

School of EECS, Queen Mary, University of London, London E1 4NS, UK

# Comparing Visual Feature Coding for Learning Disjoint Camera Dependencies

Xiatian Zhu, Shaogang Gong and Chen Change Loy

### QUEEN MARY VISION LABORATORY

{xiatian.zhu, sgg}@eecs.qmul.ac.uk {ccloy}@visionsemantics.com

# Problem

Given two disjoint camera views, we wish to estimate: (1) their inter-camera correlation,



(2) and their spatial-temporal dependencies.

Moreover, we aim to answer the question:

What visual representations are more effective?

### Motivation

- $\bigstar$  Overcome the unreliability of manually selecting visual features from specific datasets;
- **★** Explore high-level structural constraints in coding low-level features for associating objects entities (supervised);
- **★** Employ co-occurrence statistics for constructing more reliable representations (unsupervised).

# Contributions

- (1) A systematic investigation into the effectiveness of supervised versus unsupervised feature coding methods for learning inter-camera dependencies;
- (2) Evaluation of the sensitivity of learning inter-camera time correlation to the size of training data and the quality of scene region decomposition.



Figure 2: The layout and example views of an Underground Station (US) dataset (left) and the i-LIDS (right) dataset.

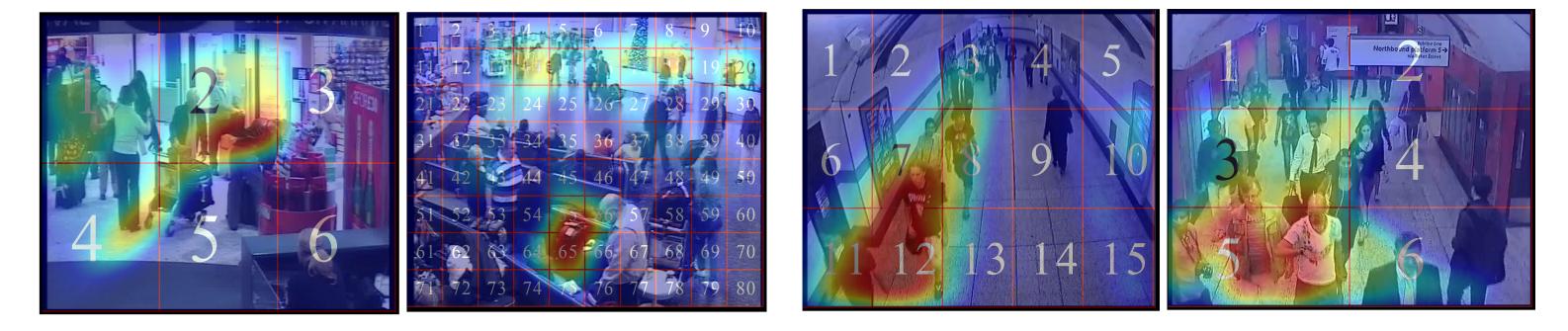


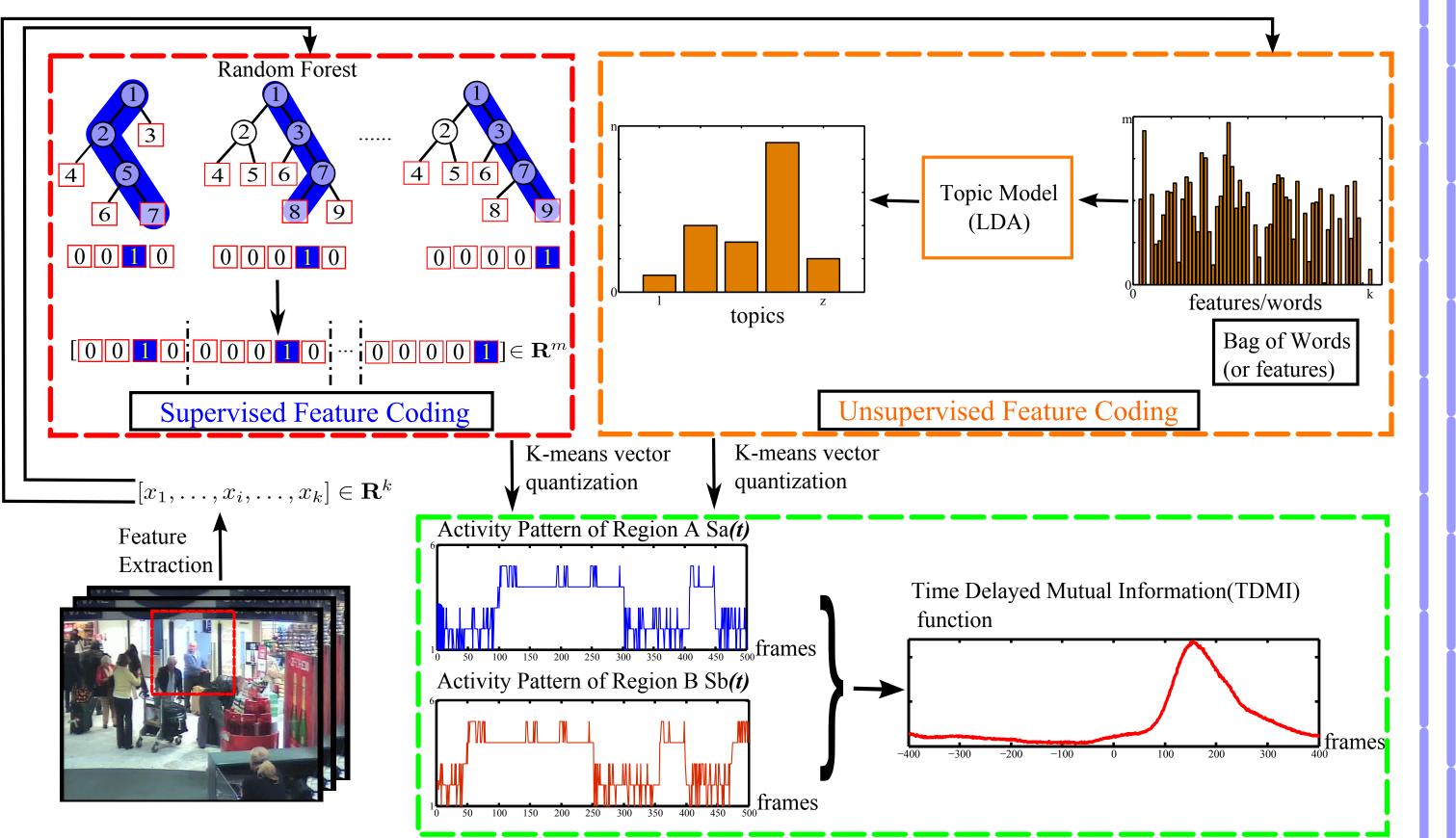
Figure 3: Motion Saliency Maps obtained on the US and the i-LIDS datasets. The selected regions are labelled by black digits.

