmb(t, y) = �
kX

j=1

yj log(
eptj,l

P|tj,l|
u=1 eptj,u

) (1)

Here ptj,l
is the prediction probability of text embedding

feature tj on attribute value l and yj is the groundtruth label
of attribute category j and |tj,l| is the number of possible
values of attribute tj,l. Attri+1

For the global text attribute embedding, we use Inner-
modal fusion to summarise individual word embedding to a
global word embedding, which will be illustrated in Section
??.
Text attributes augmentation. In close-set person search
datasets, it is hard to include person images with all com-

often avoided in attribute embedding.
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particularly for global textual embedding Interestingly, we
are not aware of any existing ZSL and person search meth-
ods that leverage this simple strategy. One possible rea-
son is that previous methods mostly do not exploit negative
cross-modality pairs in objective learning loss function. We
will verify the efficacy of this scheme (see Fig 6).

3.4. Cross-Modality Cross-Level Embedding

Given hierarchical visual-textual embedding as derived
above, we next combine them across modalities and levels
to form the final embedding for attribute-image matching.
An illustration of cross-modality cross-level embedding is
shown in Fig 4(c). To this end, a common fusion method is
concatenating two embedding vectors for each training pair
[14, 15, 31]. This however may be suboptimal, due to lack-
ing the feature dimension correspondence across modalities
which makes the optimisation ineffective. We propose to
leverage Hadamard Product that fuses two input vectors by
element-wise multiplication.
(I) Cross-Modality Global-Level Embedding. We form
the cross-modality global-level embedding sglo as:

sglo = xglo � zglo, (4)

where � specifies the Hadamard product.
(II) Cross-Modality Local-Level Embedding. Unlike the
single global-level embedding, we have multiple local per-
attribute embeddings in both modalities. Therefore, we first
need to form per-attribute cross-modality embedding as:

sloc
i = xloc

i � zloc
i , i 2 {1, · · · , Natt}. (5)

We then fuse over attributes. Instead of average pooling,
we design a quality aware fusion algorithm. This is based
on two considerations: (1) Both surveillance imagery (poor
quality with noisy and corrupted observations) and attribute
labelling (annotation errors due to poor imaging condition)
are not highly reliable. Trusting all attributes and treating
them equally in matching are error prone. (2) The signifi-
cance for person search may vary across attributes.

Specifically, to estimate the per-attribute quality ⇢loc
i , we

use the minimal prediction scores on image and text as
⇢loc

i = min(pvis
i , ptex

i ), i 2 {1, · · · , Natt}, where pvis
i and

ptex
i denote the ground-truth class posterior probability esti-

mated by the corresponding classifier. This discourages the
model fit towards corrupted and noisy observations. Based
on this quantity measure, we learn a fusion unit (Eq (3)) for
adaptively cross-attribute embedding as:

sloc = f
�
{⇢loc

i · sloc
i }Natt

i=1

�
. (6)

(III) Cross-Modality Cross-Level Embedding. We use a
fusion unit (Eq (3)) to form the final cross-modality cross-
level embedding as:

s = f
�
{sloc, sglo}

�
. (7)

The final embedding s is used to estimate the attribute-
image matching result ŷ (Eq (1)) given an input attribute
query and person image.

Table 1: Statistics of person search datasets.
Datasets Market-1501 DukeMTMC PA100K

# Attribute category 10 8 15
# Train person category 508 300 2020
# Train image 12,936 16,522 80,000
# Test person category 529 387 849
# Unseen 367 229 168
# Test image 15,913 19,889 10,000

4. Experiments
Datasets. In evaluations, we used two publicly available
person search (Market-1501 [34], DukeMTMC [22, 18])
and one large pedestrian analysis (PA100K [19]) bench-
marks. These datasets present good challenges for person
search with varying camera viewing conditions. We fol-
lowed the standard evaluation setting. The dataset statistics
are summarised in Table 1.
Performance Metrics. We used the CMC and mAP as eval-
uation metrics. As [32], we treated the gallery images re-
specting a given attribute vector query as true matches.
Implementation details. For fair comparison to [32], we
used ResNet-50 [7] as the backbone net for learning vi-
sual embedding. We employed Adam as the optimiser. We
set the batch size to 16 (attribute-image pairs), the learn-
ing rate to 1e-5, and the epoch number to 150. In each
mini-batch, we formed on-the-fly 16/255(16*16-1) posi-
tive/negative text-image training pairs. We used a two-layer
hierarchy in AIHM for the main experiments, with different
hierarchy structures evaluated independently.

