
Face Re-Identification Challenge: Are Face Recognition
Models Good Enough?

Zhiyi Chenga, Xiatian Zhub, Shaogang Gonga

aQueen Mary University of London, London, UK
bVision Semantics Limited, London, UK

Abstract

Face re-identification (Re-ID) aims to track the same individuals over space and

time with subtle identity class information in automatically detected face im-

ages captured by unconstrained surveillance camera views. Despite significant

advances of face recognition systems for constrained social media facial images,

face Re-ID is more challenging due to poor-quality surveillance face imagery

data and remains under-studied. However, solving this problem enables a wide

range of practical applications, ranging from law enforcement and information

security to business, entertainment and e-commerce. To facilitate more studies

on face Re-ID towards practical and robust solutions, a true large scale Surveil-

lance Face Re-ID benchmark (SurvFace) is introduced, characterised by natively

low-resolution, motion blur, uncontrolled poses, varying occlusion, poor illumi-

nation, and background clutters. This new benchmark is the largest and more

importantly the only true surveillance face Re-ID dataset to our best knowledge,

where facial images are captured and detected under realistic surveillance sce-

narios. We show that the current state-of-the-art FR methods are surprisingly

poor for face Re-ID. Besides, face Re-ID is generally more difficult in an open-set

setting as naturally required in surveillance scenarios, owing to a large number of

non-target people (distractors) appearing in open ended scenes. Moreover, the
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low-resolution problem inherent to surveillance facial imagery is investigated.

Finally, we discuss open research problems that need to be solved in order to

overcome the under-studied face Re-ID problem.

Keywords: Face re-identification, surveillance facial imagery, low-resolution,

super-resolution, open-set matching, deep learning, face recognition.

1. Introduction

With the rapid expansion of surveillance multi-camera systems around the

world, associating people over space and time becomes an increasingly significant

capability for a wide range of applications such as public safety, law enforcement

and forensic search [1]. Among the existing visual biometrics for person identity5

recognition, such as whole-body [2], iris [3], gait [4], and fingerprint [5], facial

appearance is considered as one of the most convenient and most reliable non-

intrusive visual cues. This is due to one fact that faces, provided they are visible

in captured images, are more stable cues for long-term tracking and tracing,

whereas other visual appearances, e.g. clothes for whole-body Re-ID [2, 6], are10

easier to change over space and time. In this study, we focus on the task of

tracking people across distributed non-overlapped camera views without any

domain prior knowledge, by facial images alone captured under unconstrained

surveillance conditions, i.e. face re-identification (face Re-ID) [7].

CASIA FaceScrub IJB-A LFW MegaFace SurvFace

Figure 1: Example comparisons of (Left) web face images from standard face datasets and

(Right) native surveillance face images from typical real-world public surveillance scenes.

Face recognition (FR) has been extensively studied with significant advance15

in the literature, and FR based commercial products are increasingly appearing
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in our daily life, e.g. web photo-album and online e-payment. However, this

survey shows that current FR methods generalise poorly to face Re-ID task,

given realistic noisy and low-quality facial images captured by unconstrained

wide-field surveillance cameras, far away from being satisfactory. This is due to20

low-resolution facial imagery with unconstrained noise, pose, expression, occlu-

sion, lighting and background clutter (Fig. 1).

While being critical for public safety and law enforcement applications, the

face Re-ID problem is significantly under-studied in comparison to face recogni-

tion. A major reason is lacking a large scale surveillance face Re-ID benchmark,25

as opposite to the rich availability of high-resolution web photoshot face recog-

nition benchmarks (Table 1). For example, there are 4,753,320 web face images

from 672,057 face IDs in MegaFace2 1 [8], which is made possible by easier

collection and labelling of large scale facial images in the public domain from

the Internet. On the contrary, it is prohibitively expensive and less feasible to30

construct large scale native (i.e. non-simulated) surveillance facial imagery data

as a benchmark for wider studies, due both to largely restricted data access and

very tedious data labelling at high costs. Currently, the largest surveillance

face dataset is the UnConstrained College Students (UCCS) dataset2 [9], which

contains 100,000 face images from 1,732 face IDs, at a significantly smaller scale35

than the MegaFace celebrities photoshot dataset. However, the UCCS is limited

and only semi-native due to being captured in a man-made, simulated surveil-

lance setup with a high-resolution camera at a single location. In this study, we

show that: (1) The state-of-the-art FR models trained on large scale high-quality

benchmark datasets such as the MegaFace generalise poorly to face Re-ID task40

on native low-quality surveillance facial images; (2) The performance of face

Re-ID on artificially synthesised low-resolution images does not well reflect the

true challenges of native surveillance facial images in system deployments; (3)

The image super-resolution models suffer from the lack of pixel-aligned low- and

1http://megaface.cs.washington.edu/
2http://vast.uccs.edu/Opensetface/
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high-resolution surveillance image pairs which are necessary for model training,45

apart from the domain distribution shift between web and surveillance data. To

facilitate solving the aforementioned problems and limitations, we introduce a

realistic and large scale Surveillance Face Re-ID Challenge, where a model is

expected to associate people in the multi-camera systems, by surveillance facial

images taken from unconstrained public scenes.50

We make three contributions: (I) We construct a large scale face Re-ID

benchmark with native surveillance facial imagery data for enabling scalable

model development and evaluation. Specifically, we introduce the SurvFace

challenge, containing 463,507 face images of 15,573 unique facial identities3. To

our best knowledge, this is the largest and only dataset for native face Re-ID55

challenge. SurvFace is constructed by data-mining 17 public domain person

re-identification datasets (Table 2) using a deep face detection model, so to

assemble a large pool of labelled surveillance face images in a cross-problem

data re-purposing principle. The unique features of the proposed face Re-ID

benchmark, compared with the conventional FR datasets, are the provision of60

cross-location (cross camera views) ID label annotations, and the more realistic

open-set evaluation protocol in typical surveillance scenarios. (II) While show-

ing increasing generalisation to more unconstrained identity matching scenarios,

existing FR models have not been tested for large scale face Re-ID in surveil-

lance scenarios. We fill this gap by benchmarking representative deep learning65

FR models [10, 11, 12] on the SurvFace challenge. They are particularly eval-

uated in a more realistic open-set scenario, originally missing in the previous

studies. In contrast to the more common closed-set setting, the open-set test

considers the cases of no true-matches of a probe in the gallery, respecting the

realistic large surveillance search scenarios. (III) We investigate extensively the70

