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Abstract

Existing person re-identification (re-id) methods mostly
assume the availability of large-scale identity labels for
model learning in any target domain deployment. This
greatly limits their scalability in practice. To tackle this lim-
itation, we propose a novel Instance-Guided Context Ren-
dering scheme, which transfers the source person identities
into diverse target domain contexts to enable supervised re-
id model learning in the unlabelled target domain. Un-
like previous image synthesis methods that transform the
source person images into limited fixed target styles, our ap-
proach produces more visually plausible, and diverse syn-
thetic training data. Specifically, we formulate a dual con-
ditional generative adversarial network that augments each
source person image with rich contextual variations. To ex-
plicitly achieve diverse rendering effects, we leverage abun-
dant unlabelled target instances as contextual guidance for
image generation. Extensive experiments on Market-1501,
DukeMTMC-reID and CUHK03 benchmarks show that the
re-id performance can be significantly improved when using
our synthetic data in cross-domain re-id model learning.

1. Introduction
Person re-identification (re-id) is a task of re-identifying

a query person-of-interest, across non-overlapping cameras
distributed over wide surveillance spaces [16]. Since the
surge of deep representation learning, great boosts of re-id
performance have been witnessed in an idealistic closed-
world supervised learning testbed [63, 58, 54, 64, 20, 6,
30, 47, 5]: The rank-1 matching rate has reached 93.3% [5]
on the Market1501 benchmark [63], as compared to 44.4%
in 2015. However, this success relies heavily on an unre-
alistic assumption that the training and test data have to be
drawn from the same camera network, i.e. the same domain.
When deploying such re-id models to new domains, their
performances often degrade significantly, mainly due to the
inevitable domain gaps between datasets collected from dif-
ferent surveillance camera networks. This weakness greatly
restricts the generalisability of these domain-specific learn-
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Figure 1: Motivation illustration. In open surveillance spaces, the
contextual variations can be quite diverse, due to wide-of-the-field
imagery and varying times of the day. Our approach learns to hal-
lucinate the same persons in such surveillance contexts, as if they
were captured from different places and times in the target domain.

ing methods in real-world deployment, when manually la-
belling new identity population becomes prohibitively ex-
pensive at large scale [57, 11, 55, 28, 7, 34]. It is therefore
essential to automate the domain-adaptive learnability with
more advanced and robust domain-generic learning models.

The aforementioned problem, known as cross-domain
person re-id, is gaining increasing attention [40, 56, 37,
57, 11, 55, 1, 65, 33]. It raises a more challenging open-set
unsupervised domain adaptation problem [4, 44], which re-
quires to bridge the domain gap between two disjoint iden-
tity class spaces. Recent methods typically mitigate this gap
by attribute-identity distribution alignment at the feature
level [55, 33], or style transfer at the image level [57, 11].
However, they all neglect to exploit the rich contextual vari-
ations as a potential domain bridge. In this work, we aim
to utilise the contextual information for more effective re-
id model learning. This is motivated by our observation
of complex environmental dynamics commonly existed in
open public scenes (see Fig. 1) – domain contexts are indeed
quite diverse in surveillance spaces, given that the viewing
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conditions vary dramatically both within and across cam-
era views, subjected to camera characteristics, wide-field-
of-view imagery, and varying times of the day. Our key idea
is to render the source persons into diverse domain contexts,
such that a large-scale context augmented synthetic dataset
can be generated to train a re-id model in a supervised man-
ner without labelling any target domain data.

Specifically, we propose a novel Instance-Guided Con-
text Rendering scheme, which augments the same source
identity population with rich contextual variations reflected
in the target domain. Our approach is unique in several per-
spectives. First, it effectively exploits abundant unlabelled
target instances as guidance to render the source persons
into different target domain contexts. This essentially cap-
tures the image-level domain drift in a more comprehen-
sive way. Second, rather than optimising two-way mappings
heavily with cycle consistency, we learn a simple one-way
mapping through informative supervision signals. Third,
compared to previous GAN-based re-id methods [57, 11],
our proposed dual conditional formulation naturally avoids
mode collapse [2] to limited styles, and enables more di-
verse outputs. It transfers the same person into more re-
alistic, finer-grained, and richer viewing conditions. The
contextually more diverse synthetic imagery are ultimately
utilised for re-id model learning to enhance visual invari-
ance towards contextual variations in the target domain.