4.1. Comparisons to the State-of-The-Art Methods

Competitors. We compared our AIHM with a wide range
of plausible solutions to text attribute person search meth-
ods in two paradigms: (1) Global category-level visual-
textual embedding methods: Learning to align the distri-
butions of text attributes and images in a common space,
including CCA [1, 29, 3, 24] or MMD [26] based cross-
modal matching models, ZSL methods (DEM [33], RN[25],
GAZSL [36]), visual semantics embedding (VSE++ [4]),
and GAN based cross-modality alignment (AAIPR [32]).
(2) Local attribute-level visual-textual embedding methods:
Learning attribute-image region correspondence, including
region proposal based dense text-image cross-modal match-
ing (SCAN [13]), natural language query based person
search (GAN-RNN [15] and CMCE [14]). We used the
officially released codes with careful parameter tuning if
needed, e.g. those originally applied to different applica-
tions. In testing language models [4, 13, 15, 14], we used
random attribute sentences due to no ordering and reported
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particularly for global textual embedding Interestingly, we
are not aware of any existing ZSL and person search meth-
ods that leverage this simple strategy. One possible rea-
son is that previous methods mostly do not exploit negative
cross-modality pairs in objective learning loss function. We
will verify the efficacy of this scheme (see Fig 6).

3.4. Cross-Modality Cross-Level Embedding

Given hierarchical visual-textual embedding as derived
above, we next combine them across modalities and levels
to form the final embedding for attribute-image matching.
An illustration of cross-modality cross-level embedding is
shown in Fig 4(c). To this end, a common fusion method is
concatenating two embedding vectors for each training pair
[14, 15, 31]. This however may be suboptimal, due to lack-
ing the feature dimension correspondence across modalities
which makes the optimisation ineffective. We propose to
leverage Hadamard Product that fuses two input vectors by
element-wise multiplication.
(I) Cross-Modality Global-Level Embedding. We form
the cross-modality global-level embedding sglo as:

sglo = xglo � zglo, (4)

where � specifies the Hadamard product.
(II) Cross-Modality Local-Level Embedding. Unlike the
single global-level embedding, we have multiple local per-
attribute embeddings in both modalities. Therefore, we first
need to form per-attribute cross-modality embedding as:

sloc
i = xloc

i � zloc
i , i 2 {1, · · · , Natt}. (5)

We then fuse over attributes. Instead of average pooling,
we design a quality aware fusion algorithm. This is based
on two considerations: (1) Both surveillance imagery (poor
quality with noisy and corrupted observations) and attribute
labelling (annotation errors due to poor imaging condition)
are not highly reliable. Trusting all attributes and treating
them equally in matching are error prone. (2) The signifi-
cance for person search may vary across attributes.

Specifically, to estimate the per-attribute quality ⇢loc
i , we

use the minimal prediction scores on image and text as
⇢loc

i = min(pvis
i , ptex

i ), i 2 {1, · · · , Natt}, where pvis
i and

ptex
i denote the ground-truth class posterior probability esti-

mated by the corresponding classifier. This discourages the
model fit towards corrupted and noisy observations. Based
on this quantity measure, we learn a fusion unit (Eq (3)) for
adaptively cross-attribute embedding as:

sloc = f
�
{⇢loc

i · sloc
i }Natt

i=1

�
. (6)

(III) Cross-Modality Cross-Level Embedding. We use a
fusion unit (Eq (3)) to form the final cross-modality cross-
level embedding as:

s = f
�
{sloc, sglo}

�
. (7)

The final embedding s is used to estimate the attribute-
image matching result ŷ (Eq (1)) given an input attribute
query and person image.

Table 1: Statistics of person search datasets.
Datasets Market-1501 DukeMTMC PA100K

# Attribute category 10 8 15
# Train person category 508 300 2020
# Train image 12,936 16,522 80,000
# Test person category 529 387 849
# Unseen 367 229 168
# Test image 15,913 19,889 10,000

4. Experiments
Datasets. In evaluations, we used two publicly available
person search (Market-1501 [34], DukeMTMC [22, 18])
and one large pedestrian analysis (PA100K [19]) bench-
marks. These datasets present good challenges for person
search with varying camera viewing conditions. We fol-
lowed the standard evaluation setting. The dataset statistics
are summarised in Table 1.
Performance Metrics. We used the CMC and mAP as eval-
uation metrics. As [32], we treated the gallery images re-
specting a given attribute vector query as true matches.
Implementation details. For fair comparison to [32], we
used ResNet-50 [7] as the backbone net for learning vi-
sual embedding. We employed Adam as the optimiser. We
set the batch size to 16 (attribute-image pairs), the learn-
ing rate to 1e-5, and the epoch number to 150. In each
mini-batch, we formed on-the-fly 16/255(16*16-1) posi-
tive/negative text-image training pairs. We used a two-layer
hierarchy in AIHM for the main experiments, with different
hierarchy structures evaluated independently.