3The SurvFace benchmark has been used for the challenge track of an IEEE ICCV

2019 workshop entitled Real-World Recognition from Low-Quality Images and Videos. See

the details at: https://www.forlq.org/ and https://evalai.cloudcv.org/web/challenges/

challenge-page/392/overview
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performance of existing models on SurvFace by exploiting simultaneously image

super-resolution (SR) [13, 14, 15, 16, 17] and FR models. We further compare

the model performances on MegaFace and UCCS benchmarks to give better

understanding of the unique characteristics of SurvFace. We finally provide

extensive discussions on future research directions for face Re-ID.75

2. Related Work

We review representative face challenges (Sec. 2.1) and methods (Sec. 2.2),

and existing face Re-ID systems (Sec. 2.4) in the literature. More general and

extensive reviews can be found in other surveys [18, 19, 20] and books [21, 22,

23, 24].80

2.1. Face Recognition Challenges

An overview of representative face challenges and benchmarks are sum-

marised in Table 1. Early challenges focus on small-scale constrained scenarios

[3, 25, 26, 27, 28, 29, 30], with neither sufficient appearance variation for robust

model training, nor practically solid test benchmarks. The seminal LFW [31]85

started to shift the community towards recognising unconstrained web faces,

followed by even larger face benchmarks, such as CASIA [32], CelebFaces [33],

VGGFace [11], MS-Celeb-1M [34], MegaFace [35] and MegaFace2 [8].

With such large benchmarks, FR accuracy in good quality images has reached

an unprecedented level, e.g., 99.83% on LFW and 99.80% on MegaFace. How-90

ever, this dose not scale to native surveillance faces captured in unconstrained

camera views (Sec. 4.1), due to: (1) Existing datasets have varying degrees

of data selection bias (near-frontal pose, less blur, good illumination); and (2)

Deep methods are often domain-specific (only generalise well to test data sim-

ilar to training set). On the other hand, there is a gap of facial images quality95

between a web photoshot view and a surveillance view in-the-wild (Fig. 1).

Research on face Re-ID has slightly advanced since 1996 when the well-

known FERET was launched [7]. It is under-studied with a very few benchmarks
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Table 1: Statistics of representative publicly available face benchmarks. Celeb: Celebrity.

Challenge Year IDs Images Videos Subject Surv?

Yale [25] 1997 15 165 0 Cooperative No

QMUL-MultiView [23] 1998 25 4,450 5 Cooperative No

XM2VTS [26] 1999 295 0 1,180 Cooperative No

Yale B [27] 2001 10 5,760 0 Cooperative No

CMU PIE [28] 2002 68 41,368 0 Cooperative No

Multi-PIE [29] 2010 337 750,000 0 Cooperative No

Morph [36] 2006 13,618 55,134 0 Celeb (Web) No

LFW [31] 2007 5,749 13,233 0 Celeb (Web) No

YouTube [37] 2011 1,595 0 3,425 Celeb (Web) No

WDRef [38] 2012 2,995 99,773 0 Celeb (Web) No

FaceScrub [39] 2014 530 100,000 0 Celeb (Web) No

CASIA [32] 2014 10,575 494,414 0 Celeb (Web) No

CelebFaces [33] 2014 10,177 202,599 0 Celeb (Web) No

IJB-A [40] 2015 500 5,712 2,085 Celeb (Web) No

VGGFace [11] 2015 2,622 2.6M 0 Celeb (Web) No

UMDFaces [41] 2016 8,277 367,888 0 Celeb (Web) No

MS-Celeb-1M [34] 2016 99,892 8,456,240 0 Celeb (Web) No

UMDFaces-Videos [42] 2017 3,107 0 22,075 Celeb (Web) No

IJB-B [43] 2017 1,845 11,754 7,011 Celeb (Web) No

VGGFace2 [44] 2017 9,131 3.31M 0 Celeb (Web) No

MegaFace2 [8] 2017 672,057 4,753,320 0 Non-Celeb (Web) No

FERET [7] 1996 1,199 14,126 0 Cooperative No

FRGC [45] 2004 466+ 50,000+ 0 Cooperative No

CAS-PEAL [46] 2008 1,040 99,594 0 Cooperative No

PaSC [47] 2013 293 9,376 2,802 Cooperative No

SCface [48] 2011 130 4,160 0 Cooperative Yes

COX [49] 2015 1,000 1,000 3,000 Cooperative Yes

EBOLO [50] 2016 Unknown 6,135 0 Cooperative Yes

FaceSurv [51] 2019 252 0 460 Cooperative Yes

UCCS [9] 2017 1,732 14,016+ 0 Uncooperative Yes

SurvFace 2019 15,573 463,507 0 Uncooperative Yes

available. One of the major obstacles is the difficulty of establishing a large scale

surveillance face dataset due to the high cost and limited feasibility in collecting100

surveillance faces and exhaustive ID annotation. Even in the FERET dataset,

only simulated (framed) surveillance faces were collected in most cases with

carefully controlled imaging settings, therefore it provides a much better facial

image quality than those from native surveillance videos.

A notable recent study introduces the UCCS challenge [9], the current largest105
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public surveillance face dataset, where faces were captured from a long-range dis-

tance without subjects’ cooperation (unconstrained), with various poses, blurri-

ness and occlusion (Fig. 5(b)). This benchmark represents a relatively realistic

surveillance scenario compared to FERET. However, the UCCS images were

captured at high-resolution from a single camera view4, therefore providing110

significantly more facial details and less viewing angle variations. Moreover,

UCCS is small in size, particularly the ID numbers (1,732), statistically limited

for face Re-ID evaluation (Sec. 4.1). This study addresses such limitations by

constructing a larger scale native surveillance face Re-ID challenge, the Surv-

Face benchmark. It consists of 463,507 real-world surveillance face images of115

15,573 different IDs captured from a diverse source of public spaces (Sec. 3).