In summary, our contribution is two-fold:

• We propose a novel Instance-Guided Context Render-
ing scheme. To our best knowledge, it is the first at-
tempt in re-id to tackle the image-level domain drift
by injecting rich contextual information into the image
generation process. It effectively augments the same
source person images with diverse target domain con-
texts to construct a large-scale synthetic training set for
re-id model learning in the unlabelled target domain.

• We design a dual conditional generative adversar-
ial network. It effectively exploits abundant unla-
belled target instances as contextual guidance to pro-
duce more plausible data with richer cross- and intra-
domain contextual variations. We conduct extensive
experiments to validate our model design rationale,
and show that our approach not only achieves com-
petitive re-id performance on several re-id benchmarks
in the cross-domain setting, but also generates photo-
realistic person images with high fidelity and diversity.

2. Related Work
Unsupervised Cross-Domain Person Re-Identification
aims to transfer the identity discriminative knowledge from
a labelled source domain to an unlabelled target domain.
The state-of-the-art methods [57, 11, 55, 65, 33, 1, 31] can
be categorised into three learning paradigms: (1) feature-

level distribution alignment; (2) image-level style transfer;
and (3) hybrid image-level and feature-level learning. The
first paradigm [55, 33] generally seeks a common feature
space for source-target distribution alignment with discrim-
inative learning constraints. The second paradigm [57, 11,
1, 31] reduces the domain gap by using GAN frameworks to
transfer source images into target domain styles in a holistic
manner. The last paradigm [65] unifies the complementary
benefits of synthetic images by GAN and feature discrim-
inative constraints in CNN. Our work falls into the second
paradigm. In particular, we identify that the common weak-
ness of existing GAN-based re-id methods lies in the in-
sufficient data diversity – either one or a pre-fixed number
of domain styles are captured in the final outputs. This is
mainly caused by the mode collapse issue in GAN – very
limited styles are plausibly captured in generated outputs.
To rectify this weakness, we design a new GAN framework
to augment data with more diverse contexts. Our synthetic
images reflect richer contextual variations in the target do-
main, and naturally serve as more informative training data
to improve the domain generalisability of a re-id model.
Unsupervised Domain Adaptation (UDA) techniques
[51, 49, 36, 46, 14, 50, 3, 45, 48, 53, 18, 22, 59] aim to
tackle the domain drift for avoiding exhaustive manual la-
belling of target data. Existing UDA methods rely on ei-
ther feature-level adaptation [51, 36, 46, 14, 50, 59] or
image-level adaptation [3, 45] to mitigate the cross-domain
distribution discrepancy. The former focuses on learning
domain-invariant feature representation, which is generally
achieved by adversarial training [14, 50, 53], or aligning the
feature statistics, such as sample means [51, 59] and covari-
ances [46]. The latter seeks to stylise the source images to
look visually as the target domain images using generative
models [3, 45, 48]. Rooted in similar spirit, our approach
also learns to transform the image styles, with a particular
focus on enriching the diversity of synthetic images to fa-
cilitate more effective domain adaptation in re-id.
Image-to-Image Translation (I2I) aims to transform im-
ages from original styles to new styles [24, 66, 25, 35, 60, 9,
38, 8, 23, 27]. The first unified I2I framework Pix2Pix [24]
adopts conditional GAN to learn a one-way mapping by op-
timising GAN loss and reconstruction loss formed on pair-
wise labelled data. CycleGAN [66] utilises the cycle consis-
tency constraints to avoid pairwise supervision by learning
two-way cross-domain mappings. To further enable multi-
domain mappings, StarGAN [9] introduces discrete domain
labels as conditional variables to capture multiple modes.
Recently, MUNIT [23], DRIT [27] achieve more diverse
image translation by conditioning the generation on random
latent codes. Driven by the same goal of diversifying gen-
erated outputs, we design a dual conditional formulation to
augment richer contextual variations in person images for
boosting cross-domain re-id model learning.
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Figure 2: Model overview. We tackle the domain drift at the image level by learning to render the source person image XS into diverse
domain contexts explicitly guided by arbitrary target instances XT sampled from the target domain (Sec. 3.1, Sec. 3.2).
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Figure 3: Deployment overview. In deployment, the generator produces abundant synthetic images XG for CNN training (Sec. 3.3).