4.1. Comparisons to the State-of-The-Art Methods

Competitors. We compared our AIHM with a wide range
of plausible solutions to text attribute person search meth-
ods in two paradigms: (1) Global category-level visual-
textual embedding methods: Learning to align the distri-
butions of text attributes and images in a common space,
including CCA [1, 29, 3, 24] or MMD [26] based cross-
modal matching models, ZSL methods (DEM [33], RN[25],
GAZSL [36]), visual semantics embedding (VSE++ [4]),
and GAN based cross-modality alignment (AAIPR [32]).
(2) Local attribute-level visual-textual embedding methods:
Learning attribute-image region correspondence, including
region proposal based dense text-image cross-modal match-
ing (SCAN [13]), natural language query based person
search (GAN-RNN [15] and CMCE [14]). We used the
officially released codes with careful parameter tuning if
needed, e.g. those originally applied to different applica-
tions. In testing language models [4, 13, 15, 14], we used
random attribute sentences due to no ordering and reported
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particularly for global textual embedding Interestingly, we
are not aware of any existing ZSL and person search meth-
ods that leverage this simple strategy. One possible rea-
son is that previous methods mostly do not exploit negative
cross-modality pairs in objective learning loss function. We
will verify the efficacy of this scheme (see Fig 6).

3.4. Cross-Modality Cross-Level Embedding

Given hierarchical visual-textual embedding as derived
above, we next combine them across modalities and levels
to form the final embedding for attribute-image matching.
An illustration of cross-modality cross-level embedding is
shown in Fig 4(c). To this end, a common fusion method is
concatenating two embedding vectors for each training pair
[14, 15, 31]. This however may be suboptimal, due to lack-
ing the feature dimension correspondence across modalities
which makes the optimisation ineffective. We propose to
leverage Hadamard Product that fuses two input vectors by
element-wise multiplication.
(I) Cross-Modality Global-Level Embedding. We form
the cross-modality global-level embedding sglo as:

sglo = xglo � zglo, (4)

where � specifies the Hadamard product.
(II) Cross-Modality Local-Level Embedding. Unlike the
single global-level embedding, we have multiple local per-
attribute embeddings in both modalities. Therefore, we first
need to form per-attribute cross-modality embedding as:

sloc
i = xloc

i � zloc
i , i 2 {1, · · · , Natt}. (5)

We then fuse over attributes. Instead of average pooling,
we design a quality aware fusion algorithm. This is based
on two considerations: (1) Both surveillance imagery (poor
quality with noisy and corrupted observations) and attribute
labelling (annotation errors due to poor imaging condition)
are not highly reliable. Trusting all attributes and treating
them equally in matching are error prone. (2) The signifi-
cance for person search may vary across attributes.

Specifically, to estimate the per-attribute quality ⇢loc
i , we

use the minimal prediction scores on image and text as
⇢loc

i = min(pvis
i , ptex

i ), i 2 {1, · · · , Natt}, where pvis
i and

ptex
i denote the ground-truth class posterior probability esti-

mated by the corresponding classifier. This discourages the
model fit towards corrupted and noisy observations. Based
on this quantity measure, we learn a fusion unit (Eq (3)) for
adaptively cross-attribute embedding as:

sloc = f
�
{⇢loc

i · sloc
i }Natt

i=1

�
. (6)

(III) Cross-Modality Cross-Level Embedding. We use a
fusion unit (Eq (3)) to form the final cross-modality cross-
level embedding as:

s = f
�
{sloc, sglo}

�
. (7)

The final embedding s is used to estimate the attribute-
image matching result ŷ (Eq (1)) given an input attribute
query and person image.

Table 1: Statistics of person search datasets.
Datasets Market-1501 DukeMTMC PA100K

# Attribute category 10 8 15
# Train person category 508 300 2020
# Train image 12,936 16,522 80,000
# Test person category 529 387 849
# Unseen 367 229 168
# Test image 15,913 19,889 10,000

4. Experiments
Datasets. In evaluations, we used two publicly available
person search (Market-1501 [34], DukeMTMC [22, 18])
and one large pedestrian analysis (PA100K [19]) bench-
marks. These datasets present good challenges for person
search with varying camera viewing conditions. We fol-
lowed the standard evaluation setting. The dataset statistics
are summarised in Table 1.
Performance Metrics. We used the CMC and mAP as eval-
uation metrics. As [32], we treated the gallery images re-
specting a given attribute vector query as true matches.
Implementation details. For fair comparison to [32], we
used ResNet-50 [7] as the backbone net for learning vi-
sual embedding. We employed Adam as the optimiser. We
set the batch size to 16 (attribute-image pairs), the learn-
ing rate to 1e-5, and the epoch number to 150. In each
mini-batch, we formed on-the-fly 16/255(16*16-1) posi-
tive/negative text-image training pairs. We used a two-layer
hierarchy in AIHM for the main experiments, with different
hierarchy structures evaluated independently.