2.2. Face Recognition Methods

We provide a brief review on the existing FR algorithms, including models

specially designed for low-resolution faces. We also discuss super-resolution

models for image fidelity and discriminability enhancement.120

(I) Face Recognition Models. Early FR methods adopt hand-crafted fea-

tures (e.g. Color Histogram, LBP, SIFT, Gabor) and matching model learn-

ing (e.g. discriminative margin mining, subspace learning, dictionary based

sparse coding, Bayesian modelling) [25, 38, 52, 53, 54, 55]. They suffer from

sub-optimal recognition generalisation, particularly with significant facial ap-125

pearance variations, due to weak representation power (limited and incomplete

human domain knowledge for hand-crafted features) and lack of end-to-end in-

teraction learning between feature extraction and model inference.

Recently, deep learning based FR models [56, 40, 57, 11, 10, 12, 58, 59, 60]

have achieved remarkable success. This paradigm benefits from superior network130

architectures [61, 62, 63, 64] and optimisation algorithms [10, 33, 57]. Deep

FR methods naturally address the limitations of hand-crafted alternatives by

jointly learning face representation and matching model end-to-end. A large set

4A single Canon 7D camera equipped with a Sigma 800mm F5.6 EX APO DG HSM lens.
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of labelled face images is usually necessary to train the millions of parameters

of deep models. This can be commonly satisfied by large scale web face data135

collected and labelled (filtered) from Internet. Consequently, modern FR models

are often trained, evaluated and deployed on web face datasets (Table 1).

Despite advances in web FR, it remains unclear how well the state-of-the-

art methods generalise to surveillance faces. Intuitively, face Re-ID is extreme

challenging due to three reasons: (1) Surveillance faces contain much less ap-140

pearance details with poorer quality and lower resolution (Fig. 1). (2) Deep

models are highly domain-specific and likely yield big performance degradation

in cross-domain deployments, especially with large train-test domain gap, e.g.

web and surveillance faces. In such cases, transfer learning is challenging [65].

The scarcity of labelled surveillance data makes the problem even more chal-145

lenging. (3) Instead of closed-set search considered by most existing methods,

face Re-ID is intrinsically open-set where the probe face ID is not necessarily

presented in the gallery. It brings about a significant challenge by additionally

requiring the system to reject non-target (distractors) whilst not missing target

IDs, especially when the distractors are of arbitrary variety.150

(II) Recognising Low-Resolution Faces. An inherent challenge of face

Re-ID is rooted in low-resolution [18]. Generally, existing low-resolution FR

methods fall into two categories: (1) image super-resolution [66, 67, 68, 69, 70],

and (2) resolution-invariant learning [71, 72, 73, 74, 75]. The first category is

based on two learning criteria: pixel-level visual fidelity and ID discrimination.155

Existing models often focus more on appearance enhancement [66, 67]. Recent

studies [68, 69, 70] attempt to unite the two sub-tasks for more discriminative

learning. The second category aims to learn resolution-invariant features [71, 72]

or a cross-resolution structure transformation [73, 74, 75]. The data-driven deep

models can be conceptually categorised into this strategy whenever suitable160

training data is available for model optimisation.

However, all the existing methods have a number of limitations: (1) Con-

sidering small scale and/or artificial low-resolution face images in the closed-set

setting, therefore unable to reflect the genuine face Re-ID challenge at scales.
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(2) Relying on hand-crafted features and linear/shallow model structures with165

suboptimal generalisation. (3) Requiring pixel-aligned low- and high-resolution

training image pairs, which are unavailable for surveillance faces.

Image Super-Resolution. SR methods have significantly advanced thanks

to the strong capacity of deep models in regressing the pixel-wise loss between

reconstructed and ground-truth images [13, 76, 77, 16, 15, 17]. Mostly, FR170

and SR researches advance independently, both assuming the availability of

large high-resolution training data. In surveillance, high-resolution images are

typically unavailable, which in turn resorts existing methods to transfer learning.

When the distributions of training and test data are very different, SR becomes

extremely challenging due to an extra need for domain adaptation.175

Specially, face super-resolution (face hallucination) is dedicated for facial

appearance restoration [78, 79, 80, 81, 82]. A common approach is to transfer

high-frequency details and structure information from exemplar high-resolution

images, by mapping low- and high-resolution training pairs. Existing models

require noise-free inputs, assuming stringent part detection and dense correspon-180

dence alignment, or may introduce overwhelming artifacts. Such assumptions

significantly limit their usability to surveillance faces with uncontrolled noise

and the absence of paired high-resolution images.

2.3. Person Re-Identification

Existing person Re-ID methods [83, 84, 85, 86, 87] assume that the whole-185

body visual appearance are stationary [2]. This significantly limits their scal-

ability for long-range identity tracking over space and time, since the clothing

and associated objects can change easily. In contrast, the facial appearance is

intrinsically much more stable therefore providing reliable representations and

evidences for large scale forensic search.190

2.4. Surveillance Face Re-Identification

Surveillance face Re-ID remains under-studied in the literature, with very

limited dedicated attempts. Dantcheva et al. [88] constructed facial representa-

tions from patches of hair, skin and clothes, for frontal-to-profile faces matching
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in video surveillance systems. Farinella et al. [89] adopted Local Ternary Pat-195

terns as representation for Re-ID task. These models, relying on hand-crafted

facial representations and shallow recognition models, have limited generalisa-

tion power to large scale realistic surveillance data. Li et al. [50] explored facial

information in person Re-ID by showing face as a more reliable biometric for

long-term tracking with body clothes changes over time. This work was con-200

ducted on a very small dataset with ideal front-view person images captured in

constrained scenarios. A more recent work [90] adopted deep model for repre-

sentation learning and clustering for ID recognition, which however is also de-

signed for constrained face images. Generally, the advance of face Re-ID systems

is largely limited by lacking of a large, unconstrained, and realistic benchmark.205

We in this work introduce a large scale surveillance dataset for face Re-ID, and

conduct an extensive set of experiments to test the performance of the state-

of-the-art face recognition and image super-resolution methods. The empirical

results reveal that these methods are surprisingly limited in face Re-ID. This

phenomenon is thought provoking, making the researchers to reevaluate existing210

algorithms and motivating them to develop practically effective solutions.