3. Instance-Guided Context Rendering

Problem Definition. We consider the problem of unsu-
pervised domain adaptation in person re-id, which aims to
adapt a re-id model learned from a labelled source dataset
to an unlabelled target dataset. Our objective is to learn a
generative mapping G that reduces the domain discrepancy
by rendering the same source person images into a diverse
range of target domain contexts. As the final synthetic im-
ages are augmented with rich target contexts, a CNN model
can be simply fine-tuned upon these data to enhance its gen-
eralisability in the unlabelled target domain.
Approach Overview. Fig. 2 illustrates our Instance-Guided
Context Rendering scheme. Its main body is a dual condi-
tional Generative Adversarial Network that takes in a pair
of input images from two domains for image generation
(Sec. 3.1), and learns with informative supervision signals
to render the source persons guided by different target in-
stances (Sec. 3.2). We name our Context Rendering Net-
work as CR-GAN for short. In deployment (Fig. 3), abun-
dant data augmented with diverse context is exploited for re-
id model learning in the synthetic target domain (Sec. 3.3).

3.1. Dual Conditional Image Generator

Dual Conditional Mapping. CR-GAN contains a dual
conditional image generator that learns a one-way mapping
to render the source images into desired target contexts by
conditioning on two inputs: a source input XS and a tar-

get input instance XT to guide the context rendering effect.
Formally, this dual conditional mapping is expressed as:

XG = G(XS ,XT ) (1)

In essence, this dual conditional formulation is designed to
fuse the information flows from two domains, such that the
same person in source input XS can be rendered into the
target context explicitly guided by the target instance XT .
Overall, the whole mapping is built upon dual-path encod-
ing and decoding, with a U-Net [43] like encoder-decoder
network in between, as detailed below.
Dual-Path Encoding. To enable instance-guided con-
text rendering, we introduce an essential condition XT to
exploit abundant target instances as contextual guidance in
image generation. Concretely, we design a dual-path encod-
ing structure to parameterise information flows from two
domain separately (Fig. 2) – (1) An identity pathway ✓S

to encode source input XS ; and (2) A context pathway ✓T

to encode target input XT . Given that our aim is to ex-
ploit contextual information from target domain, we mask
the target input XT to retain mainly the background clut-
ter. Specifically, we adopt the off-the-shelf human parsing
model LIP-JPPNet [15] to obtain a binary person mask, and
apply spatial masking on XT to filter out the target person:

X 0
T = XT � (1�MT ) (2)

where � is the Hadamard product; MT is the person mask
of input XT ; X 0

T contains mainly the background clutter.



Through dual-path encoding, the information flows from
two domains are further fused by depth-wise concatenation:
[✓S(XS), ✓T (X 0

T )], followed with an encoder-decoder net-
work to selectively blend the visual information from two
inputs. We construct the encoder-decoder network as a cas-
cade of up-sampling, down-sampling residual blocks, along
with skip connections that enforce the generator network
to selectively preserve low-level visual structures from both
conditional inputs. In particular, the foreground person in
XS , the background clutter in XT should both be picked
by the generator as informative cues for image generation.
Image Generation. To render the context in a region-
selective manner, i.e. keeping the source person whilst aug-
menting background clutters, we employ a context mask to
softly specify the region of contextual changes. Concretely,
the generator outputs two parts: (1) A residual map XR to
model cross-domain discrepancy; and (2) A context mask
XC to modulate per-pixel intensity of context change, both
of which are connected by a shortcut connection to reuse the
source person in input XS . Such generic masking mech-
anisms are also adopted in recent literature, such as face
animation [41], motion manipulation [62]; while we par-
ticularly utilise the context mask to automatically learn the
region selection of context rendering. The final generated
output XG is the sum of source input XS and residual map
XR spatially weighted by the context mask XC :

XG = XR �XC +XS � (1�XC) (3)

The generator is trained end-to-end to generate XG, which
retains the person identity as XS in the new context of XT .