4.1. Comparisons to the State-of-The-Art Methods

Competitors. We compared our AIHM with a wide range
of plausible solutions to text attribute person search meth-
ods in two paradigms: (1) Global category-level visual-
textual embedding methods: Learning to align the distri-
butions of text attributes and images in a common space,
including CCA [1, 29, 3, 24] or MMD [26] based cross-
modal matching models, ZSL methods (DEM [33], RN[25],
GAZSL [36]), visual semantics embedding (VSE++ [4]),
and GAN based cross-modality alignment (AAIPR [32]).
(2) Local attribute-level visual-textual embedding methods:
Learning attribute-image region correspondence, including
region proposal based dense text-image cross-modal match-
ing (SCAN [13]), natural language query based person
search (GAN-RNN [15] and CMCE [14]). We used the
officially released codes with careful parameter tuning if
needed, e.g. those originally applied to different applica-
tions. In testing language models [4, 13, 15, 14], we used
random attribute sentences due to no ordering and reported

5
Figure 4: Hierarchical visual-textual embedding and match-
ing. MTN: Multi-Task Network. MN: Matching Net, 3
layer FCs for similarity score prediction.

lenging due to larger search space. In contrast to conven-
tional ZSL setting, there is no meaningful category names
in person search. This disables the exploitation of semantic
relationships between seen and unseen categories. Besides,
the imagery data of person search often involve more noise
and corruption which imposes more difficulty. These fac-
tors render the state-of-the-art ZSL methods less effective
for person search, as we demonstrate in experiments.

3. Methodology
To train a textual attribute query person search model,

we need to label a set of N image-attribute training pairs
D = {Ii,ai}Ni=1 describing Nid different person descrip-
tions. A multi-label attribute text description of a person
image, we call an attribute vector ai, defines the value of
each attribute label with respect to the corresponding per-
son appearance. Persons sharing the same attribute vector
description specifying a type of people are considered to be-
long to a person category. There are a total of Natt different
binary-class or multi-class attribute labels. We model this
problem by zero-shot learning (ZSL) considering that test
person categories may be unseen to model training.

3.1. Approach Overview

A schematic overview of the proposed AIHM model is
illustrated in Fig 3. The objective of AIHM is to learn a sim-
ilarity matching model between text attributes a and person



images I in a hierarchical visual-textual embedding space.
Instead of nearest neighbour search as most ZSL meth-
ods adopt, we aim to learn a similarity matching model:
ŷ = fθ(a, I) ∈ [0, 1], with θ the model parameters. If a
specific text-image pair is a true match, the model should
ideally output 1; Otherwise 0. For model training, we adopt
the mean square error loss function [30]:

Lmse =
1

Nbatch

Nbatch∑

i=1

(yi − ŷi)2 (1)

where yi and ŷi denote the ground-truth and predicted sim-
ilarity of the i-th training pair, respectively. The mini-batch
size is specified by Nbatch. To enable such matching, we
need to form a hierarchical visual-textual embedding (Sec
3.2 & Sec 3.3) and cross-modality fusion (Sec 3.4) as the
matching input (Eq (7)). For presentation brevity, in the fol-
lowing we assume a two-level hierarchy: a global category
level, and a local per-attribute level. It is straightforward
to extend to more hierarchical levels without changing the
model designs as described below.

3.2. Hierarchical Visual Embedding

For hierarchical visual embedding of a person image,
we employ a multi-task joint learning strategy [5]. An
overview of hierarchical visual embedding is given in Fig
4(a). Specifically, we build local attribute-specific embed-
ding (xloc

i , i ∈ {1, · · · , Natt}) based on the global counter-
part (xglo) in a ResNet-50 architecture [12]. For each at-
tribute label, we use a separate lightweight branch with two
fully connected (FC) layers. The design is suitable since
only a small number of (∼10) attributes exist in typical per-
son search scenarios. In cases of many attribute labels, we
can assign each branch with a group of attributes for lim-
iting the branch number as well as the overall model com-
plexity (see Table 7 for evaluation).

For discriminative learning of local attribute-level visual
embedding, we utilise the softmax Cross Entropy (CE) loss.
We treat each individual attribute label as a separate classi-
fication task (Lcls). Formally, they are formulated as:

Lcls = −
1

Nbatch

Nbatch∑

i=1

Nattr∑

j=1

log(pij), (2)

where pij is the probability estimation of the i-th training
sample on the j-th ground-truth attribute. By multi-task
learning, we can obtain the global category-level visual em-
bedding as the shared feature representation of all local em-
beddings. See supplemental materials for the network ar-
chitecture details.

3.3. Hierarchical Textual Embedding

We also need to learn a hierarchical embedding of text
attributes. An overview of hierarchical textual embedding

is shown in Fig 4(b). Due to small training attribute la-
bel data (only one attribute vector per person category), it
is challenging to derive a rich textual embedding. In con-
trast to ZSL, we have no access to meaningful person cate-
gory names in person search. This prevents us from using a
wikipedia pre-trained word2vector model to represent per-
son category for benefiting from auxiliary knowledge [25].
For text attributes (also available in person search), the most
common representation in ZSL is multi-label binary vector,
which however is less effective and informative (Table 6).