3. Face Re-ID Challenge

3.1. A Native Surveillance Face Dataset

To our best knowledge, there is no large native surveillance face Re-ID chal-

lenge in the public domain. To stimulate the research on this problem, we215

construct a new large scale benchmark (challenge) by extracting faces of the

uncooperative general public appearing in real-world surveillance videos and

images. We call this challenge SurvFace. Unlike most existing FR challenges

using either high-quality web or simulated surveillance images captured in con-

trolled conditions therefore failing to evaluate the true surveillance face Re-ID220

performance, we explore real-world native surveillance imagery from a combina-

tion of 17 person re-identification benchmarks which were collected in different

surveillance scenarios across diverse sites and multiple countries (Table 2).
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Table 2: Person re-identification datasets utilised in constructing the SurvFace challenge.

Person Re-Identification Dataset IDs Detected IDs Bodies Detected Faces Nation

Shinpuhkan [91] 24 24 22,504 6,883 Japan

WARD [92] 30 11 1,436 390 Italy

RAiD [93] 43 43 6,920 3,724 US

CAVIAR4ReID [94] 50 43 1,221 141 Portugal

SARC3D [95] 50 49 200 107 Italy

ETHZ [96] 148 110 8,580 2,681 Switzerland

3DPeS [97] 192 133 1,012 366 Italy

QMUL-GRID [98] 250 242 1,275 287 UK

iLIDS-VID [85] 300 280 43,800 14,181 UK

SDU-VID [99] 300 300 79,058 67,988 China

PRID 450S [100] 450 34 900 34 Austria

VIPeR [101] 632 456 1,264 532 US

CUHK03 [102] 1,467 1,380 28,192 7,911 China

Market-1501 [103] 1,501 1,429 25,261 9,734 China

Duke4ReID [104] 1,852 1,690 46,261 17,575 US

CUHK-SYSU [105] 8,351 6,694 22,724 12,526 China

LPW [106] 4,584 2,655 590,547 318,447 China

Total 20,224 15,573 881,065 463,507 Multiple

Dataset Statistics. The SurvFace challenge contains 463,507 face images of

15,573 unique person IDs with uncontrolled appearance variations in pose, il-225

lumination, motion blur, occlusion and background (Fig. 2). Among all, there

are 10,638 (68.3%) people each associated with ≥2 detected face images. This

is the largest native surveillance face benchmark to date (Table 1).

Figure 2: Matched (Left) and unmatched (Right) face image pairs from SurvFace.

Faces Collection. We automatically extracted faces with TinyFace detec-
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tor [107] in re-identification surveillance images. Manually labelling is not scal-230

able due to the huge amount of surveillance video data. Note that not all faces

in source images can be successfully detected given imperfect detection, poor

image quality and extreme head poses. The average detection recall is 77.0%

(15,573 out of 20,224) in ID and 52.6% (463,507 out of 881,065) in image. Table

2 summarises face detection statistics across all person re-identification datasets.235

Face Image Cleaning and Annotation. We manually cleaned SurvFace data

by filtering out false detections, with two independent annotators and a subse-

quent mutual cross-check. All non-surveillance images in CUHK-SYSU dataset

are throwed away. For face ID annotation, we used the person labels available

in sources assuming no ID overlap across datasets. This is rational since they240

were independently created over different time and surveillance venues, i.e., the

possibility that a person appears in multiple source datasets is extremely low.

Face Characteristics. In contrast to existing face datasets, SurvFace is

uniquely characterised by low resolution typical in surveillance (Fig. 4) – one

major source making face Re-ID challenging. The bi-modal distribution in res-245

olution sources from the 17 independent person Re-ID datasets we used collec-

tively, mainly due to that CUHK03 provides relatively higher-resolution images.

The face spatial resolution ranges from 6/5 to 124/106 pixels in height/width,

with average 24/20. It exhibits a power-law distribution in frequency ranging

from 1 to 558 (Fig. 3).250

Table 3: Statistics of SurvFace. Numbers in parentheses: per-identity image number range.

Split All Training Test

IDs 15,573 5,319 10,254

Images 463,507 (1∼558) 220,890 (2∼558) 242,617 (1∼482)

3.2. Evaluation Protocols

Data Partition. We first split the SurvFace data into training and test sets.

We divide the 10,638 IDs each with ≥ 2 face images into two halves: one half
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Figure 4: Scale distributions of SurvFace images.

(5,319) for training, one half (5,319) plus the remaining 4,935 single-shot IDs

(in total 10,254) for test (Table 3). We benchmark only one train/test data split255

since the dataset is sufficiently large to support a statistically stable evaluation.

All face images of training IDs are used for models training. Additional imagery

from other sources may be used subject to no facial images of test IDs.

Closed-set. We first set up the closed-set face Re-ID evaluation on SurvFace.

For each of the 5,319 multi-shot test IDs, we randomly sample the corresponding260

images into probe or gallery. The gallery set represents imagery involved in an

operational database, e.g., access control system’s repository. For any unique

person, we generate a single ID-specific face template from one or multiple

gallery images [40]. This makes the ranking list concise and more efficient for

post-rank manual validation, e.g., no case that a single ID takes multiple ranks.265

The probe set represents imagery used to query a face Re-ID system.