| Feature Codings     | MI-MIM (US) | MI-MIM (i-LIDS) |
|---------------------|-------------|-----------------|
| RF pred             | 5.1530      | 7.8577          |
| tree code           | -1.7979     | -1.7847         |
| RF pred + tree code | -2.3839     | -1.0335         |
| topic code          | 9.9057      | 16.6349         |

Table 1: Sensitivity to the length of the training sequence: the average improvement in MIM of different feature coding methods over the k-means vector quantisation based representation. Mean improved MIM (MI-MIM) was computed by averaging individual percentage of improvement over the testing range.

# Methodology

- (i) **Supervised method**: Random Forest (RF) [1] for supervised feature coding;
- (ii) **Unsupervised method**: Latent Dirichlet Allocation (LDA) [2] for mapping low-level features to code-words that capture topic distributions;



| Feature Codings     | MI-MIM (US) | MI-MIM (i-LIDS) |
|---------------------|-------------|-----------------|
| RF pred             | 10.7670     | 13.1541         |
| tree code           | 7.8714      | 2.0040          |
| RF pred + tree code | 7.6564      | 3.5522          |
| topic code          | 14.3076     | 4.1265          |

Table 2: Sensitivity to region decomposition: Mean Improved MIM was computed following the same steps as explained in Table 1.

### **Experiment 1: sensitiveness to the size of training data**

- (1) Topic code gave the most favourable results (see Table 1);
- (2) Suggest that feature coding methods can suppress noisy dependencies between unconnected region pairs.

Experiment 2: sensitiveness to the quality of region decomposition

- (1) Topic code shows the best performance for the US dataset while RF pred for the i-LIDS dataset (see Table 2);
- (2) Suggest that person count and topic clusters can be useful cues for inter-camera dependency learning.

### **Conclusion**:

(1) Investigate the effectiveness of supervised (RF) and unsupervised (LDA) feature coding methods for learning inter-camera correlations;

Figure 1: An overview of feature coding comparison for learning inter-camera dependencies.

- (iii) **Time Delayed Dependency Inference**: Time Delayed Mutual Information (TDMI) [3] for learning inter-camera dependencies with the aforementioned feature codes;
- (iv) A new metrics called **Mutual Information Margin(MIM**) proposed for evaluating different feature coding methods:

$$\Delta \mathcal{I} = \frac{\delta(\mathcal{I}_{con}) - \delta(\mathcal{I}_{uncon})}{\delta(\mathcal{I}_{con})}, \delta(\mathcal{I}) = \max(\mathcal{I}) - \min(\mathcal{I}), \tag{1}$$

where  $\mathcal{I}_{con}$  and  $\mathcal{I}_{uncon}$  denote the TDMI function yielded by the connected and unconnected pairs of regions.

- (2) RF and LDA coding schemes outperform the k-means vector quantisation in robustness to small training data size; (3) The coded features are more reliable to poor scene region decomposition;
- (4) Feature coding can suppress noisy dependencies while capture inherent correlations between camera views.

### References

[1] Breiman. Machine Learning, 45(1):5–32, 2001. [2] Blei, Ng, Jordan. J. Machine Learning Research, 3:993–1022, 2003. [3] Loy, Xiang, Gong. IEEE Trans PAMI, 34(9):1799-1813, 2012.

# BMVC 2012, Guildford, 3rd - 7th September