3.2. Learning Objectives
The key idea of CR-GAN is to inject context informa-

tion into image generation. This is motivated that contex-
tual variations exist at multi-granularity – they not only dif-
fer across domains, but also vary dramatically within and
across camera views. To learn such variations, we impose
four distinct losses for model optimisation, which work syn-
ergistically to learn (a) cross-domain, (b) cross-camera, and
(c) inner-camera context variations, whilst (d) retaining the
source identity, as illustrated in Fig. 4 and detailed below.
Adversarial Loss. To mitigate the cross-domain contextual
gap, the generator G is trained against a domain discrimi-
nator Dd in an adversarial minimax manner [17]:

Ladv=min
G

max
Dd

logDd(XT )+log(1�Dd(G(XS ,XT )))

(4)
where Ladv aligns the generated data distribution with the
target data distribution globally to reduce the domain gap.
Camera Loss. To capture the cross-camera context varia-
tions induced by camera characteristics – e.g. colour tones
– a camera loss is imposed to constrain the camera styles:

Lcam=�log(p(yc|XG)) (5)
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(d) Lid retains source identity.

Figure 4: Schematic illustration of learning objectives.

where yc is camera label of XT . Lcam is derived by a cam-
era discriminator Dcam trained to classify camera labels.
Context Loss. Besides capturing context variations across
domains and cameras, the generator should also learn the
inner-camera context variations with content details. Ac-
cordingly, we adopt masked reconstruction errors to con-
strain the foreground, background same as input XS ,XT :

Lcon=||(XG�XS) �MF ||2+||(XG�XT ) �MB ||2 (6)

where MF ,MB are the foreground, background person
masks of XS extracted by human parsing model. Lcon par-
ticularly encourages to retain the source person, whilst aug-
menting more diverse background clutters explicitly guided
by arbitrary target instance XT from the target domain.
Identity Loss. As the source person identity in input XS

should be preserved in output XG, we impose an identity
classification error to constrain the person identity in XG:

Lid=�log(p(yj |XG)) (7)

where yj is the identity label of XS ; Lid is derived by an
identity discriminator Did – a standard re-id CNN model
trained to predict the source person identities.
Overall Objective. CR-GAN is trained with the joint op-
timisation of four losses (Eq. (4),(5),(6),(7)) for their com-
plementary benefits in constraining the image generation:

LGAN=�advLadv+�idLid+�camLcam+�conLcon (8)

where �adv, �id, �cam, �con are hyper-parameters to control
the relative importance of each loss. We set �id=�cam=1,
�adv=2, �con=5 to keep the losses in similar value range.

3.3. Model Training and Deployment
CR-GAN is optimised similar to standard GAN models,

as summarised in Alg. 1. For deployment, Did – a stan-
dard backbone ResNet50 [19] – is fine-tuned upon abun-
dant synthetic data generated by CR-GAN (Fig. 3). All
synthetic data is randomly produced on-the-fly by feeding
arbitrary image pairs to CR-GAN, therefore eschewing the
need of storing an extremely large-scale synthetic dataset.
After fine-tuning, the backbone network Did is deployed to
extract feature for re-id matching in the target domain.



Algorithm 1 Algorithmic Overview.
I. Initialisation: Pre-train Did, Dcam with labels.
II. Train the image generator G:
Input: Source dataset DS , target dataset DT .
Output: An image generator G.
for t = 1 to max gan iter do

Feedforward mini-batch of input pairs (XS ,XT ) to G.
Update Dd (Eq. (4)) and update G for k times (Eq. (8)).

end for
III. Fine-tune Did on synthetic data:
for t = 1 to max cnn iter do

Random context rendering: XG = G(XS ,XT ).
Update Did on XG using identity label of XS .

end for

3.4. Discussion
Overall, our CR-GAN has several merits that can benefit

cross-domain re-id model learning: (1) Instead of control-
ling the rendering effects with a fixed set of category labels
[9], e.g. camera labels, we leverage abundant unlabelled
instances XT from target domain as contextual guidance to
inject contextual variations. This naturally avoids mode col-
lapse to limited fixed styles, and synthesises more diverse
target domain contexts for learning a domain-generic re-id
model. (2) Rather than changing the domain contexts holis-
tically [23], our rendering effects are region-selective. In
particular, the background clutter is modified significantly
with structural change; while the foreground person is in-
painted slightly with colour change to capture the domain
drift. Such rendering effects effectively retain the source
identity, whilst augmenting much richer contexts for re-id
model learning in the synthetic target domain. (3) By fus-
ing two inputs through dual-path encoding at the lower lay-
ers, the generator network is enforced to learn the selective
preservation of low-level visual structures from both inputs,
therefore enhancing the modelling capacity to produce syn-
thetic training data in higher fidelity and diversity.

