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most |Xmin|⇥ nattr ⇥K2 triplets T for all the anchors Xi
min

across all the minority classes. We formulate the follow-
ing triplet ranking loss function to impose a class balancing
constraint in model learning:

lcrl =

P
T max (0, mj + dist(xa,j ,xp,j)� dist(xa,j ,xn,j))

|T |
(9)

where mj denotes the class margin of attribute j in feature
space, dist(·) is the L2 distance. We set the class margin for
each attribute i as

mj =
2⇡

|Zj |
(10)

with |Zj | the number of all possible values for attribute j.
(II) Class Rectification by Absolute Comparison. Sec-
ondly, we consider to enforce absolute distance constraints
on positive and negative pairs of the minority classes, in-
spired by the contrastive loss [8]. Specifically, for each in-
stance xi,j in a minority class c of attribute j, we use the
mined hard sets to build positive P+

= {xi,j ,xp,j} and
negative P�

= {xi,j ,xn,j} pairs in each training batch.
Intuitively, we require the positive pairs to be at close dis-
tances whist the negative pairs to be far away. Thus, we
define the CRL regularisation as

lcrl = 0.5 ⇤
⇣P

P+ dist(xi,j ,xp,j)
2

|P+| +

P
P� max

�
mapc � dist(xi,j ,xn,j), 0

�2

|P�|

⌘ (11)

where mapc controls the between-class margin (mapc = 1

in our experiments). This constraint aims to optimise the
boundary of the minority classes by incremental separation
from the overlapping (confusing) majority class instances
by per batch iterative optimisation.
(III) Class Rectification by Distribution Comparison.
Thirdly, we formulate class rectification on the minority
class instances by modelling the distribution of positive
and negative pairs constructed as in the case of “Absolute
Comparison” described above. In the spirit of [44], we
represent the distribution of positive P+ and negative P�

pair sets with histograms H+
= [h+

1 , · · · , h+
⌧ ] and H�

=

[h�
1 , · · · , h�

⌧ ] of ⌧ uniformly spaced bins [b1, · · · , b⌧ ]. We
compute the positive histogram H+ as

h+
t =

1

|P+|
X

(i,j)2P+

&i,j,t (12)

where

&i,j,t =

8
><

>:

dist(xi,j ,xp,j)�bt�1

� , if dist(xi,j ,xp,j) 2 [bt�1, bt]
bt+1�dist(xi,j ,xp,j)

� , if dist(xi,j ,xp,j) 2 [bt, bt+1]

0. otherwise
(13)

and � defines the step between two adjacent bins. Simi-
larly, the negative histogram H� can also be computed. To
enable the minority classes distinguishable from the over-
whelming majority classes, we enforce the two histogram
distributions as disjoint as possible. We then define the CRL
regularisation loss by how much overlapping between these
two histogram distributions:

lcrl =

⌧X

t=1

�
h+
t

tX

k=1

h�
k

�
(14)

Statistically, this CRL histogram loss measures the proba-
bility that the distance of a random negative pair is smaller
than that of a random positive pair. This distribution based
CRL aims to optimise a model towards mining the minor-
ity class boundary areas in a non-deterministic manner. In
our evaluation (Sec. 3.3), we compared the effect of these
three different CRL considerations. By default, we deploy
the Relative Comparison formulation in our experiments.
Remarks. Due to the batch-wise design, the balancing
effect by our proposed regularisor is propagated through
the whole training time in an incremental manner. The
CRL approach shares a similar principle to Batch Nor-
malisation [22] for easing network optimisation. In hard
mining, we do not consider anchor points from the ma-
jority classes as in the case of LMLE [20]. Instead, our
method employs a classification loss to learn features for
discriminating the majority classes based on that the ma-
jority classes are well-sampled for learning class discrim-
ination. Focusing the CRL only on the minority classes
makes our model computationally more efficient. More-
over, the computational complexity for constructing quin-
tuplets for LMLE and updating class clustering globally is
nattr ⇥ (k⇥O(n)⇥ 2

⌦(
p
n)
) +O(n2

) where ⌦ is the lower
bound complexity and O the upper bound complexity, that
is, super-polynomially proportionate to the overall training
data size n, e.g. over 150, 000 in our attribute recogni-
tion problem. In contrast, CRL loss is linear to the batch
size, typically in 10

2, independent to the overall training
size (also see “Model Training Time” in the experiments).