The Cumulative Matching Characteristic (CMC) [40] measure is selected for

closed-set face Re-ID. CMC reports the fraction of searches returning the mate

(true match) at rank r or better, with the rank-1 rate as the most common

summary indicator of an algorithm’s efficacy. It is a non-threshold rank based

metric. Formally, the CMC at rank r is defined as:

CMC(r) =

r∑
i=1

Nmate(i)

N
(1)

where Nmate(i) denotes the number of probe images with the mate ranked at

position i, and N the total probe number.
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Open-set. In realistic surveillance applications, however, most faces captured

by CCTV cameras are not of any gallery ID therefore should be detected as270

unknown, leading to the open-set protocol [108, 109]. It is often referred to the

watch-list identification (forensic search) scenario where only persons of interest

are enrolled into the gallery, typically each ID with several different images

such as the FBIs most wanted list5. To enable the open-set face Re-ID test,

we construct a watch list identification protocol where only IDs of interest are275

enrolled in the gallery. Specifically, we create the probe and gallery sets as: (1)

Out of the 5,319 multi-shot test IDs, we randomly select 3,000 and sample half

face images for each selected ID into the gallery set, i.e. the watch list. (2)

All the remaining images including single-shot ID imagery are used to form the

probe set. As such, the majority of probe people are unknown (not enrolled280

gallery IDs), more accurately reflecting the open space forensic search nature.

For the open-set face Re-ID evaluation, we must quantify two error types

[108]. The first type is false alarm – a face image from an unknown person (i.e.

nonmate search) is incorrectly associated with one or more enrollees’ data. This

error is quantified by the False Positive Identification Rate (FPIR):

FPIR(t) =
Nm

nm

Nnm
(2)

which measures the proportion of nonmate searches Nm
nm (of no mate IDs in the

gallery) that produce one or more enrolled candidates at or above a threshold t

(i.e. false alarm), among a total of Nnm nonmate searches attempted.

The second type of error is miss – a search of an enrolled target person’s

data (i.e. mate search) does not return the correct ID. We quantify this by the

False Negative Identification Rate (FNIR):

FNIR(t, r) =
Nnm

m

Nm
(3)

which is the proportion of mate searches Nnm
m (of IDs in the gallery) with en-

rolled mate found outside top r ranks or matching similarity score below the

5www.fbi.gov/wanted
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threshold t, among Nm mate searches. By default, we set r= 20 (FNIR(t, 20))

assuming small workloads by human reviewers employed to review the candi-

dates returned from identification searches [108]. In practice, a more intuitive

measure may be the “hit rate” or True Positive Identification Rate (TPIR):

TPIR(t, r) = 1 − FNIR(t, r) (4)

which is the complement of FNIR offering a positive statement of how of-285

ten mated searches are succeeded. TPIR(t, 1) corresponds to the Detection

and Identification Rate (DIR) as defined in [110]. In SurvFace, we adopt the

TPIR@FPIR measure as the open-set face Re-ID performance metrics. TPIR-

vs-FPIR can similarly generate an ROC curve, the AUC of which stands for an

overall measurement.290

Table 4: Benchmark data partition of SurvFace.

Scenario Open-Set

Partition Probe Gallery

IDs 10,254 3,000

Images 182,323 60,294

Metrics TPIR@FPIR, ROC

Considerations. Existing FR challenges often adopt the closed-set evaluation

protocol [35]. While being able to evaluate FR model in large scale search, it

does not fully generalise to face Re-ID. For face Re-ID, human operators are

often assigned with a list of target IDs with face images enrolled in gallery.

The task is then to search the faces of target IDs across camera views. This295

is an open-set scenario. Therefore, we adopt the open-set protocol as the main

setting of SurvFace (Table 4). Besides, we still consider closed-set experiments

to enable like-for-like comparisons with existing benchmarks.

4. Experimental Evaluations

We present the experimental evaluations of face Re-ID, with top FR models300

on both native surveillance faces (Sec. 4.1) and super-resolved faces (Sec. 4.2).
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We choose three representative FR models, CentreFace [10], VggFace [11] and

SphereFace [12], for native face Re-ID benchmarking; and three image super-

resolution methods, SRCNN [13], VDSR [16] and LapSRN [15], to evaluate

the face Re-ID performance on super-resolved surveillance faces. The feature305

vectors are L2 normalised before face Re-ID matching. This is equivalent to

using cosine similarity.

4.1. Native Surveillance Face Re-ID

We evaluated face Re-ID on the native SurvFace images. Besides the low-

resolution issue, there are other uncontrolled covariates, e.g. illumination varia-310

tions, expression, occlusions, background clutter, and compression artifacts. All

of these factors cause inference uncertainty to varying degrees (Fig. 2).

Model Training and Test. We adopted three strategies for model training:

(1) Only using SurvFace training set (220,890 images from 5,319 IDs). (2)

Only using CASIA web data (494,414 images from 10,575 IDs). We will test315

the effect of using different web source datasets such as MegaFace2 [8] and MS-

Celeb-1M [34]. (3) First pre-training a FR model on CASIA, then fine-tuning

on SurvFace (default strategy). The trained model is deployed with Euclidean

distance. In both training and test, we rescaled facial images by bicubic inter-

polation to the required input model size. Note that such interpolation process320

does not change the underlying resolution, i.e. the visual information.

Evaluation Settings. We considered both closed-set and open-set scenarios.

By default, we adopt the more realistic open-set evaluation, unless stated other-

wise. For open-set, we used TPIR (Eqn. (3)) at varying FPIR rates (Eqn. (2)).

The true match ranked in top-r (r=20 in Eqn. (4)) is considered as success.325

Implementation Details. We used the codes released by the original au-

thors for models implementation [10, 11, 12]. Throughout the experiments, we

adopted the suggested parameter setting by the authors if available, or carefully

tuned the hyper-parameters by grid search. Data augmentation was applied

to SurvFace training data, including flipping, Gaussian kernel blurring, colour330
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shift, brightness and contrast adjustment. We excluded cropping and rotation

transformation which bring negative influence due to tight face bounding boxes.