4. Experiments
4.1. Experimental settings
Implementation Details. To train CR-GAN, we use the
Adam solver [26] with a mini-batch size of 32. The learning
rate is set to 0.0002 in the first half of training and linearly
decayed to 0 in the second half. To build up the image gen-
erator, Instance Normalisation (IN) [52] is used in the U-
Net decoder. IN is neither applied in two separate encoding
pathways nor the U-Net encoder, which allows to retain the
stylistic information before decoding. The two pathways
for dual condition are parameterised as separate convolu-
tional layers. To improve the training stability of GAN, we
add one additional Gaussian noise layer as the input layer in

(a) Market1501. (b) DukeMTMCreID. (c) CUHK03.
Figure 5: Example images from three re-id benchmarks.

the domain discriminator. We employ LSGAN [39] as the
GAN formulation and adopt the domain discriminator same
as PatchGAN [24] to discriminate at the scale of patches. To
stabilise the training, the image generator is updated twice
every iteration in the second half of training. We use the
standard ImageNet [10] pre-trained ResNet50 as the iden-
tity discriminator Did. The camera discriminator Dcam is
an extremely lightweight CNN classifier with 5 layers. The
image generator G, domain discriminator Dd are iteratively
updated as shown in Alg. 1. After training, the ResNet50
is used as the backbone network to extract feature for re-id
evaluation. More details on network architectures and train-
ing procedures are given in the Supplementary Material.
Evaluation Metrics. We adopt several metrics to compre-
hensively evaluate our model in two aspects. (1) To evaluate
the re-id matching performance, we adopt the standard Cu-
mulative Match Characteristic (CMC) and mean Average
Precision (mAP) as evaluation metrics. We report results
on single-query based on the ranking order of cross-camera
pairwise matching distances computed using features ex-
tracted from the re-id CNN model. (2) To measure the vi-
sual quality of synthesis, we adopt the following two eval-
uation metrics: (i) LPIPS Distance (LPIPS) [61] measures
the image translation diversity, which is correlated with hu-
man perceptual similarity. We use the default ImageNet pre-
trained AlexNet to extract feature in evaluation. (ii) Fréchet
Inception Distance (FID) [21] measures the image fidelity
by quantifying the distribution discrepancy between gener-
ated data and real data. We use the default ImageNet pre-
trained Inception to extract feature in evaluation.
Datasets. We adopt three standard re-id benchmarks for
evaluation (Fig. 5). (1) Market1501 [63] contains 1,501
identities captured by 6 different cameras. The training
set includes 751 identities and 12,936 images. The test
set includes 750 identities, with 3,368 images in the probe
set and 19,732 images in the gallery set. (2) DukeMTM-
CreID [42, 64] contains 1,404 identities captured by 8 dif-
ferent cameras. The training set includes 702 identities and
16,522 images. The testing set includes 702 identities, with
2,228 images in the probe set and 17,661 images in the
gallery set. (3) CUHK03 [29] contains 1,467 identities and
14,097 images in total. We use the auto-detected version.

4.2. Ablative Model Evaluation
To validate our model design rationale, we first conduct

ablation study on two different domain pairs: Market1501
! DukeMTMCreID, DukeMTMCreID ! Market1501.
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Figure 6: Qualitative visual evaluation. Given source image XS , (a) baseline (w/o dual condition) collapses to uniform context, due to
lack of contextual guidance; while (b) CR-GAN augments the same person with diverse contexts explicitly guided by target instances XT .

S ! T Market!Duke Duke!Market
Metrics LPIPS FID LPIPS FID
Source-Target data 0.458 0.330 0.458 0.330
w/o dual condition 0.196 0.065 0.210 0.137
CR-GAN 0.281 0.058 0.269 0.096

Table 1: Quantitative visual evaluation on image quality. LPIPS:
image perceptual similarity, higher is better. FID: distribution dis-
crepancy, lower is better. LPIPS / FID in “Source-Target data”
represents the upper bound. Best results are in bold.