3. Experiments
Datasets & Performance Metric. As shown in Table 1,
both CelebA and X-Domain datasets are highly imbalanced.
For that reason, we selected these two datasets for our evalu-
ations. The CelebA [31] facial attribute dataset has 202,599
web images from 10,177 person identities with per person
on average 20 images. Each face image is annotated by
40 binary attributes. The X-Domain [7] clothing attribute
dataset2 consists of 245,467 shop images from online re-

2We did not select the DeepFashion [30] dataset for our evaluation be-
cause this dataset is relatively well balanced compared to X-Domain (Ta-
ble 1), due to the strict data cleaning process applied.
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three different CRL considerations. By default, we deploy
the Relative Comparison formulation in our experiments.
Remarks. Due to the batch-wise design, the balancing
effect by our proposed regularisor is propagated through
the whole training time in an incremental manner. The
CRL approach shares a similar principle to Batch Nor-
malisation [22] for easing network optimisation. In hard
mining, we do not consider anchor points from the ma-
jority classes as in the case of LMLE [20]. Instead, our
method employs a classification loss to learn features for
discriminating the majority classes based on that the ma-
jority classes are well-sampled for learning class discrim-
ination. Focusing the CRL only on the minority classes
makes our model computationally more efficient. More-
over, the computational complexity for constructing quin-
tuplets for LMLE and updating class clustering globally is
nattr ⇥ (k⇥O(n)⇥ 2

⌦(
p
n)
) +O(n2

) where ⌦ is the lower
bound complexity and O the upper bound complexity, that
is, super-polynomially proportionate to the overall training
data size n, e.g. over 150, 000 in our attribute recogni-
tion problem. In contrast, CRL loss is linear to the batch
size, typically in 10

2, independent to the overall training
size (also see “Model Training Time” in the experiments).

3. Experiments
Datasets & Performance Metric. As shown in Table 1,
both CelebA and X-Domain datasets are highly imbalanced.
For that reason, we selected these two datasets for our evalu-
ations. The CelebA [31] facial attribute dataset has 202,599
web images from 10,177 person identities with per person
on average 20 images. Each face image is annotated by
40 binary attributes. The X-Domain [7] clothing attribute
dataset2 consists of 245,467 shop images from online re-

2We did not select the DeepFashion [30] dataset for our evaluation be-
cause this dataset is relatively well balanced compared to X-Domain (Ta-
ble 1), due to the strict data cleaning process applied.

most |Xmin|⇥ nattr ⇥K2 triplets T for all the anchors Xi
min

across all the minority classes. We formulate the follow-
ing triplet ranking loss function to impose a class balancing
constraint in model learning:
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P
T max (0, mj + dist(xa,j ,xp,j)� dist(xa,j ,xn,j))

|T |
(9)

where mj denotes the class margin of attribute j in feature
space, dist(·) is the L2 distance. We set the class margin for
each attribute i as

mj =
2⇡

|Zj |
(10)

with |Zj | the number of all possible values for attribute j.
(II) Class Rectification by Absolute Comparison. Sec-
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negative P�
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�
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⌘ (11)

where mapc controls the between-class margin (mapc = 1

in our experiments). This constraint aims to optimise the
boundary of the minority classes by incremental separation
from the overlapping (confusing) majority class instances
by per batch iterative optimisation.
(III) Class Rectification by Distribution Comparison.
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and negative pairs constructed as in the case of “Absolute
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pair sets with histograms H+
= [h+