4.1.1. Face Re-ID Evaluation

(I) Benchmark SurvFace. We benchmarked face Re-ID on SurvFace in Table

5. We make four observations: (1) Not all FR models converge when directly335

training on SurvFace, e.g. VggFace fails. As opposite, all the models are well

trained using CASIA data. Whilst CASIA is larger, we conjugate that the scale

is not a key obstacle as SurvFace training data should be arguably sufficient

for generic deep learning. Instead this may be more due to extreme challenges

posed by poor resolution especially when the model requires high-scale inputs340

like 224×224 by VggFace. This indicates the dramatic differences between native

surveillance and web facial images. (2) The poorest results are yielded by the

models trained with only CASIA faces. This is expected due to the big domain

gap between CASIA and SurvFace (Fig. 5). (3) Most models are notably

improved once pre-trained using CASIA faces. This suggests a positive effect345

of web data based model initialisation. (4) CentreFace is the best performer.

This indicates the efficacy of restricting intra-class variation in training for face

Re-ID, consistent with web data FR [10].

Table 5: Face Re-ID results on SurvFace. Protocol: Open-Set. Metrics: TPIR20@FPIR

(r=20) and AUC. “-”: No results available due to failure of model convergence.

Train Data SurvFace (Ours) CASIA [32] CASIA + SurvFace

Metrics
TPIR20(%)@FPIR

AUC(%)
TPIR20(%)@FPIR

AUC(%)
TPIR20(%)@FPIR

AUC(%)
30% 20% 10% 1% 30% 20% 10% 1% 30% 20% 10% 1%

CentreFace 26.220.012.2 2.8 34.6 5.7 4.4 2.3 0.2 7.6 27.321.013.8 3.1 37.3

VggFace - - - - - 6.5 4.8 2.5 0.2 9.6 5.1 2.6 0.8 0.1 14.0

SphereFace 18.8 13.5 7.0 0.7 26.6 5.9 4.2 2.2 1.7 9.0 21.3 15.7 8.3 1.0 28.1

(II) Open-Set vs Closed-Set. We compared open-set and closed-set face Re-

ID on SurvFace. All distractors in the gallery are removed for closed-set test.350

The top-2 models, CentreFace and SphereFace, are evaluated. Table 6 suggests

that closed-set face Re-ID is clearly easier than the open-set counterpart. For

instance, CentreFace achieves 27.3% TPIR20@FPIR30% in open-set vs 61.1%
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Rank-20 in closed-set. The gap is even larger at lower false alarm rates. This

means that with the attack of distractors, face Re-ID becomes much harder.355

Table 6: Open-Set (TPIR20(%)@FPIR) vs Closed-Set (CMC (%)) on SurvFace.

Metrics
TPIR20@FPIR CMC

30% 20% 10% Rank-1 Rank-10 Rank-20

CentreFace 27.3 21.0 13.8 29.9 53.4 61.1

SphereFace 21.3 15.7 8.3 29.3 50.0 55.4

(III) SurvFace vs WebFace. We compared face Re-ID with web face identi-

fication in the closed-set test. For example, CentreFace achieves Rank-1 29.9%

(Table 6) on SurvFace, much inferior to the rate of 65.2% on MegaFace [10],

i.e. a 54% (1-29.9/65.2) performance drop. This indicates that face Re-ID is

significantly more challenging, especially so when considering that one million360

distractors are used to additionally complicate the MegaFace test.

(IV) SurvFace Image Quality. We evaluated the effect of surveillance image

quality in open-set face Re-ID. To this end, we qualitatively contrasted SurvFace

with UCCS [9] that provides surveillance face images with clearly better quality

in Fig. 5. For a quantitative comparison, we adopted the Frechet Inception365

Distance (FID) [111], a widely used image quality metric in GAN model eval-

uations. To obtain a face-specific FID measure, instead of a typical ImageNet

trained Inception network, we used a CentreFace model [10] trained with CA-

SIA [32] high-quality image data. In this test, we randomly selected 10,000 face

images from SurvFace and UCCS respectively; Against 10,000 random CASIA370

images, we then computed and obtained the FID score of 262.33 on SurvFace

and 94.86 on UCCS. It shows that UCCS images have much higher quality

(lower FID, so closer to high-quality CASIA images) than SurvFace images.

Setting. For UCCS, face images from the released 1,090 IDs is randomly split

into 545/545 IDs train/test set, resulting in a 6,948/7,068 image split. For a like-375

for-like comparison, we constructed a SurvFace(1090ID) dataset by randomly

picking 545/545 SurvFace train/test IDs. For evaluation, we designed an open-
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(a) SurvFace (b) UCCS (c) CASIA

Figure 5: Quality comparison of example faces from (a) SurvFace, (b) UCCS, and (c) CASIA.

set test setting using 100 random IDs for gallery and all 545 IDs for probe.

Results. Table 7 shows that SurvFace poses more challenges than UCCS, with

varying degrees of performance drops experienced by FR models. This suggests380

that image quality is an important factor, and UCCS is less accurate in reflecting

the face Re-ID challenges due to artificially high image quality.

Table 7: Image quality in face Re-ID: UCCS vs SurvFace(1090ID).

Dataset Model
TPIR20(%)@FPIR

AUC (%)
30% 20% 10% 1%

UCCS

CentreFace 96.1 94.6 90.4 80.7 96.1

VggFace 71.0 60.3 46.6 15.0 77.0

SphereFace 74.0 67.5 58.0 26.8 76.5

SurvFace

CentreFace 52.0 46.0 35.0 13.0 60.3

VggFace 42.0 32.0 21.0 5.0 51.0

SphereFace 59.9 56.0 49.0 20.0 64.0

(V) Test Scalability. We examined the test scalability by comparing Surv-

Face(1090ID) (Table 7 bottom) and SurvFace (Table 5), and found significantly

higher performances on the smaller 1090ID test set. This suggests that a large385

benchmark is crucial for true performance evaluation in practical face Re-ID.

(VI) Web Image Source. We tested the effect of web training dataset by com-

paring three benchmarks, CASIA [32], MS-Celeb-1M [34] and MegaFace2 [8],

using CentreFace and SphereFace. Table 8 shows that the selection of web

data only leads to neglectable changes in face Re-ID performance. For training,390

CASIA is tens of times more cost-effective (cheaper) than the other two larger
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datasets, so we use it in the main experiments. Moreover, it is more challenging

to train a FR model given a vast ID class space such as MegaFace2.

Table 8: Selection of web training data source.