Effect of Dual Condition. Introducing abundant target in-
stances as contextual guidance is the key factor that enables
an Instance-Guided Context Rendering process. To vali-
date this factor, we compare our dual conditional mapping
(CR-GAN) with an ablative baseline that takes in merely the
source input XS (w/o dual condition). Fig. 6 shows that: (1)
Although the baseline transforms the context, all the gener-
ated images collapse to the same context; (2) CR-GAN, on
the contrary, acts as a much stronger data generator to aug-
ment the same person with a more diverse range of domain
contexts. This is in line with our visual quantitative results
in Table 1, where CR-GAN obtains much higher LPIPS,
i.e. more diverse outputs, compared to the baseline. This
shows compellingly the benefit of our dual conditional for-
mulation to exploit abundant target instances as contextual
guidance in the image generation.

To evaluate the benefit of context rendering effects in re-
id, we compare CR-GAN with the ablative baseline. Table 2
shows that (1) Introducing our dual conditional formulation
significantly boosts the re-id performance, with improved
margins of 8.9% (52.2-43.3) / 4.1% (59.6-55.5) in R1 on
DukeMTMCreID / Market1501. (2) The improvement re-
mains in the use of LMP, with improved margins of 7.3%
(56.0-48.7) / 5.3% (64.5-59.2) in R1. This indicates that re-
id model learning with more contextual variations is indeed
helpful to boost the cross-domain model robustness.
Effect of Different Losses. In addition to the standard

S ! T Market!Duke Duke!Market
Metrics (%) R1 mAP R1 mAP
Direct Transfer 36.9 20.5 47.5 20.0
w/o dual cond 43.3 24.8 55.5 27.0
CR-GAN 52.2 30.0 59.6 29.6
w/o dual cond+LMP 48.7 27.6 59.2 28.5
CR-GAN+LMP 56.0 33.3 64.5 33.2

Table 2: Ablation study of dual condition in re-id. “Direct Trans-
fer”: CNN trained with only labelled source data; “w/o dual cond”:
without dual condition; LMP: a pooling strategy [11] to reduce
noisy signals induced by fake synthetic images at test time.

S ! T Market!Duke Duke!Market
Metrics (%) R1 mAP R1 mAP
w/o identity loss 31.9 15.4 32.8 11.8
w/o camera loss 48.8 28.6 53.6 26.0
w/o context loss 48.5 28.8 57.4 28.7
CR-GAN 52.2 30.0 59.6 29.6

Table 3: Ablation study on individual effect of each loss in re-id.

adversarial loss, CR-GAN is trained with three different
losses. To validate the necessity of using these losses in re-
id, we conduct ablative comparison by eliminating individ-
ual loss from the overall objective. Table 3 shows that: (1)
Removing any of the loss leads to undesired performance
drop; (2) All losses work synergistically, with their joint
optimisation to achieve the best performance. (3) These re-
sults are in line with our loss design rationale: All losses
serve to exploit the complementary information in model
optimisation (Fig. 4), thus giving their desired performance
gains to yield better synthetic data for re-id model learning.

4.3. Analysis on GAN-based Methods
To isolate and analyse the pure effect of image-level do-

main adaptation in re-id, we compare our model with GAN-
based methods for ablative analysis in this section.
Qualitative Visual Analysis. To understand how context
information is brought to benefit the re-id model learning,



(a) SPGAN!" (b) CR-GAN (ours)
Figure 7: Qualitative visual evaluation. Given source image XS , (a) SPGAN [11] transforms the image into merely one uniform style; while
(b) our CR-GAN renders the source persons into varying contexts: different background clutters, colour tones and lighting conditions.

S ! T Market!Duke Duke!Market
Metrics LPIPS FID LPIPS FID
Source-Target data 0.458 0.330 0.458 0.330
SPGAN [11] 0.099 0.171 0.099 0.115
CR-GAN 0.281 0.058 0.269 0.096

Table 4: Quantitative visual evaluation on image quality. LPIPS:
image perceptual similarity, higher is better. FID: distribution dis-
crepancy, lower is better. Best results are in bold.