1 , · · · , h+
⌧ ] and H�
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[h�
1 , · · · , h�

⌧ ] of ⌧ uniformly spaced bins [b1, · · · , b⌧ ]. We
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and � defines the step between two adjacent bins. Simi-
larly, the negative histogram H� can also be computed. To
enable the minority classes distinguishable from the over-
whelming majority classes, we enforce the two histogram
distributions as disjoint as possible. We then define the CRL
regularisation loss by how much overlapping between these
two histogram distributions:
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ity class boundary areas in a non-deterministic manner. In
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three different CRL considerations. By default, we deploy
the Relative Comparison formulation in our experiments.
Remarks. Due to the batch-wise design, the balancing
effect by our proposed regularisor is propagated through
the whole training time in an incremental manner. The
CRL approach shares a similar principle to Batch Nor-
malisation [22] for easing network optimisation. In hard
mining, we do not consider anchor points from the ma-
jority classes as in the case of LMLE [20]. Instead, our
method employs a classification loss to learn features for
discriminating the majority classes based on that the ma-
jority classes are well-sampled for learning class discrim-
ination. Focusing the CRL only on the minority classes
makes our model computationally more efficient. More-
over, the computational complexity for constructing quin-
tuplets for LMLE and updating class clustering globally is
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) where ⌦ is the lower
bound complexity and O the upper bound complexity, that
is, super-polynomially proportionate to the overall training
data size n, e.g. over 150, 000 in our attribute recogni-
tion problem. In contrast, CRL loss is linear to the batch
size, typically in 10

2, independent to the overall training
size (also see “Model Training Time” in the experiments).

3. Experiments
Datasets & Performance Metric. As shown in Table 1,
both CelebA and X-Domain datasets are highly imbalanced.
For that reason, we selected these two datasets for our evalu-
ations. The CelebA [31] facial attribute dataset has 202,599
web images from 10,177 person identities with per person
on average 20 images. Each face image is annotated by
40 binary attributes. The X-Domain [7] clothing attribute
dataset2 consists of 245,467 shop images from online re-

2We did not select the DeepFashion [30] dataset for our evaluation be-
cause this dataset is relatively well balanced compared to X-Domain (Ta-
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Figure 2. Overview of our Class Rectification Loss (CRL) regular-
ising approach for deep end-to-end imbalanced data learning.

We wish to construct a deep model capable of recog-
nising multi-labelled person attributes {zj}nattr

j=1 in images,
with a total of nattr different attribute categories, each cat-
egory zj having its respective value range Zj , e.g. multi-
valued (1-in-N) clothing category or binary-valued (1-in-
2) facial attribute. Suppose that we have a collection of n
training images {Ii}ni=1 along with their attribute annota-
tion vectors {ai}ni=1, and ai = [ai,1, . . . , ai,j , . . . , ai,nattr ]

where ai,j refers to the j-th attribute value of the image
Ii. The number of image samples available for different
attribute classes varies greatly (Figure 1) therefore poses a
significant imbalanced data distribution challenge to model
learning. Most attributes are localised to image regions,
even though the location information is not provided in the
annotation (weakly labelled). Intrinsically, this is a multi-
label recognition problem since the nattr attributes may co-
exist in every person image. To that end, we consider to
jointly learn end-to-end features and all the attribute classi-
fiers given imbalanced image data. Our method can be read-
ily incorporated with the classification loss function (e.g.
Cross-entropy loss) of standard CNNs without the need for
a new optimisation algorithm (Fig. 2).
Cross-entropy Classification Loss. For multi-class classi-
fication CNN model training (CNN model details in “Net-
work Architecture”, Sec. 3.1 and 3.2), one typically con-
siders the Cross-entropy loss function by firstly predicting
the j-th attribute posterior probability of image Ii over the
ground truth ai,j :

p(yi,j = ai,j |xi,j) =
exp(W

>
j xi,j)