Web Dataset Model
TPIR20(%)@FPIR

AUC (%)
30% 20% 10% 1%

MS-Celeb-1M
CentreFace 28.0 21.9 14.1 3.1 37.4

SphereFace 20.1 13.6 5.4 0.8 27.1

MegaFace2
CentreFace 27.7 21.9 15.0 3.5 37.6

SphereFace 20.0 13.0 5.4 0.7 26.4

CASIA
CentreFace 27.3 21.0 13.8 3.1 37.3

SphereFace 21.3 15.7 8.3 1.0 28.1

(VII) SurvFace Resolution. We examined the effect of test image resolution.

Given the bi-modal distribution of SurvFace images, we divided all test probe395

faces into two groups at the threshold of 20 pixels in width. Table 9 shows

that whilst the face resolution matters, the performance on all test images sum-

marises the average of each group rather well. The performance variation across

groups relies on both the applied models and other imaging factors, suggesting

that the resolution alone does not bring a consistent performance bias.400

Table 9: Effect of SurvFace image resolution.

Width
Model

TPIR20(%)@FPIR
AUC (%)

(Pixels) 30% 20% 10% 1%

≤20
CentreFace 32.9 23.3 15.2 4.0 40.0

SphereFace 13.9 9.4 4.3 0.6 22.4

>20
CentreFace 25.0 19.7 13.5 3.4 34.6

SphereFace 26.2 21.6 14.8 2.7 32.2

All
CentreFace 27.3 21.0 13.8 3.1 37.3

SphereFace 21.3 15.7 8.3 1.0 28.1

(VIII) Domain Separation. Given that SurvFace is composed of faces cap-
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(a) In the CentreFace feature space. (b) In the SphereFace feature space.

Figure 6: Euclidean distance distributions of Intra-Domain and Inter-Domain false pairs in

the feature space established by (a) CentreFace and (b) SphereFace.

tured from multiple data sources (domains), we tested whether face images from

one source are overly different from the others, i.e. the domain separation effect.

Domain separation may overwhelm subtle facial identity differences, therefore

reducing the effective gallery size – larger separation, smaller gallery. To that405

end, we examined the distance statistics of intra-domain and inter-domain false

pairs. Specifically, we formed 60,000 intra-domain and 60,000 inter-domain

probe-gallery false pairs, and profiled their Euclidean distance measured by

the CentreFace and SphereFace features, respectively. Fig. 6 shows clear and

substantial overlaps between inter-domain and intra-domain although model-410

dependent. This implies that the domain separation effect is not severe in

SurvFace.

Probe R1 R2 R3 R4 R5 R6 R8R7 R9 R10 R15R11 R12 R13 R14 R16 R17 R18 R19 R20

Figure 7: Face Re-ID examples by CentreFace on SurvFace. True matches are in red box.

(IX) Qualitative Evaluation. We show face Re-ID examples by CentreFace

on SurvFace in Fig. 7. The model succeeds in finding the true match among
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top-20 in the top three tasks, and fails the last.415

4.2. Super-Resolution in Surveillance Face Re-ID

Following the face Re-ID evaluation in raw low-resolution surveillance data,

we tested super-resolved face images. The aim is to examine the effect of image

super-resolution (SR) in addressing the low-resolution problem in face Re-ID.

We only evaluated the native low-resolution SurvFace benchmark, since UCCS420

images are of artificial high resolution therefore excluded (Fig. 5).

Model Training and Test. We consider two training strategies as follows.

(1) Independent Training : We first pre-train FR models on CASIA [32] and

then fine-tune on SurvFace, same as in Sec. 4.1. Given no access to high-

resolution SurvFace data, we independently train image SR models with CASIA425

data alone, where the low- and high-resolution training image pairs are gener-

ated by down-sampling. We deployed the learned SR models to restore SurvFace

images before performing face Re-ID by deep features and Euclidean distance.

(2) Joint Training : Training SR and FR models jointly in a hybrid pipeline to

improve their compatibility. Specifically, we unit SR and FR models by connect-430

ing the former’s output with the latter’s input so allowing end-to-end training

with both. In practice, we first performed joint learning with CASIA and then

fine-tuned FR part with SurvFace. But joint training is not always doable due

to additional challenges such as over-large model size and more difficulties to

converge. In our experiments, we achieved joint training of two hybrid pipelines435

using two SR (SRCNN [13] and VDSR [16]) with one FR (CentreFace [10])

models. At test time, we deployed the hybrid pipeline on SurvFace images to

perform face Re-ID using Euclidean distance.

Evaluation Settings. TPIR (Eqn. (3)) and FPIR (Eqn. (2)) are used as

performance metrics, same as Sec. 4.1.440

Implementation Details. We performed a 4× upscaling restoration for super-

resolution, with models implemented by the public released codes. We followed

the parameter setting as suggested, or carefully tuned them during training.
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Table 10: Effect of image super-resolution (SR) in face Re-ID on SurvFace. Protocol: Open-

Set. Jnt/Ind: Joint/Independent training. ’-’: Fail to train.

Metrics
TPIR20(%)@FPIR

AUC
TPIR20(%)@FPIR

AUC
TPIR20(%)@FPIR

AUC
30% 20% 10% 1% 30% 20% 10% 1% 30% 20% 10% 1%

SR

FR
CentreFace VggFace SphereFace

No SR 27.3 21.0 13.8 3.1 37.3 5.1 2.6 0.8 0.1 14.0 21.3 15.7 8.3 1.0 28.1

SRCNN
Ind 25.0 20.0 13.1 3.0 35.0 6.2 3.1 1.0 0.1 15.3 20.0 14.9 6.2 0.6 27.0

Jnt 25.5 20.5 12.0 2.9 35.0 - - - - - - - - - -

VDSR
Ind 25.5 20.1 12.8 3.0 35.1 5.8 2.9 1.0 0.1 15.0 20.1 14.5 6.1 0.8 27.3

Jnt 26.7 20.4 12.6 3.1 35.3 - - - - - - - - - -

LapSRN
Ind 25.6 20.0 12.7 3.0 35.1 5.7 2.8 0.9 0.1 15.0 20.2 14.7 6.3 0.7 27.4

Jnt - - - - - - - - - - - - - - -

4.2.1. Face Re-ID Evaluation

(I) Effect of Super-Resolution. We tested the effect of image super-resolution445