we first visually compare the synthetic images produced
by our CR-GAN with SPGAN [11]: a representative re-id
method based upon CycleGAN. As Fig. 7 shows, compared
to merely one plausible output given by SPGAN, CR-GAN
can produce more diverse outputs. This informs that CR-
GAN indeed serves as a much stronger synthetic data gen-
erator to augment much more contextual variations and thus
produces a synthetic training set of much larger-scale.
Quantitative Visual Analysis. To evaluate the visual qual-
ity quantitatively, we further compare CR-GAN with SP-
GAN based on the synthetic data released by the authors.
Table 4 indicates that: (1) Both CR-GAN and SPGAN have
lower and better FID compared to the FID between the
source and target data. This informs that after style adapta-
tion, the cross-domain distribution discrepancy is mitigated
with both methods. (2) Compared to SPGAN, CR-GAN has
much lower FID and higher LPIPS. This indicates CR-GAN
can generate images of better fidelity and higher diversity.
Analysis on Re-id Matching. To further justify how our
synthetic contextual variations benefit cross-domain re-id
learning, we compare CR-GAN with three state-of-the-art
GAN-based re-id methods: PTGAN [57], SPGAN [11],
M2M-GAN [31] on two domain pairs. All these models are
trained on the same source datasets under the same learn-
ing paradigm: a GAN is first trained to synthesise images, a
CNN is then fine-tuned upon the synthetic data for domain
adaptation. Table 5 shows that CR-GAN achieves the best
cross-domain re-id performance. It is worth pointing out
that previous methods generally collapse to fixed style(s):
one homogenous domain style (PTGAN, SPGAN), or a pre-
defined set of camera styles (M2M-GAN). In contrast, CR-

S ! T Market!Duke Duke!Market
Metrics (%) R1 mAP R1 mAP
PTGAN [57] 27.4 - 38.6 66.1
SPGAN [11] 41.1 22.3 51.5 22.8
M2M-GAN [31] 49.6 26.1 57.5 26.8
CR-GAN 52.2 30.0 59.6 29.6
SPGAN+LMP [11] 46.4 26.2 57.7 26.7
M2M-GAN+LMP [31] 54.4 31.6 63.1 30.9
CR-GAN+LMP 56.0 33.3 64.5 33.2

Table 5: Evaluation on GAN-based methods in the cross-domain
re-id settings. Best results in each group are in bold. Overall
1st/2nd best in red/blue.

GAN augments much richer contextual variations that ulti-
mately benefit domain adaptation in re-id.

4.4. Comparison with the State-of-the-art

Competitors. We compare our CR-GAN with 12 state-
of-the-art methods. To ensure a like-to-like fair com-
parison, we compare these methods by categorising them
into four groups: (a) shallow methods using hand-crafted
features: LOMO, BoW, UMDL; (b) image-level learning
methods: PTGAN, SPGAN, M2M-GAN, which use GANs
for style transfer; (c) feature-level learning methods: PUL,
TJ-AIDL, MMFA, BUC, TAUDL, which use additional dis-
criminative constraints in CNN; (d) hybrid learning meth-
ods: HHL, which combine the benefits of group (b) and (c).

It is worth noting that the learning paradigms in group
(b), (c) are essentially orthogonal: learning is performed ei-
ther in image space or feature space. Therefore, these two
paradigms should be complementary when unified in a hy-
brid formulation. To testify the generalisability of CR-GAN
in a hybrid formulation, we add an additional comparison
by unifying CR-GAN / SPGAN with the best performer
TAUDL in group (c). We first train the CNN with synthetic
data generated by CR-GAN / SPGAN, then apply TAUDL
with the pre-trained CNN for unsupervised learning in the
target domain. Such hybrid formulations are denoted as
CR-GAN+TAUDL / SPGAN+TAUDL, respectively.
Evaluation on Market1501 / DukeMTMCreID. Table 6



Types Source ! Target Market1501 ! DukeMTMCreID DukeMTMCreID ! Market1501
Metrics (%) R1 R5 R10 mAP R1 R5 R10 mAP

Shallow

LOMO [32] 12.3 21.3 26.6 4.8 27.2 41.6 49.1 8.0
BoW [63] 17.1 28.8 34.9 8.3 35.8 52.4 60.3 14.8
UMDL [40] 18.5 31.4 37.6 7.3 34.5 52.6 59.6 12.4

Image

PTGAN [57] 27.4 - 50.7 - 38.6 - 66.1 -
SPGAN+LMP [11] 46.4 62.3 68.0 26.2 57.7 75.8 82.4 26.7
M2M-GAN+LMP [31] 54.4 - - 31.6 63.1 - - 30.9
CR-GAN+LMP 56.0 70.5 74.6 33.3 64.5 79.8 85.0 33.2