To enable the benefit of rich wikipedia information, we
propose to represent the attribute labels by word2vector rep-
resentations. Specifically, we use the word2vector model to
map each attribute name into a semantic (300-D) space1,
then further into the local textual embedding space zloc by
one FC layer. We then similarly adopt multi-task learning
for embedding each attribute label zloc

i , i ∈ {1, · · · , Natt}.
To obtain the global textual embedding zglo, a simple ap-
proach is average pooling per-attribute embeddings. This is
likely suboptimal due to lacking of task-specific supervised
learning. To overcome this problem, we learn to combine
per-attribute embeddings by a fusion unit consisting of two
1×1 conv layers. This allows for both intra-attribute and
inter-attribute fusion:

zglo = f({zloc
i }Natt

i=1) = Tanh
( Natt∑

i=1

(
wi

2 ·Tanh(wi
1 ·zloc

i )
))

, (3)

where w1 and w2 are learnable parameters and Tanh is the
non-linear activation function. We use the CE loss func-
tions (Eq (2)) to supervise the textual embedding. In train-
ing, the embedding loss and matching loss are jointly op-
timised end-to-end with identical weight. Note, unlike the
visual embedding process, we obtain the global category-
level textual embeddings by combining all local attribute-
level counterparts, an inverse process. This is due to addi-
tionally using auxiliary information (wikipedia).

Negative Category Augmentation. The one-shot per cat-
egory problem in textual modality raises model training
difficulty. To alleviate this problem, we exploit negative
category augmentation to AIHM model learning. This is
achieved by generating new random attribute vectors. We
use these synthesised attribute vectors as negative samples
in the matching loss (Eq (1)). This helps alleviate the model
over-fitting risk whilst enhancing the sparse training data,
particularly for global textual embedding. Interestingly, we
are not aware of any existing ZSL and person search meth-
ods that leverage this simple strategy. One possible rea-
son is that previous methods mostly do not exploit negative

1We transform binary attribute labels to binary flags for guaranteed
inclusion. Specifically, we transform a binary label “*” as a form of
“Yes”+“*” and “No”+“*” before extracting the word2vector label repre-
sentation. The unknown attribute is set to the vector 0.



cross-modality pairs in objective learning loss function. We
will verify the efficacy of this scheme (see Fig 6).

3.4. Cross-Modality Cross-Level Embedding

Given hierarchical visual-textual embedding as derived
above, we next combine them across modalities and lev-
els to form the final embedding for attribute-image match-
ing. An illustration of this cross-modality cross-level em-
bedding is shown in Fig 4(c). To this end, a common fusion
method is concatenating two embedding vectors for each
training pair [19, 20, 36]. This however may be subopti-
mal, due to lacking the feature dimension correspondence
across modalities which makes the optimisation ineffective.
Instead, we deploy Hadamard Product that fuses two input
vectors by element-wise multiplication.
(I) Cross-Modality Global-Level Embedding. We form
the cross-modality global-level embedding sglo as:

sglo = xglo ◦ zglo, (4)

where ◦ specifies the Hadamard product.
(II) Cross-Modality Local-Level Embedding. Unlike the
single global-level embedding, we have multiple local per-
attribute embeddings in both modalities. Therefore, we first
need to form per-attribute cross-modality embedding as:

sloc
i = xloc

i ◦ zloc
i , i ∈ {1, · · · , Natt}. (5)

We then fuse over attributes. Instead of average pooling,
we design a quality aware fusion algorithm. This is based
on two considerations: (1) Both surveillance imagery (poor
quality with noisy and corrupted observations) and attribute
labelling (annotation errors due to poor imaging condition)
are not highly reliable. Trusting all attributes and treating
them equally in matching are error prone. (2) The signifi-
cance for person search may vary across attributes.

Specifically, to estimate the per-attribute quality ρloc
i , we

use the minimal prediction scores on image and text as
ρloc
i = min(pvis

i , p
tex
i ), i ∈ {1, · · · , Natt}, where pvis

i and
ptex
i denote the ground-truth class posterior probability esti-

mated by the corresponding classifier. This discourages the
model fit towards corrupted and noisy observations. Based
on this quantity measure, we learn a fusion unit (Eq (3)) for
adaptively cross-attribute embedding as:

sloc = f
(
{ρloc

i · sloc
i }Natt

i=1

)
. (6)

(III) Cross-Modality Cross-Level Embedding. After con-
catenating the cross-level embeddings, we use a fusion unit
(Eq (3)) to form the final cross-modality embedding as:

s = f
(
{sloc, sglo}

)
. (7)

The final embedding s is used to estimate the attribute-
image matching result ŷ (Eq (1)) given an input attribute
query and person image.

Table 1: Statistics of person search datasets.
Datasets Market-1501 DukeMTMC PA100K

# Attribute category 10 8 15
# Train person category 508 300 2020
# Train image 12,936 16,522 80,000
# Test person category 529 387 849
# Unseen 367 229 168
# Test image 15,913 19,889 10,000

4. Experiments
Datasets. In evaluations, we used two publicly available
person search (Market-1501 [39], DukeMTMC [27, 23])
and one large pedestrian analysis (PA100K [24]) bench-
marks. These datasets present good challenges for person
search with varying camera viewing conditions. We fol-
lowed the standard evaluation setting. The dataset statistics
are summarised in Table 1.
Performance Metrics. We used the CMC and mAP as eval-
uation metrics. As [37], we treated the gallery images re-
specting a given attribute vector query as true matches.
Implementation Details. For fair comparison to [37], we
used ResNet-50 [12] as the backbone net for learning vi-
sual embedding. We employed Adam as the optimiser. We
set the batch size to 16 (attribute-image pairs), the learn-
ing rate to 1e-5, and the epoch number to 150. In each
mini-batch, we formed on-the-fly 16/255(16*16-1) posi-
tive/negative text-image training pairs. We used 50 training
person categories for parameter cross-validation. We used
a two-layer hierarchy in AIHM for the main experiments,
with different hierarchy structures evaluated independently.