on SurvFace. From Table 10, we have two observations: (1) Surprisingly, SR of-

ten brings slightly negative effect. The plausible reasons are threefold. The first

is that conventional SR models usually favor visual fidelity instead of perceptual

measurements for recognition. The second is that SR models are trained on web

data, which has a domain gap against SurvFace (Fig. 1). The third is the nega-450

tive effect of artifacts of SR (Fig. 8). An exception case (similar as in Sec. 4.1)

is VggFace given the need for higher-resolution inputs therefore somewhat pref-

erence to SR. And VggFace has the weakest performance. (2) Joint training of

FR and SR is not necessarily superior than independent training. This suggests

that it is non-trivial to effectively propagate the FR discrimination capability455

into SR learning. Therefore, it is worth further in-depth investigation on how

to integrate a super-resolution ability into face Re-ID.

(II) SurvFace vs WebFace. We evaluated SR on down-sampled web faces as

a comparison to surveillance data.

Setting. We built a low-resolution web face identification test as SurvFace460

(Table 3) by sampling MegaFace2 [8]. MegaFace2 was selected since it contains

non-celebrity people thus ensuring ID non-overlap with the training data CA-

SIA. We down-sampled the selected MegaFace2 images to the mean SurvFace
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LR	Input SRCNN LapSRNVDSR SRCNN VDSRBicubic

Figure 8: Super-resolved images on SurvFace by independently (left box) and jointly (right

box) trained super-resolution models. CentreFace is used in joint training.

size 24×20 (Fig. 9), and built an open-set test setting with 3,000 gallery IDs

(51,949 images) and 10,254 probe IDs (176,990 images) (Table 4). We further465

randomly sampled an ID-disjoint training set with 81,355 images of 5,319 IDs.

In doing so, we created a like-for-like setting with low-resolution MegaFace2

against SurvFace. We adopted the most effective joint training strategy.

(a) Simulated low-resolution MegaFace2. (b) Native low-resolution SurvFace.

Figure 9: (a) Simulated vs (b) native low-resolution face images.

Results. Table 11 shows that SR brings very marginal gain to low-resolution

face identification, suggesting that contemporary models are still far from satis-470

factory to boost facial discriminability (Fig. 10). In comparison, the model as-

sisted by VDSR on simulated low-resolution web faces is better than on surveil-

lance images, similarly reflected in super-resolved images (Fig. 10 vs Fig. 8).

This indicates that super resolving surveillance faces is more challenging due to

the lack of low- and high-resolution image pairs for model training.475
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Table 11: Effect of super-resolution on down-sampled MegaFace2 data. CentreFace is used.

Metrics
TPIR20(%)@FPIR (open-set)

AUC (%)
30% 20% 10% 1%

No SR 39.9 28.0 14.0 5.8 46.0

SRCNN 26.6 19.2 10.0 5.0 36.5

VDSR 40.0 28.3 14.1 6.0 47.5

VDSRSRCNNLR Input Bicubic

Figure 10: Super-resolved MegaFace2

images. CentreFace is used jointly

with the super-resolution models.

(a) SurvFace (b) CASIA

Figure 11: Facial landmark detection [112] on

(a) SurvFace and (b) CASIA web faces. Red

box: failure cases.

5. Discussions and Conclusion

In this study, we presented a large surveillance face re-identification bench-

mark SurvFace, with extensive benchmarking results, in-depth discussions and

analysis. This challenge shows that existing models remain unsatisfactory in

handling poor quality image based face Re-ID. In concluding remarks, we dis-480

cuss research directions worthwhile investigating in the future researches.

Transfer Learning. The benchmarking results (Table 10) show that knowl-

edge transferred from auxiliary web faces boosts the face Re-ID performance,

while more effective transfer methods are needed. Domain adaptation [65, 113,

114, 115, 116] is important given the surveillance-web domain discrepancy. In485

particular, style transfer [117, 118, 119, 120] is a straightforward approach, by

transforming source images with target domain style so that the labelled source
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data can be used for supervised learning. Whilst style transfer is inherently

challenging, it promises potential for face Re-ID.

Resolution Restoration. The low-resolution nature hinders the face Re-490

ID performance. While SR is one natural solution, our evaluations show that

current models remain ineffective. Two main reasons are: (1) No access to

native low- and high-resolution surveillance image pairs required for SR training

[121]. (2) Difficult to generalise models learned on web data due to domain gap

[65]. Although SR models have been adopted for low-resolution faces [18], they495

rely on hand-crafted representations tested on small simulated data. It remains

unclear how effective SR methods are for native face Re-ID.

Face Alignment. Face alignment by landmark detection is an indispensable

preprocessing in FR [38, 10, 112]. Despite the great progress [122, 123, 124],

aligning face remains a formidable challenge in surveillance images (Fig. 11),500

suffering from domain shift. To construct a large surveillance face landmark

dataset and integrate landmark detection with SR could be interesting topics.

Contextual Constraints. Given incomplete and noisy observation in surveil-

lance face data, it is important to utilise context information as extra constraint.

For example, in social events, people often travel in groups. The group structure505

provides useful social force for model inference [125, 126, 127, 128].

Open-Set Recognition. Face Re-ID is an open-set recognition problem [129,

130]. In reality, most probes are non-target persons. It is hence beneficial that

the model learn to construct a decision boundary for the target people [131].

Whilst open-set recognition techniques evolve independently, we expect more510

future attempts at jointly solving the two problems.

Imagery Data Scalability. Compared to existing web FR benchmarks [35, 8,

32], SurvFace is smaller in scale. An important future effort is to expand this

challenge for more effective model training and larger scale open-set test.

Final Remarks. This work presents timely a more challenging benchmark515

SurvFace for stimulating further innovative algorithms. This calls for more

research efforts for under-studied and crucial face Re-ID.
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