Feature

PUL⇤ [13] 30.0 43.4 48.5 16.4 45.5 60.7 66.7 20.5
TJ-AIDL† [55] 44.3 59.6 65.0 23.0 58.2 74.8 81.1 26.5
MMFA† [33] 45.3 59.8 66.3 24.7 56.7 75.0 81.8 27.4
BUC⇤ [34] 47.4 62.6 68.4 27.5 66.2 79.6 84.5 38.3
TAUDL⇤ [28] 61.7 - - 43.5 63.7 - - 41.2

Hybrid

HHL [65] 46.9 61.0 66.7 27.2 62.2 78.8 84.0 31.4
SPGAN+TAUDL 66.1 80.0 83.2 47.2 66.5 81.8 86.6 38.5
CR-GAN+TAUDL 68.9 80.2 84.7 48.6 77.7 89.7 92.7 54.0

Table 6: Evaluation on Market1501, DukeMTMCreID in comparison to the state-of-the-art unsupervised cross-domain re-id methods. ⇤:
Not use auxiliary source training data. †: Use auxiliary source attribute labels for training. “-”: no reported results. Best results in each
group are in bold. Overall 1st/2nd best in red/blue. Note that HHL uses StarGAN [9] to generate synthetic training images.

Types Source ! Target CUHK03 ! Market1501 CUHK03 ! DukeMTMCreID
Metrics (%) R1 R5 R10 mAP R1 R5 R10 mAP

Image

PTGAN [57] 31.5 - 60.2 - 17.6 - 38.5 -
SPGAN [11] 42.3 - - 19.0 - - - -
CR-GAN 58.5 75.8 81.9 30.4 46.5 61.6 67.0 26.9

Feature TAUDL⇤ [28] 63.7 - - 41.2 61.7 - - 43.5

Hybrid
HHL [65] 56.8 74.7 81.4 29.8 42.7 57.5 64.2 23.4
CR-GAN+TAUDL 78.3 89.4 93.0 56.0 67.7 79.4 83.4 47.7

Table 7: Evaluation on CUHK03 to Market1501 / DukeMTMCreID adaption compared to state-of-the-art unsupervised cross-domain re-id
methods. ⇤: Not use source data. “-”: no reported results. Best results in each group are in bold. Overall 1st/2nd best in red/blue.

shows comparative results on two domain pairs. It can
be observed that (1) CR-GAN performs best in the image-
level learning paradigm; (2) When deploying CR-GAN in a
hybrid formulation (CR-GAN+TAUDL), we earn the best
re-id performance due to the complementary benefits of
two learning paradigms. In particular, CR-GAN+TAUDL
boosts the performance over TAUDL with margins of 7.2%
(68.9-61.7) / 14.0% (77.7-63.7) in R1 on DukeMTMCreID
/ Market1501. These results not only indicate the benefit of
unifying GAN-based image-level learning and CNN-based
feature-level learning into unsupervised cross-domain re-
id, but more importantly justify our rationale of augment-
ing richer contextual variations to enable learning a more
effective re-id model in the applied domain.

Evaluation on CUHK03 to Market1501 / DukeMTM-
CreID. Table 7 shows comparative results on model adap-
tation from CUHK03, where there exists larger domain gaps
between the source and target domains (Fig. 5). It can be
seen that (1) CR-GAN clearly outperforms the best image-
level competitor SPGAN with large margins; (2) When de-
ploying in a hybrid formulation, CR-GAN+TAUDL outper-
forms the best hybrid competitor HHL with large margins of

21.5% (78.3-56.8), 25.0% (67.7-42.7) in R1 on Market1501
/ DukeMTMCreID respectively. These collectively suggest
the significant advantages of exploiting the synthetic data
by CR-GAN in cross-domain re-id model learning.

5. Conclusion
We presented a novel Instance-Guided Context Render-

ing scheme for cross-domain re-id model learning. Through
a carefully-designed dual conditional mapping, abundant
target instances are exploited as contextual guidance for im-
age generation. We conducted extensive ablative analysis
to validate our model design rationale, and show the best
performance over existing GAN-based re-id methods. Our
like-to-like comparison with the state-of-the-art methods
demonstrates the great advantage of our model when flexi-
bly deploying in a hybrid systematic formulation. Overall,
CR-GAN serves as a generic generator to augment abundant
domain contexts for re-id model learning in practice.
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