4.1. Comparisons to the State-of-The-Art Methods

Competitors. We compared our AIHM with a wide range
of plausible solutions to text attribute person search meth-
ods in two paradigms: (1) Global category-level visual-
textual embedding methods: Learning to align the distri-
butions of text attributes and images in a common space,
including CCA [2, 34, 8, 29] or MMD [31] based cross-
modal matching models, ZSL methods (DEM [38], RN[30],
GAZSL [41]), visual semantics embedding (VSE++ [9]),
and GAN based cross-modality alignment (AAIPR [37]).
(2) Local attribute-level visual-textual embedding methods:
Learning attribute-image region correspondence, including
region proposal based dense text-image cross-modal match-
ing (SCAN [18]), natural language query based person
search (GAN-RNN [20] and CMCE [19]). We used the
officially released codes with careful parameter tuning if
needed, e.g. those originally applied to different applica-
tions. In testing language models [9, 18, 20, 19], we used
random attribute sentences due to no ordering and reported
the average results of 10 trials. For all methods, we used
ResNet-50 for visual embedding.
Results. The person search performance comparisons on



Table 2: Comparisons to the state-of-the-art methods. Red/Blue: Best/second best results.

Method Market-1501 DukeMTMC PA100K
Rank1 Rank5 Rank10 mAP Rank1 Rank5 Rank10 mAP Rank1 Rank5 Rank10 mAP

DEM[38] 34.0 48.1 57.5 17.0 22.7 43.9 54.5 12.9 20.8 38.7 44.2 14.8
RN[30] 17.2 38.7 47.3 15.5 25.1 42.0 51.5 13.0 27.5 38.8 46.6 13.6

GAZSL [41] 23.3 36.9 45.9 14.1 18.2 30.0 37.8 11.9 2.2 3.8 5.3 0.9
DeepCCAE[34] 8.1 23.9 34.5 9.7 33.2 59.3 67.6 14.9 21.2 39.7 48.0 15.6

DeepCCA[2] 29.9 50.7 58.1 17.5 36.7 58.8 65.1 13.5 19.5 40.3 49.0 15.4
2WayNet[8] 11.2 24.3 31.4 7.7 25.2 39.8 45.9 10.1 19.5 26.6 34.5 10.6
MMD[31] 34.1 47.9 57.2 18.9 41.7 62.3 68.6 14.2 25.8 38.9 46.2 14.4

DeepCoral[29] 36.5 47.6 55.9 20.0 46.1 61.0 68.1 17.1 22.0 39.7 48.1 14.1
VSE++[9] 27.0 49.1 58.2 17.2 33.6 54.7 62.8 15.5 22.7 39.8 48.1 15.7
AAIPR[37] 40.2 49.2 58.6 20.6 46.6 59.6 69.0 15.6 27.3 40.5 49.8 15.2
SCAN[18] 4.0 10.1 15.3 2.1 3.5 9.3 14.3 1.6 2.9 8.2 12.5 1.9

GNA-RNN[20] 30.4 38.7 44.4 15.4 34.6 52.7 65.8 14.2 20.3 30.8 38.2 9.3
CMCE[19] 35.0 50.9 56.4 22.8 39.7 56.3 62.7 15.4 25.8 34.9 45.4 13.1

AIHM 43.3 56.7 64.5 24.3 50.5 65.2 75.3 17.4 31.3 45.1 51.0 17.0

(a) {Teenage, backpack, down black, up white, pants, 
short clothing, short sleeves, short hair, male}

(b) {Teenage, backpack, down black, up red, pants, 
short clothing, short sleeves, short hair, male}

(c) {Adult, handbag, down blue, up-black, pants,
long clothing,  short sleeves, long hair, female}

(d) {Young, bag, up black, dress, short clothing,
short sleeves,  long hair, female}

Rank-1 Rank-10       Rank-1       Rank-10       

Figure 5: Examples of person search by attribute query on Market-1501. Attribute query is on the top in each case. True/false
image matches are indicated by green/red boxes. We highlight the attributes in red corresponding to the false matches.

three benchmarks are shown in Table 2. It is evident that our
AIHM model outperforms all the existing methods, e.g. sur-
passing the second best and state-of-the-art person search
model AAIPR [37] by a margin of 3.1%/3.7% in Rank-
1/mAP on Market-1501. The performance margins over
other global visual-textual embedding methods and local
region correspondence learning model are even more sig-
nificant. In particular, state-of-the-art ZSL models also fail
to excel due to the larger scale search, more ambiguous vi-
sual observation, and meaningless category names. Overall,
these results show that despite their respective modelling
strength either global and local embedding alone is subop-
timal for the more challenging person search problem. It is
clearly beneficial to the overall model performance if their
complementary advantages are utilised as formulated in the
AIHM model.