P|Zj |
k=1 exp(W

>
k xi,j)

(1)

where xi,j refers to the feature vector of Ii for j-th attribute,
and Wk is the corresponding prediction function parameter.
We then compute the overall loss on a batch of nbs images as
the average additive summation of attribute-level loss with
equal weight:

lce = � 1

nbs

nbsX

i=1

nattrX

j=1

log

⇣
p(yi,j = ai,j |xi,j)

⌘
(2)

However, given highly imbalanced image samples on dif-
ferent attribute classes, model learning by the conventional
classification loss is suboptimal. To address this problem,
we reformulate the model learning objective loss function
by mining explicitly in each batch of training data both hard
positive and hard negative samples for every minority at-
tribute class. Our objective is to rectify incrementally per
batch the class bias in model learning so that the features
are less biased towards the over-sampled majority classes
and more sensitive to the class boundaries of under-sampled
minority classes.

2.1. Minority Class Hard Mining

We wish to impose minority-class hard-samples as con-
straints on the model learning objective. Different from the
approach adopted by the LMLE model [20] which aims to
preserve the local structures of both majority and minority
classes by global sampling of the entire training dataset, we
explore batch-based hard-positive and hard-negative min-
ing for the minority classes only. We do not assume the
local structures of minority classes can be estimated from
global clustering before model learning. To that end, we
consider the following steps for handling data imbalance.
Batch Profiling of Minority and Majority Classes. In
each training batch, we profile to discover the minor-
ity and majority classes. Given a batch of nbs training
samples, we profile the attribute class distribution h

j
=

[hj
1, . . . , h

j
k, . . . h

j
|Zi|] over Zj for each attribute j, where

hj
k denotes the number of training samples with the j-th

attribute class value assigned to k. Then, we sort hj
k in

the descent order. As such, we define minority classes in
this batch as those classes Ci

min with the smallest number of
training samples, with the condition that

X

k2Cj
min

hj
k < 0.5nbs. (3)

That is, all minority classes only contribute to less than
half of the total data samples in this batch. The remaining
classes are deemed as the majority classes.

We then exploit a minority class hard mining scheme to
facilitate additional loss constraints in model learning1. To
that end, we consider two approaches: (I) Minority class-
level hard mining (Fig. 3(left)), (II) minority instance-level
hard mining (Fig. 3(right)).
(I) Minority Class-Level Hard Samples. At the class
level, for a specific minority class c of attribute j, we refer
“hard-positives” to those images xi,j from class c (ai,j = c
with ai,j denoting the attribute j ground truth label of xi,j)
given low discriminative scores p(yi,j = c|xi,j) on class c

1 We consider only those minority classes having at least two sam-
ple images in each batch, ignoring those minority classes having only one
sample image or none. This enables triplet loss based learning.
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Figure 3. Illustration of the proposed minority class hard mining.

by the model, i.e. poor recognitions. Conversely, by “hard-
negatives”, we refer to those images xi,j from other classes
(ai,j 6= c) given high discriminative scores on class c by the
model, i.e. obvious mistakes. Formally, we define them as:

Pcls
c,j = {xi,j |ai,j = c, low p(yi,j = c|xi,j)} (4)

N cls
c,j = {xi,j |ai,j 6= c, high p(yi,j = c|xi,j)} (5)

where Pcls
c,j and N cls

c,j denote the hard positive and negative
sample sets of a minority class c of attribute j.
(II) Minority Instance-Level Hard Samples. At the in-
stance level, we consider hard positives and negatives for
each specific sample instance xi,j from a minority class c
of attribute j, i.e. with ai,j = c. We define “hard-positives”
of xi,j as those class c images xk,j (ak,j = c) misclassified
(âk,j 6= c with âk,j denoting the attribute j predicted la-
bel of xk,j) by the current model with large distances (low
matching scores) from xi,j in the feature space. “Hard-
negatives” are those images xk,j not from class c (ak,j 6= c)
with small distances (high matching scores) to xi,j in the
feature space. We define them as:

P ins
i,c,j = {xk,j |ak,j = c, âk,j 6= c, large dist(xi,j ,xk,j)} (6)

N ins
i,c,j = {xk,j |ak,j 6= c, small dist(xi,j ,xk,j)} (7)

where P ins
i,c,j and N ins

i,c,j are the hard positive and negative
sample sets of a minority class c instance xi,j in attribute j,
and dist(·) is the L2 distance metric.
Hard Mining. Intuitively, mining hard-positives enables
the model to discover and expand sparsely sampled minor-
ity class boundaries, whilst mining hard-negatives aims to
improve the margins of minority class boundaries corrupted
by visually very similar imposter classes, e.g. significantly
overlapped outliers. To facilitate and simplify model train-
ing, we adopt the following mining strategy. At training
time, for a minority class c of attribute j (or a minority
class instance xi,j) in each training batch data, we select

K hard-positives as the bottom-K scored on c (or bottom-
K (largest) distances to xi,j), and K hard-negatives as the
top-K scored on c (or top-K (smallest) distance to xi,j),
given the current feature space and classification model.
This hard mining strategy allows our model optimisation to
concentrate particularly on either poor recognitions or ob-
vious mistakes. This not only reduces the model optimi-
sation complexity by soliciting fewer learning constraints,
but also minimises computing cost. It may seem that some
discriminative information is lost by doing so. However, it
should be noted that we perform hard-mining independently
in each batch and incrementally over successive batches.
Therefore, such seemingly-ignored information are consid-
ered over the learning iterations. Importantly, this pro-
posed batch-wise hard-mining avoids the global sampling
on the entire training data as required by LMLE [20] which
can suffer from both negative model learning due to incon-
sistency between up-to-date deep features and out-of-date
cluster boundary structures, and high computational cost in
quintuplet updating. In contrast, our model can be learned
directly by conventional batch-based classification optimi-
sation algorithms using stochastic gradient descent, with no
need for complex modification required by the quintuplet
based loss in the LMLE model [20].

2.2. Class Rectification Loss

In deep feature representation model learning, the key
is to discover latent boundaries for individual classes and
surrounding margins between different classes in the feature
space. To this end, we introduce a Class Rectification Loss
(CRL) regularisation lcrl to rectify the learning bias from
the conventional Cross-entropy classification loss function
(Eqn. (2)) given class-imbalanced attribute data:

lbln = lcrl + lce (8)

where lcrl is computed from the hard positive and negative
samples of the minority classes. We further explore three
different options to formulate lcrl.
(I) Class Rectification by Relative Comparison. Firstly,
we exploit the general learning-to-rank idea [29], and in
particular the triplet based loss. Considering the small
number of training samples in minority classes, it is sen-
sible to make full use of them in order to effectively han-
dle the underlying model learning bias. Therefore, we re-
gard each image of these minority classes as an “anchor” to
quantitatively compute the batch balancing loss regularisa-
tion. Specifically, for each anchor (xa,j), we first construct
a set of triplets based on the mined top-K hard-positives
and hard-negatives associated with the corresponding at-
tribute class c of attribute j, i.e. class-level hard mim-
ing, or the sample instance itself xa,j , i.e. instance-level
hard mining. In this way, we form at most K2 triplets
T = {(xa,j ,xp,j ,xn,j)k}K

2

k=1 w.r.t. xa,j , and a total of at
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Ø Comparison to the state-of-the-arts

Method mAP(%)

MTCT[4] 73.53

LMLE[3] 75.77

CRL(C) 78.24

CRL(I) 79.66

Method mAP(%)

DeepID2[2] 81

LMLE[3] 84

CRL(C) 85

CRL(I) 86

CelebA X-domain

Ø Comparison of different imbalanced learning methods
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