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Problem

Given two disjoint camera views, we wish to estimate: 
    (1) their inter-camera correlation, 
    (2) and their spatial-temporal dependencies.  
Moreover, we aim to answer the question: 
    What visual representations are more effective?

 

Methodology

Experiments
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Figure 2: The layout and example views of an Underground Station (US) dataset (left) 
and the i-LIDS (right) dataset.

Figure 1: An overview of feature coding comparison for learning inter-camera dependencies. 

Figure 3: Motion Saliency Maps obtained on the US and the i-LIDS datasets. The selected
regions are labelled by black digits.

Contributions 
(1) A systematic investigation into the effectiveness of supervised
     versus unsupervised feature coding methods for learning
     inter-camera dependencies; 
(2) Evaluation of the sensitivity of learning inter-camera time 
     correlation to the size of training data and the quality of scene
     region decomposition. 

(i) Supervised method: Random Forest (RF) [1] for supervised 
     feature coding;
(ii) Unsupervised method: Latent Dirichlet Allocation (LDA) [2]
     for mapping low-level features to code-words that capture topic
     distributions;

(iii) Time Delayed Dependency Inference: Time Delayed Mutual 
      Information (TDMI) [3] for learning inter-camera dependencies
      with the aforementioned feature codes;
(iv) A new metrics called Mutual Information Margin(MIM) 
      proposed for evaluating different feature coding methods:

      where         and            denote the TDMI function yielded by 
      the connected and unconnected pairs of regions.
 

Table 1: Sensitivity to the length of the training sequence: the average improvement
in MIM of different feature coding methods over the k-means vector quantisation based 
representation. Mean improved MIM (MI-MIM) was computed by averaging individual 
percentage of improvement over the testing range.

Table 2: Sensitivity to region decomposition: Mean Improved MIM was computed 
following the same steps as explained in Table 1.

 
Conclusion: 
    (1) Investigate the effectiveness of supervised (RF) and 
          unsupervised (LDA) feature coding methods for learning 
          inter-camera correlations;
    (2) RF and LDA coding schemes outperform the k-means vector
          quantisation in robustness to small training data size;
    (3) The coded features are more reliable to poor scene region 
          decomposition;
    (4) Feature coding can suppress noisy dependencies while capture 
          inherent correlations between camera views. 
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Problem

Motivation
     Overcome the unreliability of manually selecting visual features
      from specific datasets;
     Explore high-level structural constraints in coding low-level
      features for associating objects entities (supervised);
     Employ co-occurrence statistics for constructing more reliable 
      representations (unsupervised).
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Experiment 2: sensitiveness to the quality of region decomposition
    (1) Topic code shows the best performance for the US dataset while 
          RF pred for the i-LIDS dataset (see Table 2);
    (2) Suggest that person count and topic clusters can be useful cues 
          for inter-camera dependency learning. 

Experiment 1: sensitiveness to the size of training data
    (1) Topic code gave the most favourable results (see Table 1);
    (2) Suggest that feature coding methods can suppress noisy 
          dependencies between unconnected region pairs. 
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