4.2. Qualitative Analysis and Visual Examination

To provide more in-depth and visual examination on the
performance of AIHM, we conducted a qualitative analy-
sis, as shown in Fig 5. It is clear that the majority of the
search results in top-10 by AIHM match the attribute query
precisely, with a few false matches due to the very similar
visual appearance of different person categories. For exam-
ple, AIHM succeeds in detecting the tiny “handbag” in the
Rank1 image (c) and the “backpack” with the very limited
visible part in the Rank1 image (a), thanks to the capability
of local correspondence matching across modalities.

We found that false retrieval images are often due to am-
biguous visual appearances and/or text descriptions. For ex-
ample, the Rank7 image (b) is with “up-purple” whilst the
Rank9 with “up-red”. Such a colour difference is visually
very subtle even for humans. Another example with visual



ambiguity is “blue” vs “black” (c). In terms of ambiguous
text attribute descriptions “Teenage” and “Young” are se-
mantically very close. This causes the failure search results
(d), where “Teenage” person images in top-7 are instead re-
trieved against the query attribute “Young”.

4.3. Further Analysis and Discussion

Hierarchical embedding and matching. We examined the
effect and complementary of joint local attribute-level and
global category-level visual-textual embedding in AIHM.
This is conducted by comparing individual performances
with their combinations. Table 3 shows that: (1) Either em-
bedding alone is already considerably strong and discrimi-
native for person search. Local AIHM embedding alone is
competitive to the state-of-the-art AAIPR [37]. (2) A clear
performance gain is obtained by combining both global and
local embedding as a whole in person search. This validates
the complementary benefits and performance advantages of
jointly learning local and global visual-textual embedding
interactively in AIHM.

Table 3: Hierarchical embedding and matching analysis.

Method Market-1501 DukeMTMC PA100K
Rank1 mAP Rank1 mAP Rank1 mAP

Global Only 30.6 20.5 40.7 13.7 26.1 14.3
Local Only 39.5 21.9 46.9 15.3 29.4 15.6
Hierarchy 43.3 24.3 50.5 17.4 31.3 17.0

Quality-aware fusion. Recall that we included quality-
aware fusion (Eq (6)) in AIHM for alleviating the negative
effect of noisy and ambiguous observation in local visual-
textual embedding. We tested the efficacy of this compo-
nent in comparison to the common average pooling strategy.
Table 4 shows that our quality-aware fusion is more effec-
tive in suppressing noisy information, e.g. improving over
the average pooling in Rank1/mAP rates by 4.3%/0.5% on
Market-1501, 5.6%/1.3% on DukeMTMC, and 5.2%/1.9%
on PA100K, respectively. This shows the benefit of taking
into account the input data quality in person search.

Table 4: Quality-aware fusion vs. Average Pooling.

Method Market-1501 DukeMTMC PA100K
Rank1 mAP Rank1 mAP Rank1 mAP

Avg Pool 39.0 23.8 44.9 16.1 26.1 15.1
AIHM 43.3 24.3 50.5 17.4 31.3 17.0

Negative category augmentation. To combat the one-
shot learning challenge in global textual embedding, we
exploited negative category augmentation in AIHM model
learning, so to enrich training text data for reducing over-
fitting risk. We tested three different augmentation sizes:

5k, 10k, and 20k. It is shown in Fig 6 that this text augmen-
tation is clearly beneficial to AIHM. For example, with 10k
negative categories, we obtained 4.4%, 5.5% and 3.8% gain
at Rank-1 on Market-1501, DukeMTMC, and PA100K, re-
spectively. The optimal augmentation size is around 10k.
Its benefit can be understood from a negative hard mining
viewpoint, which improves model discriminative learning
given limited training category data. However, too many
(e.g. 20k) negative pairs seem to have negatively over-
whelmed model learning due to limited positive pairs.
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Figure 6: Text negative category augmentation.

Table 5: Model design strategy examination: Attribute
Recognition (AR) vs Learning to Compare (as AIHM).

Dataset Methods Rank1 Rank5 Rank10 mAP

Market-1501 AR 35.7 47.8 57.8 19.8
AIHM 43.3 56.7 64.5 24.3

DukeMTMC AR 42.0 52.9 63.2 15.8
AIHM 50.5 65.2 75.3 17.4

PA100K AR 30.3 42.8 47.8 13.8
AIHM 31.3 45.1 51.0 17.0

Person search by individual attribute recognition. We
examined two high-level model design strategies for person
search: (1) Attribute Recognition (AR): Using the attribute
prediction scores by the AIHM’s visual component, and the
L2 distance metric in the attribute vector space for cross-
modal matching and ranking. (2) Learning to match strat-
egy, i.e. the AIHM, which considers both global category-
level and local attribute-level textual-visual embedding. It
is interesting to find from Table 5 that the AR baseline per-
forms reasonably well when compared to the competitors
in Table 2. For example, AR even approaches the perfor-
mance of the state-of-the-art person search model AAIPR
[37]. Note that, this strong AR is likely to benefit from our
hierarchical embedding learning design. Besides, the big
performance margins of our model over AR suggest that the
learning to match strategy in joint optimisation is superior.

Global textual embedding. We examined three design
considerations for learning the global textual embedding:
(1) Individual attribute representation: One-Hot (OH) vs
Word2Vec (WV), (2) Aggregation of multiple attribute em-
bedding: RNN (LSTM) vs CNN. (3) Binary-class label rep-
resentation: Zero vs Transformed Input. Table 6 shows that:



(1) OH+CNN outperforms OH+RNN, suggesting that arti-
ficially introducing the modelling of temporal structure in-
formation on orderless person attributes is not only unnec-
essary but also brings adverse effect to model performance.
(2) WV+CNN outperforms OH+CNN, indicating that WV
is a more informative attribute representation particularly in
case of sparse training attribute data. Our textual embed-
ding design via CNN is superior to directly using WV, sug-
gesting the necessity of feature transformation because the
generic WV is not optimised particularly for person image
analysis.

Table 6: Global textual embedding analysis. OH: One-Hot;
WV: Word2Vec.

Method Market-1501 DukeMTMC PA100K
Rank1 mAP Rank1 mAP Rank1 mAP

OH+RNN 35.7 17.8 46.6 16.8 21.4 12.3
OH+CNN 37.1 21.0 49.8 18.1 25.3 13.7

WV 41.8 22.9 48.7 16.2 29.1 14.2
OH+CNN 39.1 22.0 46.5 16.1 25.3 13.7
WV+CNN 43.3 24.3 50.5 17.4 31.3 17.0
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Figure 7: Hierarchy variants. (a) Two levels, one branch
one attribute, Natt branches totally; (b) Two levels, one
branch Natt/4 attributes, 4 branches totally; (c) Four levels,
2 branches at layer-2, end by Natt branches.

Multi-task learning scalability. We use multi-task learn-
ing for local visual-textual embedding, so the branch num-
ber is decided by the attribute set size Natt (Fig. 7 (a)). For
scaling to cases of many attributes, we can use a branch
for a group of attributes. We conducted a controlled eval-
uation with two hierarchical layers. Given Natt attributes,
we randomly grouped them into 4 size-balanced groups be-
fore applying AIHM (Fig. (b)). We repeated 5 trials of
different grouping and reported the average results. Table
7 shows that attribute grouping reduces model performance
due to less fine-grained local embedding, as expected. Im-
portantly, the performance drop is not significant. This also
verifies our AIHM design motivation of incorporating local
and global embedding jointly, in contrast to state-of-the-art
ZSL methods that consider global embedding alone.
Hierarchy depth. We evaluated the effect of AIHM’s hi-
erarchy depth on model performance. We used random
grouping to form size-balanced intermediate layers for l-
layers (l = 2/4) hierarchies (see Fig. 7(c)). The results

Table 7: Scalability of multi-task learning local embedding.

#Branch Market-1501 DukeMTMC PA100K
Rank1 mAP Rank1 mAP Rank1 mAP

Natt/4 41.6 23.9 47.9 15.6 30.3 16.3
Natt 43.3 24.3 50.5 17.4 31.3 17.0

were averaged over 5 trials. Table 8 shows that a hierar-
chy with more layers leads to better model performance but
come with higher computational costs (one feature vector
per hierarchy node per modality, fusion over all layers).

Table 8: Effect of hierarchy depth.

#Depth Market-1501 DukeMTMC PA100K
Rank1 mAP Rank1 mAP Rank1 mAP

2 43.3 24.3 50.5 17.4 31.3 17.0
4 45.2 25.2 53.6 18.5 33.4 17.8

5. Conclusion

In this work, we presented a novel Attribute-Image Hi-
erarchical Matching (AIHM) model for text attribute query
person search. Unlike most existing methods, which as-
sume image based queries that are not always available in
practice, AIHM enables person search with only short text
attribute descriptions. In contrast to few existing meth-
ods for attribute query person search, we formulate this
problem as an extended zero-shot learning problem with a
more principled approach to its solution. Algorithmically,
the proposed AIHM model solves the fundamental limi-
tations of existing ZSL learning methods by joint global
category-level and local attribute-level visual-textual em-
bedding and matching. This aims to eliminate their respec-
tive modelling weaknesses whilst optimising their mutual
complementary advantages. Extensive comparative eval-
uations demonstrated the performance superiority of the
proposed AIHM model over a wide range of existing al-
ternative methods on three attribute person search bench-
marks. We provided detailed component analysis for giving
insights on model design and its performance advantages.
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